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LOCAL TOPOLOGY OF ELEMENTARY WAVES FOR
SYSTEMS OF TWO CONSERVATION LAWS

Cesar Eschenazi Carlos Frederico Palmeira

Abstract

For shocks, generic shock foliations (shock curves) are known for
quadratic flux functions. The same is true for rarefactions. However,
certain submanifolds naturally associated to shocks and rarefaction are
not transversal at certain points of the wave manifold where both these
foliations are embedded. We show that generic cubic perturbations of the
flux functions is sufficient to restore transversality at these points. Such
transversality is an important ingredient to obtain stability of Riemann
solutions for systems of conservation laws.

Resumo

Quando se estudam, na variedade de onda, choques com fungoes de
fluxo quadraticas, obtém-se folha¢oes de choque genéricas. O mesmo
ocorre para rarefacdes. Entretanto, hd certas subvariedades unidimen-
sionais da superficie caracteristica , naturalmente associadas a choques
e rarefagoes, que ndo se cortam transversalmente. Neste artigo mostra-
se que uma perturbacdo ciibica genérica é suficiente para restabelecer a
transversalidade nestes pontos. Tal transversalidade é um importante
ingrediente para a obtencdo de estabilidade de solu¢oes de Riemann para
sistemas de leis de conservacio.

1. Introduction

Rarefaction and shock curves in the fundamental wave manifold for systems
of two conservation laws with quadratic flux functions were described in [3]
and [2], respectively. For rarefaction curves (in [3]) and shock curves (in [2]) it
was shown, among other things, that the configurations obtained were stable
under C? perturbations of the flux functions in the Whitney topology. When

one considers both shock and rarefaction curves simultaneously however, the
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following coincidence appears. The shock one-dimensional foliation is singular
along a one-dimensional set r. Associated to r , we have two invariant manifolds
which are formed by all shock curves through r. These invariant manifolds are
two-dimensional surfaces ¥ and X, which intersect transversely along r (fig.1)
Each of them intersects, also transversely, the characteristic surface C (fig.2).
In the characteristic surface we have the family of rarefaction curves , which is
singular exactly at rNC (fig. 3). Through each of these singular points there are
two invariant 1-dimensional manifolds ¢; and ¢,. It turns out that the curve
¢y coincides with the curve ¥ NC, as opposed to the behavior of ¢y and £, NC
which are transversal (fig. 4). Let us note that it is possible that r is formed
by three disjoint lines, and this will generate three pairs of surfaces (2%,%%) and
three pairs of curves (¢},45) such that the situation just described occurs for
each 1+ = 0,1,2, but it is important to notice that for all ¢, j .k, [, E;, 3t are
transversal.

Here we show that, by adding cubic terms to the flux functions, one generi-
cally destroys this coincidence (obtaining actually transversality at the singular
points considered, fig. 5 ), indicating that it might be possible to obtain a
stability theorem for rarefaction and shock foliations jointly. Such a stability
theorem would be a step toward the proof of global stability of solutions of
Riemann problems for systems of two conservation laws. The reason for this
is that, as it was shown in [2] and [3], the rarefaction foliation and the shock
foliation, for quadratic flux functions, are separately stable and the only lack
of transversality, preventing a joint local stability in the neighborhood of the
singularities of the rarefaction foliation, is the one removed in this paper. We
also remark that adding higher order terms does not change the configurations.
Again, this is due to transversality.

Consider a system of two partial differential equations W; + F(W), = 0,
where W = (u,v); W(z,t) € R* and the flux function F = (f,g) : R* = R*is
given by
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Fu,0) = avut o + 5 + (b + 1)+ 5f1(w,0)
g(u,v) = agu 4 asv + uv — by + sg1(u,v),

(1)
where by £ 0,01 # 1,0, #1+ %’%, az —az # 0 and f; and ¢g; are homogeneous

polynomials of degree 3, i.e.,

filu,v) = arv® + agu’v + azuv® + ag®

gl(u7 v) = a5u3 + a6u2v + a7uv2 + a8v3

Let C be the characteristic manifold contained in the wave manifold M see
[2]. Given a singularity of the rarefaction foliation, see [2], let ¢ and ¢, be the
invariant 1-dimensional manifolds at the singularity.

Considering the shock foliation in the wave manifold, let r be the connected
component of the secondary bifurcation see [2], which contains the above men-
tioned singularity of the rarefaction foliation, and let ¥; and X3 be its invariant

2-dimensional manifolds. The main result in this work is the following

Theorem. Let f, g, fi1,91,C, X1, X2, ¢1, 2 be defined as above. Then there exists
a polynomial in o = (a1; ag; as; s as; s ar; as) such that for a away from its
set of zeros and for all s sufficiently small, ¢1, ¢2, X1 NC and Xy N C are

transversa l

Remark 1. In [2] it is shown that X5 is a plane Z = z;,¢ = 0,1,2 and X4 is
a surface whose equation is computed (they are called there P; and S;). In [3]
the invariant manifolds ¢; and ¢, of the rarefaction foliation at each singular
point are computed; ¢, is a line which is the intersection of C and X,; ¢; is a

curve transversal to ¥; NC.

Remark 2. The fact that the singular set of the shock foliation intersects the
characteristic manifold exactly at the singularities of the rarefaction foliation is
true for any F, as can be seen in [1], theorem 6.3.

The proof of the theorem will be given in three parts. In Section 2 we will

study rarefactions and compute the tangent directions to ¢ and ¢. In Section
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3 we will consider shock curves and compute the tangent directions to ¥; NC
and Xy NC. In Section 4 we will perform the final computations which show
that the angle between ¢, and X3 N C is non zero for generic a. We refer the

interested reader to [4] for general background on systems of conservation laws.

2. Rarefactions

We will follow the same strategy of [3] to construct the characteristic surface.
Eliminating the eigenvalue A between the equations which define the eigenvec-

tors of the matrix DF and putting z = %, we obtain the equation

fuz2 + (fu _gv)z —Gu = 0.

Substituting all derivatives involved and introducing the new variables

dv
B =
du
ﬁ:blu—kbgv«kalfa%
V:v+a2,

C = asz — as,

we obtain the system

GU,V,z) = V(MZ2 1)+ 0z — @+ sh(U,V,z) =0 @)
where h(U7 v, z) is found by substituting u((:/ V) and v(U, V) in the expression
Oh 2y (Oh 991y 99
v Ou  dv ou’

which is an easy, but long, computation.
The equation G((J’, v, z) = 0 defines a 2-dimensional surface C C R? x P!,
which is called the characteristic surface. On this surface we consider the line

field defined by the intersection of the kernel of the 1-form

w = zdU — (by + by2)dV
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with the tangent space of C at each point. This line field induces a foliation F

on C which is singular at points where the matrix
G Gy G.
z _(bl + bQZ) 0

has rank less than 2. Thus the foliation F is singular at points which are solu-

tions of the system

G(U,V,2) =0
2:V + U +s2=0
22 4 boz 4 b — 1) = 5(Z (b + byz) — 22) = 0

av

Solving this system for I/, V, z, we see that the singular points are dependent
on the parameter s. We are interested in the study of the solutions of this
system, for s sufficiently small, which lie in a neighborhood of the solution for
s = 0. As in [3] and [2], we have one or three singular points, depending on
whether by> — 4(b; — 1) is negative or positive.

To study the foliation F in C we use U, z as coordinates for C, i.e., we use
the fact that equation G(U, v, z) = 0 can be solved in V, for small s, because
this is true for s = 0. However, for s # 0 we can no longer obtain explicitly the
expression of V as a function of z and U, since G is polynomial in V of higher
degree. Let V = 1[)((7,2) be the function defined by G(ﬁ,‘;,z) = 0. In each
region of the (U, z)-plane where the coordinate system is defined, we have

ah

o —87= — 2

ar 21+ sn(ﬁ,z)7

8_1/; B —221/)(0,,2)—0—5%
9z 22— 1+sn(U,z)

2

where n(U, z) is found by substituting %(U, z) in the expression of %

In these coordinates, the equation w = 0 becomes

n (U, 2)dU — ng(U, 2)dz = 0,
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where

. - oh
n1(U,2) = 2(22 + boz + by — 1) + s(2n(U, 2) — (b1 + ng)ﬁ),

~ - - oh
no(U, z) = (22¢(U, 2) + U)(by + byz) + s(by + sz)E-
In each region of the plane where 7 and z can be used as coordinates for C,

the line field has the same behaviour as the vector field B defined by

5 { b = ng(0, 2),

z2=n1(U,2).

The invariant directions of the singularities are given by the eigenspaces of

the matrix DB evaluated at each singular point. A straightforward computation

shows that the invariant directions at each singular point are

wi(s) = (w%(s), wf(s)),

and

where

We now turn our attention to shock curves.

3. Shocks

We follow [2] in the study of the shock curves for the flux function F defined
by the equations (1). Shock curves for a fixed state (u,v) consist of the set of
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pairs (u’,v') for which there exists A such that

flu,v) — f(u',v') = ANu — o) (4)
g(u,v) — g(v/,v') = Mo — o).
Equation (4) is called the Rankine-Hugoniot condition.

Eliminating A in (4) we obtain

(f(u,v) = f(',0'))(v = v') = (g(u, v) — g(u', v'))(u — ) = 0. (5)

The set P defined by (5) is the union of the plane v = u'; v = v’ with
a 3-manifold M?. TIn this manifold we consider the shock curves defined by
du = dv = 0. The manifold M? will be foliated by an auxiliary 2-dimensional
regular foliation, where each leaf is formed by shock curves. On each auxiliary
leaf the shock curves are the level curves of a certain Morse function. We will
determine also the loci where the shock curves bifurcate in M. They turn out
to be curves intersecting transversally each auxiliary leaf. These intersection
points are saddle singularities of the shock curves in the auxiliary leaf.

As in [2], the manifold M? is given by the quadratic polynomial

B2+ (A-D)z—C =0, (6)
with:
o=
T u—

A= /ldf
B= /1af
C = / 99
D= /agdt

where the integrands are evaluated at (tu+ (1 —1¢)u’,tv+ (1 —1)v’). By straight-

forward computations, we obtain

u+u

= (b + 1)(

) +a+ SfZ(uv ulv U, Ul)v
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B:v—l—v’

+ as + sfs(u, v’ v, 0"),

o7
g= ! —|2— c +as+ sgg(u,u',v,vl),

; ! /
D= uJ;u —bz(vgv)+a4+sg-3(u,u',v,v')
where
1
:/ 8f1 + (1 =)t + (1 — t)o')dt,

= (1 —f)u tv+ (1 —i)v')dt,
_ / d(h
= (tu+ (1 =)' to+ (1 — t)v')dt,

93_/0 %{:(t + (1= O, v + (1 — t)o')dt.

Substituting A, B, C, D in equation (5) and considering

o u+u

7 = ,
2

v+ v

V= ,
2

X =u—1,

U:blU—b2V+a1—a4,

V=V—|—a2,
v—10
A
u —u'

we obtain the following equation for the manifold M?:
GU,V,2,X) =V (2 =1)+ Uz —c+sH(U,V,X,2) =0, (7)

where H(CN", V,X,z) is obtained by substituting U/, V, X, z in the expression
Falusu! v, 0") 22 + (falu, vy v, 0") — gs(u, v’y v,0"))z + go(u, o, v, 07).
Thus the set P in the new variables is given by the union of the plane
X = 0 ( reflecting the fact that (u,v) = (v, v’) satisfies (5)) with the 3-manifold
M3 C R? x P!, given by
G(U,V,z,X)=0.
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Embedded in M?

, which is called the wave manifold, we have the char-
acteristic surface C, defined by X = 0. In this surface, rarefaction curves are
naturally defined (as was done in the previous section).For a more precise defi-
nition, see section 3 of [1].

One family of shock curves in M? is defined by making u and v constant,
or equivalently by du = dv = 0. Using the variables introduced above, these
equations become, respectively
pr ®

where
K =b X 420 — 26,V
L=Xz42V.

These curves are singular at points where dG, dK, dL are linearly dependent.

The singular set of the shock curves is the solution set of the system

/,V,z 0
HU,V,z,X)=0 (9)
o 0

where G = 0 is just the fact that the point lies in M3, and H = 0 and
W = 0 are the conditions obtained from the linear dependence of dG, dK, dL.

The expressions of H and W are given below.

HO,V,2,X) = 2(2* + byz + by — 1) — sH, (U, V, X, 2),

o . . X L
WU,V,z,X)=(2V+U)— 5(22 + bz — 1)+ sHy(U,V, X, 2),
where H; and Hj are given by:
~ oH oH oOH oH

H({O,V,X,2)=2—— —bj—= —
it =25y ~bhor Gy Thar)”

and
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The set defined by equation (9) is called the secondary bifurcation. Since
dG, dK are everywhere linearly independent for s = 0, the same will be true for
small s. Thus the level surfaces of K define a 2-dimensional regular foliation

in M3, Let Mj be the level surface defined by K = k. My is defined by two

equations
{ G(U,V,z,X)=0 (10)

The shock curves on each My, are the level curves of the function L, i.e. the
shock curves are defined by L = [ for different values of [.

In order to study the shock curves on each M, we use I/ and z as coordinates
and obtain the shock curves as an equation relating U, z, k, I. For k and [
fixed, we have a single shock curve in My. Keeping k£ constant and letting [
vary, we obtain all shock curves in My. For fixed k, we can solve (9) in X, v,
obtaining X = X(U,2), V = (U, z). In each region of the (U, z)-plane where

the coordinate system is defined, we have

. L OH
Jv z+ S50

ﬁ__,z?—l—l—sm(U,z)

and

dv _ZZI/(U, )+ U+ s%

9z~ -1+ sm(U, z)

where m(U, z) is obtained by substituting v/(U, z) in the expression of g—g

Remembering that L = Xz + 2V, this equation becomes
L = Li(U,2),

where . N
z(k —2U) + 2(by + bz )v(U, 2)
by ’

The singular points of the shock curves are given by

Liy(U,2) =

oL oL
oU 9z
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Ly, which cross it. Each singularity in My, is a saddle point, since it is shown
in [2] that it is so for s = 0, and we are considering small s. When k varies,
the separatrices of the singularities generate two surfaces of dimension 2, which
we call ¥ and ¥,. These surfaces intersect (transversally) along the secondary
bifurcation.For each ¢ = 1,2, 3,;NC is a curve passing through the corresponding
singular point of the rarefaction foliation. When s = 0, ¥, becomes a plane
which intersects C along separatrices of the rarefaction foliation at the singular

point in question, while ¥; remains transversal to both separatrices.

4. Transversality

Let p be a singular point of the rarefaction foliation in C; we will now compute
the vectors ¢1(s) and ¢5(s) which generate T,(X,NC) and T,(£2NC), respectively,
and the vectors r; and ry which are tangent to the invariant 1-dimensional
manifolds of the rarefaction foliation. For s = 0, we know that rq, ry and ¢4
are already independent and ry coincides with ¢,. The vectors r; and ry are

obtained from w; and w;y by applying to them the matrix C' below.

1 0
_ [eX3 N
G oU 9z |
0 1

evaluated at singular points, obtaining

 frd 1 a’/),wz 4
ri(s) = (wl(s)ewl(s)aﬁv 1(s)),
ra(s) = (wl(s), wi(s —a¢"w2 s
ra(s) = (wy(s), 2(-)8ﬁ’ 2(s))-

This is so because w; and wy were computed in coordinates [7 and z . Now
we are regard them as vectors in the ((7, v, z) space.
The first step is to obtain the tangent directions to the invariant manifold

of the shock foliation restricted to My at point p. To do this we use U and z as
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coordinates for My and we consider the second order Taylor expansion of Lj in

a neighborhood of p:

asz)U +(62Lk 1%Ly, ,

L. 2) = _ Ik
{2 =555 ava:' 0" T 392 )

where all derivatives are evaluated at the projection p of p in (ﬁ,z)—plane.
7

Solving the equation L(U,z) = 0 in z, we have

Li(U,2) = (z + di(s)U)(z + da(s)0),

where
92L, 32L, 82Ly \ ( 82L
aﬁa’; \/(aUakz) (dd_sz)(??k)
dl(s) = 2Ly ’
822
and
82Ly, (921‘ d2T 92,
o06s T \/ dUaz )(Wk)
dy(s) = I
922

It follows that the tangent directions to the invariant manifolds in coordi-

nates U and z are given by
vi(s) = (v1(s), vi(s)) = (=1, du(s))
va(8) = (vy(s),v3(s)) = (—1,dz(s)).

Let A be the matrix

1 0
v oy
- U 0z
A 01 (11)
29X 84X
au a

One obtains the pre-image of v;(s), va(s), in M? by computing the vectors
Vi(s) = A(p).vi(s) and Va(s) = A(p).va(s). We consider M? as a surface in
(U,V,z, X) space. We have:
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where

U
Vi3(s) = vi(s),
0X 10,4
Vi'(s) = ‘U}(S)ﬁ + vi(s) EP

and where all derivatives are evaluated at p.

\Y¢
Sg=| VH |,
YW

where G, H, W are defined in (9). The tangent space to the secondary bifurca-

Let S be the matrix

tion at the singular point p is given by the kernel of Sg evaluated at p. Taking

X =0 and computing the kernel of Sp, we obtain a vector of the form

b(s) = (bl(s)’ b2(5)7 63(5)’ b4(s))'

A vector in T,X; NC, « = 1,2, is a linear combination of each vector V;,
i = 1,2 and b(s). Thus a vector in the tangent space T,X; N C, 7 = 1,2 has

coordinates .
] =rV!4+ b (s)

V = rV2 4+ thy(s)

z=rV3 +tby(s)

X = rV* 4 thy(s).

For X = 0 we solve this system, obtaining

t1(s) = (ba(s)Vi' () =br(s)Vi'(s), ba(s) V2 (5)=ba(s) V;'(5), ba(s)V;*(5) = Vi' (s)bs(s), 0)
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ta(s) = (ba(s)Vy (5)=b1()V5'(5), ba(s) V' (5) =ba(s)V5'(s), ba(s)V5'(5) = V' (5)bs(5), 0).

In order to compare ¢;(s) with vectors r;(s) we consider the inclusion of r;(s)

in T,M?, i.e., we consider the vectors

Ru(s) = (wl(s), ok (5) 52, wi(5),0)

Fa(s) = (wh(s), )22, w51, 0)

as vectors in ((':7, V,z, X)-space.

It is easy to see that the invariant manifolds of the shock and rarefaction foli-
ations which coincide for s = 0 are V5(s) and r3(s). Thus, we must compare the
vectors {5(s) and Ry(s) in T,M? and show that they are linearl y independent.

What we have to show now is that the vectors Ry and t2, which are linearly
dependent for s = 0, become independent for small non zero s, and generic a.
Let 6(s,a) be the angle between Rs(s, ) and {5(s,a). We have (0,a) = 0
for all a. Tt is sufficient to show that, generically in «, %(07 a) # 0, since this
implies that the graph s — 6,(s) cuts the s axis transversely at the point
s=0, 0, =0, where we write §,(s) for (s, ).

Differentiating

(ta(s), Ra(s))
lI£2(s)[ll| Ra(s)]

cosly(s) =

twice, we obtain

and making s = 0 we obtain
<t27 Rl>

—0/,(0)? = (7”t2||”32”)"(0). (15)
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It is easy to see that 6’(0)? is the quotient of two expressions which involve
polynomials and square roots of polynomials in «, so we can rationalize its

numerator, obtaining a new polynomial which has the same set of zeros as

#’(0)%. This concludes the proof.

Final remark: A natural question is whether the transversality we have just
obtained between ¢, and ¥, N C is preserved by projection in (u,v)-space, or
which is the same, (U f/)—space. It is just a matter of considering, in the above
computations, only the first two coordinates of the vectors Ry, and t;. We
will obtain a new polynomial in a, whose set of zeros must be avoided. By
multiplying this polynomial and the one we obtained before, we get a new one
such that if « is not in its set of zeros, not only R, and ¢, will be transversal,

but their projections in the original (u, v)-space will also be transversal.
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