

http://doi.org/10.21711/231766361998/rmc156

©1998, Sociedade Brasileira de Matemática

MULTIPLE SOLUTIONS FOR A CLASS OF STRONGLY INDEFINITE PROBLEMS

David G. Costa

Abstract

We consider variations problems associated with differential equations (P) of the form

$$\mathcal{L}u = \nabla \mathcal{F}(u) \quad ,$$

where $\mathcal{L}:D(\mathcal{L})\subset H\longrightarrow H$ is an unbounded, selfadjoint operator on a closed subspace H of $L^2(\Omega,\mathbb{R}^N),\Omega\subset\mathbb{R}^N$ is a bounded domain and $\mathcal{F}:\mathbb{R}^n\longrightarrow\mathbb{R}$ is a C^1 function. If $\nabla\mathcal{F}(u)$ satisfies suitable growth conditions, then the weak solutions of (P) are precisely the critical points of a related functional J=q-N on an appropriate Hilbert space $E\subset H$, where q is the quadratic form on E corresponding to the operator \mathcal{L} and $N(u)=\int_\Omega \mathcal{F}(u)dx$. We are interested in situations where J is strongly indefinite in the sense that it is neither bounded from above nor from below, even modulo subspaces of finite dimension or codimension.

Assuming that N is nonquadratic at infinity and that the functional J is invariant under a given \mathbb{Z}_2 or S^1 action, we prove multiplicity results on critical points of J which depend only on the behavior of the quotient $2\mathcal{F}(u)/|u|^2$ as |u| varies from 0 to ∞ . Such results, which apply to Hamiltonian Systems, Nonlinear Wave Equations and Noncooperative Elliptic Systems, partially extend and complement many other results in the literature.

Resumo

Consideramos problemas variacionais associados a equações diferenciais (P) da forma

$$\mathcal{L}u = \nabla \mathcal{F}(u) \quad ,$$

onde $\mathcal{L}:D(\mathcal{L})\subset H\longrightarrow H$ é um operador autoadjunto, não-limitado, num subespaço fechado H de $L^2(\Omega,\mathbb{R}^n)$, $\Omega\subset\mathbb{R}^N$ é um domínio limitado e $\mathcal{F}:\mathbb{R}^n\longrightarrow\mathbb{R}$ é uma função de classe C^1 . Se $\nabla\mathcal{F}(u)$ satisfaz uma condição adequada de crescimento então as soluções fracas de (P) são precisamente os pontos críticos de um funcional associado J=q-N num espaço de Hilbert apropriado $E\subset H$, onde q é a forma quadrática

correspondente ao operador \mathcal{L} e $N(u) = \int_{\Omega} \mathcal{F}(u) dx$. Estamos interessados em situações onde J é fortemente indefinida no sentido de que o funcional J é ilimitado tanto inferiormente quanto superiormente, mesmo módulo subespacos de dimensão ou codimensão finita.

Supondo que N é $n\tilde{a}$ o-quadrático no infinito e que o funcional J é invariante sob uma dada ação de Z_2 ou de S^1 no espaço E, provamos resultados de multiplicidade para os pontos críticos de J, os quais dependem apenas do comportamento do quociente $2\mathcal{F}(u)/|u|^2$ quando |u| varia de 0 a ∞ . Tais resultados, os quais podem ser aplicados a Sistemas Hamiltonianos, Equações Não-Lineares de Onda e Sistemas Elípticos Não-Cooperativos, estendem parcialmente e complementam muitos outros resultados anteriores na literatura.

1. Introduction

This paper is concerned with multiplicity results for a class of differential equation problems of the form

$$\mathcal{L}u = \nabla \mathcal{F}(u) \ . \tag{P}$$

Here, $\mathcal{L}: D(\mathcal{L}) \subset H \longrightarrow H$ is an unbounded, selfadjoint operator on a closed subspace H of $L^2(\Omega, \mathbb{R}^n)$, where $\Omega \subset \mathbb{R}^N$ is a bounded domain and $\mathcal{F}: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a C^1 function. If $\nabla \mathcal{F}(u)$ satisfies suitable growth conditions, it turns out that the weak solutions of (P) are precisely the critical points of a related functional $J: E \longrightarrow \mathbb{R}$ of the form

$$J(u) = q(u) - \int_{\Omega} \mathcal{F}(u) \ dx \ ,$$

on an appropriate Hilbert space $E \hookrightarrow H$, where q is the quadratic form on E corresponding to the operator \mathcal{L} .

We are interested in situations where the functional J is strongly indefinite in the sense that it is neither bounded from above nor from below, even modulo subspaces of finite dimension or codimension. In particular, both the quadratic form q and its negative have infinite Morse indices. Such situations cover Hamiltonian Systems, Nonlinear Wave Equations and Noncooperative Elliptic Systems (cf. [8]).

Roughly speaking, our basic hypotheses say that the functional $N(u) = \int_{\Omega} \mathcal{F}(u) dx$ is nonquadratic at infinity (cf. [8, 9]) and that the quotient $2\mathcal{F}(u)/|u|^2$

crosses m points of the discrete spectrum of \mathcal{L} as |u| varies from 0 to ∞ . Then, assuming that the functional J is invariant under a given \mathbb{Z}_2 or S^1 action on E, our main result says that problem (P) has at least m nontrivial solutions. This complements the results in [8] and extends some of the results in [11].

It should be mentioned that the basic common underlying structure of problems on Hamiltonian systems, nonlinear wave equations and elliptic systems has been previously noticed by Amann [1] and Benci-Rabinowitz [4], among others, and that there is a vast literature on such problems when the assumptions are placed on the nonlinearity $\nabla \mathcal{F}(u)$ itself (see the basic references [13, 18, 21]). Moreover, the situations where $\nabla \mathcal{F}(u)$ is sublinear or superlinear are handled separately (see e.g. [5, 7, 12, 15, 16, 17, 20, 19]).

In Section 2 we present the abstract framework to which our main result applies, while Section 3 is reserved to the proof of that result and to applications. We consider applications to the problem of finding multiple time periodic solutions for the nonlinear wave equation

$$u_{tt} - u_{xx} + f(u) = 0$$
 , $0 < x < \pi$, $(WE)_1$

under Dirichlet boundary condition

$$u(t,0) = u(t,\pi) = 0$$
, $(WE)_2$

as well as to the problem of finding multiple solutions of noncooperative elliptic systems

$$\begin{cases}
-\Delta z &= F_z(z, w) \text{ in } \Omega \\
\Delta w &= F_w(z, w) \text{ in } \Omega \\
z &= w = 0 \text{ on } \partial\Omega
\end{cases}$$
(ES)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain. Typical results are given by the following theorems which complement results in [8, 10].

Theorem 1.1 Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function satisfying f(0) = 0, $F(u) = \int_0^u f(s)ds \ge 0$ and

$$|f(u)| \le A|u|^r + B \quad \forall u \in \mathbb{R} ,$$
 (f_1)

for some r > 1. Assume further that

$$\liminf_{|u|\to\infty} \frac{uf(u) - 2F(u)}{|u|^{\mu}} > 0 , \qquad (f_2)$$

$$\limsup_{u \to 0} \frac{2F(u)}{u^2} < \lambda_l \le \lambda_k < \liminf_{|u| \to \infty} \frac{2F(u)}{u^2} , \qquad (f_3)$$

where $\mu > r-1$ and $0 < \lambda_l \le \lambda_k$ are eigenvalues of $\mathcal{L} = \partial_x^2 - \partial_t^2$ in the space $H = \{ u \in L^2((0,\pi) \times (0,\pi)) \mid u(t,\pi-x) = u(t,x) \text{ a. e. } \}$. Then, problem $(WE)_1, (WE)_2$ has at least m = k-l+1 (t dependent) solutions which are π -periodic in t and geometrically distinct (that is, do not differ by a time translation).

Theorem 1.2 Assume that $F \in C^1(\mathbb{R}^2, \mathbb{R})$ is even, $\nabla F(0,0) = (0,0)$ and

$$|\nabla F(u)| \le C|u|^r + D \quad \forall u = (z, w) \in \mathbb{R}^2 , \qquad (h_1)$$

where 1 < r < (N+2)/(N-2), $N \ge 3$. Assume further that

$$\liminf_{|u|\to\infty} \frac{u \cdot \nabla F(u) - 2F(u)}{|u|^{\mu}} > 0 , \qquad (h_2)$$

$$\limsup_{|u|\to 0} \frac{2F(u)}{|u|^2} < \lambda_l \le \lambda_k < \liminf_{|u|\to \infty} \frac{2F(u)}{|u|^2} , \qquad (h_3)$$

where $\mu > N(r-1)/2 > 0$ and $\lambda_l \leq \lambda_k$ are eigenvalues of the operator $\mathcal{L} = diag(-\Delta, \Delta)$ on $L^2(\Omega) \times L^2(\Omega)$. Then, problem (ES) has at least m = k - l + 1 pairs of nontrivial solutions $u = (z, w) \in H_0^1(\Omega) \times H_0^1(\Omega)$.

2. The Abstract Framework

We shall start by recalling some definitions as well as an abstract multiplicity result due to Benci-Capozzi-Fortunato [3].

Let E be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ and assume that $\{T(g)|g \in G\}$ is a unitary representation of a compact topological (abelian) group G on the space E (see [13]). In other words, for each $g \in G$ the

mapping $T(g): E \longrightarrow E$ is a linear isometry and the following properties are satisfied:

- (i) T(0) = Identity;
- (ii) $T(g_1)T(g_2) = T(g_1 + g_2)$ for all $g_1, g_2 \in G$;
- (iii) $(g, u) \mapsto T(g)u$ is continuous on $G \times E$.

In particular, each T(g) is a unitary operator with inverse T(-g).

The *orbit* of an element $u \in E$ is the set $\mathcal{O}(u) = \{T(g)u | g \in G\}$. A given functional $J: E \longrightarrow \mathbb{R}$ is said to be *invariant* if J(T(g)u) = J(u) for all $(g,u) \in G \times E$, and a subset $A \subset E$ is called *invariant* if T(g)A = A for all $g \in G$. The *fixed set* of the representation $\{T(g)\}$ is the (closed) subspace

$$Fix(G) = \{ u \in E \mid T(g)u = u \ \forall g \in G \}$$

consisting of the most symmetric elements of E. Finally, we say that a functional $J \in C^1(E, \mathbb{R})$ satisfies the Cerami compactness condition at the level $c \in \mathbb{R}$ if the following holds (cf. [6]):

 $(Ce)_c$ Any sequence $\{u_n\} \subset E$ such that $J(u_n) \longrightarrow c$ and $(1+||u_n||)||\nabla J(u_n)|| \longrightarrow 0$ possesses a convergent subsequence.

This condition, which was considered by Cerami in [6] and allows for rather general minimax results (cf. [2]), is a variant of the famous compactness condition introduced by Palais-Smale in [14]:

 $(PS)_c$ Any sequence $\{u_n\} \subset E$ such that $J(u_n) \longrightarrow c$ and $\|\nabla J(u_n)\| \longrightarrow 0$ possesses a convergent subsequence.

The following abstract multiplicity result was proved by Benci-Capozzi-Fortunato in [3]:

Theorem 2.1 Suppose that a unitary representation of a group G acts on a real

Hilbert space E, where $G = \mathbb{Z}_2$ or $G = S^1$. Let $J \in C^1(E, \mathbb{R})$ be an invariant functional of the form

$$J(u) = \frac{1}{2} \langle Lu, u \rangle - N(u) ,$$

where $L: E \longrightarrow E$ is a bounded selfadjoint operator which does not contain 0 in its essential spectrum and $\nabla N: E \longrightarrow E$ is a compact operator. Moreover, assume that there exist constants 0 < a < b, $\rho > 0$ and closed, invariant subspaces $V, W \subset E$ with $\dim(V \cap W) < \infty$, $\operatorname{codim}(V + W) < \infty$ such that

- (i) $J(u) \le b \ \forall \ u \in V$;
- (ii) $J(u) \ge a$ if $||u|| = \rho$, $u \in W$;
- (iii) $Fix(G) \subset V$ or $Fix(G) \subset W$;
- (iv) J(u) < a if $u \in Fix(G)$, $\nabla J(u) = 0$.

Then, the functional J possesses at least m orbits of critical points with critical values in [a, b], where

$$m = \delta[dim(V \cap W) - codim(V + W)]$$

and $\delta = 1$ if $G = \mathbb{Z}_2$ or $\delta = \frac{1}{2}$ if $G = S^1$.

Next, we describe the differential equation scenario to which the above theorem will apply. Following [8], we start by introducing some *structural hypotheses* $((\mathcal{L}_1) - (\mathcal{L}_3), (\mathcal{I})$ below) involving the underlying spaces as well as the linear part $\mathcal{L}u$ of the equation in (P).

Let H be a closed subspace of $L^2(\Omega, \mathbb{R}^n)$ endowed with its usual inner product $(\cdot|\cdot)$ and norm $|\cdot|$, where $\Omega \subset \mathbb{R}^N$ is a bounded domain, and let $\mathcal{L}: D(\mathcal{L}) \subset H \longrightarrow H$ be an unbounded, selfadjoint operator having a discrete pure point spectrum and no essential spectrum, that is, the spectrum $\sigma(\mathcal{L})$ of \mathcal{L} consists solely of isolated eigenvalues with finite multiplicities

$$\dots \le \lambda_{-2} \le \lambda_{-1} < \lambda_0 = 0 < \lambda_1 \le \lambda_2 \le \dots \tag{2.1}$$

with corresponding eigenfunctions forming an orthonormal basis for H ($\lambda_0 = 0$ may or may not be an eigenvalue). We assume that

$$D(\mathcal{L}) \subset E \subset H \ , \ |u| \le C_1 ||u|| \ \forall u \in E \ ,$$
 (\mathcal{L}_1)

$$(\mathcal{L}u|v) \le C_2 ||u|| ||v|| \quad \forall u, v \in D(\mathcal{L}) , \qquad (\mathcal{L}_2)$$

for some constants $C_1, C_2 > 0$, where we recall that $\|\cdot\|$ denotes the norm in the Hilbert space E. It follows from $(\mathcal{L}_1), (\mathcal{L}_2)$ and the Riesz-Fréchet theorem that the bilinear, symmetric form $(u, v) \mapsto (\mathcal{L}u|v)$ defined on $D(\mathcal{L}) \times D(\mathcal{L})$ extends to a bounded, bilinear, symmetric form $a: E \times E \longrightarrow \mathbb{R}$ given by

$$a(u,v) = \langle Lu, v \rangle , \qquad (2.2)$$

where $L: E \longrightarrow E$ is a bounded, selfadjoint operator. Similarly, we have that

$$(u|v) = \langle Tu, v \rangle \ \forall u, v \in E , \qquad (2.3)$$

where $T: E \longrightarrow E$ is a bounded, positive, selfadjoint operator. In addition, we assume that

$$E \hookrightarrow H$$
 is compact and $LTu = TLu \ \forall u \in E$. (\mathcal{L}_3)

It follows that LT is compact, selfadjoint and, in view of the spectral theorem, the operators L and T can be simultaneously diagonalized, that is, there exists an orthonormal basis $\{\phi_j|j\in\mathbb{Z}\}$ for E and sequences $\{\mu_j\},\{\nu_j\}\subset\mathbb{R}$ such that

$$L\phi_j = \mu_j \phi_j$$
 , $T\phi_j = \nu_j \phi_j \ \forall j \in \mathbb{Z}$,

where we may assume, after suitable relabelling, that $j\mu_j \geq 0$ and that $\mu_j/\nu_j = \lambda_j$ are the eigenvalues of the operator \mathcal{L} listed in (2.1) (or, equivalently, of the eigenvalue problem $Lu = \lambda Tu$ for the operator L with respect to T).

Now, given $\alpha \in \mathbb{R}$, let us consider the quadratic form

$$q_a(u) = \frac{1}{2} \langle Lu, u \rangle - \frac{1}{2} \alpha |u|^2 = q(u) - \frac{1}{2} \alpha |u|^2 , \quad u \in E ,$$
 (2.4)

and the subspaces

$$V_{\alpha} = \overline{span} \{ \phi_j | \lambda_j < \alpha \} ,$$

$$Z_{\alpha} = span \{ \phi_j | \lambda_j = \alpha \} ,$$

$$W_{\alpha} = \overline{span} \{ \phi_j | \lambda_j > \alpha \} ,$$

$$(2.5)$$

where \overline{span} denotes the closed span in the space E. We observe that V_{α}, Z_{α} and W_{α} are orthogonal, invariant subspaces under both operators L and T and $E = V_{\alpha} \oplus Z_{\alpha} \oplus W_{\alpha}$.

Finally, as our last *structural hypothesis*, we assume that there exists a Banach X, with norm $|\cdot|_X$, such that $E \hookrightarrow X$ and the following *interpolation* type inequalities hold,

(i)
$$|u|_X \le \psi(u)^{1-t} ||u||^t \quad \forall u \in E ,$$

(ii) $|u| \le C|u|_X^{1-s} ||u||^s \quad \forall u \in E ,$ (\mathcal{I})

where C > 0, $t, s \in (0,1)$ and $\psi : X \longrightarrow \mathbb{R}_+$ is a positive homogeneous function of degree 1.

On the other hand, concerning the C^1 functional $N: E \longrightarrow \mathbb{R}$, we assume that ∇N satisfies the growth condition

$$\|\nabla N(u)\| \le b|u|_X^r + d \quad \forall u \in E , \qquad (N_1)$$

for some $r, b, d \geq 0$, and that N is nonquadratic at infinity in the sense that either

$$\langle \nabla N(u), u \rangle - 2N(u) \ge a\psi(u)^{\mu} - c \quad \forall u \in E , \qquad (N_2^+)$$

or

$$\langle \nabla N(u), u \rangle - 2N(u) \le -a\psi(u)^{\mu} + c \quad \forall u \in E , \qquad (N_2^-)$$

holds true for some constants a, c > 0 and some $\mu > 0$. Then, the following results can be proved (cf. Proposition 2.1 and 2.6 in [8]):

Proposition 2.1 Assume $(\mathcal{L}_1) - (\mathcal{L}_3)$ and that $\mu = 0$ is at most an isolated eigenvalue with finite multiplicity of the bounded operator L (representing \mathcal{L} in E). Then, given $\alpha \in \mathbb{R}$, there exists $\nu = \nu_{\alpha} > 0$ such that

$$q_{\alpha}(u) \leq - \nu \|u\|^{2} \quad \forall u \in V_{\alpha} ,$$

$$q_{\alpha}(u) = 0 \quad \forall u \in Z_{\alpha} ,$$

$$q_{\alpha}(u) \geq \nu \|u\|^{2} \quad \forall u \in W_{\alpha} .$$

$$(2.6)$$

Proposition 2.2 Let conditions $(\mathcal{L}_1) - (\mathcal{L}_3)$ and (\mathcal{I}) hold true and assume $N \in C^1(E,\mathbb{R})$ satisfies $(N_1),(N_2^+)$ (or (N_2^-)) with $\nabla N:E \longrightarrow E$ compact. Then the functional J(u)=q(u)-N(u) satisfies the compactness condition $(Ce)_c$ for all $c \in \mathbb{R}$ provided that tr < 1.

3. Main Result and Applications

We are now ready to state and prove our main result.

Theorem 3.1 Under the conditions of Proposition 2.2, assume that the operator \mathcal{L} and the functional $N \in C^1(E, \mathbb{R})$ are invariant under a unitary representation $\{T(g)\}$ of G on E, where $G = \mathbb{Z}_2$ or $G = S^1$. Further, assume that N(u) is bounded whenever |u| is bounded,

$$\limsup_{|u|\to 0} \frac{2N(u)}{|u|^2} < \lambda_l \le \lambda_k < \liminf_{|u|\to \infty} \frac{2N(u)}{|u|^2} , \qquad (N_3)$$

where $\lambda_l \leq \lambda_k$ are eigenvalues of \mathcal{L} , and that

$$\sigma(\mathcal{L}_0) \subset \{\lambda_j | j \le k\} \quad \text{or} \quad \sigma(\mathcal{L}_0) \subset \{\lambda_j | j \ge l\} ,$$
 (*)

$$J(u) \le 0$$
 if $u \in Fix(G)$, $\nabla J(u) = 0$, $(**)$

where \mathcal{L}_0 is the restriction of \mathcal{L} to the subspace Fix(G). Then, J has at least m orbits of critical points outside Fix(G), where $m = \delta \sum_{j=1}^k \dim \ker(\mathcal{L} - \lambda_j)$ and $\delta = 1$ if $G = \mathbb{Z}_2$ or $\delta = \frac{1}{2}$ if $G = S^1$.

Proof. Recalling the definitions (2.5), let us define the subspaces

$$V = V_{\lambda_k} \oplus Z_{\lambda_k} = \overline{span} \{ \phi_j | \lambda_j \le \lambda_k \} ,$$

$$W = Z_{\lambda_l} \oplus W_{\lambda_l} = \overline{span} \{ \phi_j | \lambda_j \ge \lambda_l \} .$$
(3.1)

Then, using (N_3) and the fact that N(u) is bounded for |u| bounded, we have

$$N(u) \ge \frac{1}{2}\beta |u|^2 - K \quad \forall u \in E , \qquad (3.2)$$

$$N(u) \le \frac{1}{2}\alpha |u|^2 \quad \forall |u| \le \epsilon ,$$
 (3.3)

for some $\epsilon, K > 0$ and $\alpha < \lambda_l \leq \lambda_k < \beta$. Also, (N_1) and the continuous embedding $E \hookrightarrow X$ imply that

$$\frac{N(u)}{\|u\|^{r+1}} \le b_1 + \frac{d_1}{\|u\|^r} \le M \quad \forall |u| \ge \epsilon , \tag{3.4}$$

for some $b_1, d_1, M > 0$, since $|u| \le C_1 ||u|| \quad \forall u \in E$.

Therefore, using (3.2) and Proposition 2.1 we obtain the estimate

$$J(u) \le q(u) - \frac{1}{2}\beta |u|^2 + K = q_{\beta}(u) + K \le -\nu_{\beta} ||u||^2 + K \quad \forall \ u \in V , \quad (3.5)$$

so that we have

$$J(u) \le b \ \forall \ u \in V \ , \tag{i}$$

for some b = K > 0. On the other hand, (3.3) and (3.4) give

$$N(u) \le \frac{1}{2}\alpha |u|^2 + M||u||^{r+1} \ \forall u \in E$$
,

and hence

$$J(u) \geq q(u) - \frac{1}{2}\alpha|u|^2 - M||u||^{r+1} = q_{\alpha}(u) - M||u||^{r+1}$$

$$\geq \nu_{\alpha}||u||^2 - M||u||^{r+1} = (\nu_{\alpha} - M||u||^{r-1})||u||^2 \quad \forall \ u \in W.$$
(3.6)

Since r > 1, we can find 0 < a < b and $\rho > 0$ such that

$$J(u) \ge a \quad if \quad ||u|| = \rho \ , \ u \in V \ . \tag{ii}$$

Finally, (**) obviously gives condition (iv) of Theorem 2.1, whereas condition (iii) of that theorem follows from (*).

Therefore, since V + W = E and $V \cap W = Z_{\lambda_l} \oplus \ldots \oplus Z_{\lambda_k} = span\{\phi_j | \lambda_l \le \lambda_j \le \lambda_k\}$, we can use Theorem 2.1 to conclude that J possesses at least $m = \delta \sum_{j=l}^k dim \ ker(\mathcal{L} - \lambda_j)$ orbits of critical points with critical values in [a, b], hence outside Fix(G) by (iv). The proof of Theorem 3.1 is complete.

I. Semilinear Wave Equations

Next, as our first application, we consider the problem of finding multiple time-periodic solutions with period T for the wave equation

$$u_{tt} - u_{xx} + f(u) = 0$$
 , $0 < x < \pi$, $(WE)_1$

under Dirichlet boundary condition

$$u(t,0) = u(t,\pi) = 0$$
. $(WE)_2$

In order to avoid problems with *small divisors* the period T should be a rational multiple of the length π of the space domain.

Taking $T = \pi$ for simplicity and letting $\Omega = (0, \pi) \times (0, \pi)$, we consider the usual Hilbert space $L^2(\Omega)$ of square integrable functions $u : \Omega \longrightarrow \mathbb{R}$, endowed with the inner product

$$(u|v) = \sum_{k \in N, j \in Z} u_{k,j} \overline{v_{k,j}}$$

where $u = \sum u_{k,j} sin(kx)e^{2ijt}$, $v = \sum v_{k,j} sin(kx)e^{2ijt}$ with $u_{k,j}, v_{k,j} \in \mathbb{C}$, $u_{k,-j} = \overline{u_{k,j}}$, $v_{k,-j} = \overline{v_{k,j}}$, for $k \in \mathbb{N}$ and $j \in \mathbb{Z}$. From now on, unless stated otherwise, all summation signs are taken over $k \in \mathbb{N}$ and $j \in \mathbb{Z}$. Also for $u \in L^2(\Omega)$ as above, we let

$$||u||^2 := \sum (1 + |k^2 - 4j^2|)|u_{k,j}|^2$$

and define the Sobolev space

$$W_{0,ver}^{1,2} := \{ u \in L^2(\Omega) \mid ||u|| < \infty \},$$

whose norm $\|\cdot\|$ clearly derives from the inner product

$$\langle u, v \rangle := \sum (1 + |k^2 - 4j^2|) u_{k,j} \overline{v_{k,j}} .$$

Now, let \square be the selfadjoint d'Alembertian operator $\square = \partial_x^2 - \partial_t^2$ on $L^2(\Omega)$ with domain

$$D(\Box) = W_{0,ner}^{2,2} := \{ u \in L^2(\Omega) \mid \sum (1 + |k^2 - 4j^2|^2) |u_{k,j}|^2 < \infty \}$$

and defined by $\Box u := \sum (4j^2 - k^2) u_{k,j} \sin(kx) e^{2ijt}$ if $u = \sum u_{k,j} \sin(kx) e^{2ijt} \in D(\Box)$.

Also, consider the closed subspace $H = \{ u \in L^2(\Omega) \mid u(t, \pi - x) = u(t, x) \ a. \ e. \}$ of $L^2(\Omega)$ and the restriction $\mathcal{L} = \square|_H$ with domain $D(\mathcal{L}) = D(\square) \cap H$. Clearly, the space H is invariant under \square (that is, $\square u \in H$ if $u \in D(\square) \cap H$) and $\mathcal{L} : D(\mathcal{L}) \subset H \longrightarrow H$ is a selfadjoint operator.

Finally, we define the Sobolev space $E=W^{1,2}_{0,per}\cap H$ and consider the unitary representation of the group $S^1=\mathbb{R}/\pi\mathbb{Z}$ on the space E given by $T(\theta)u(t,x)=$

 $u(t+\theta,x), \theta \in [0,\pi)$. Then, the *fixed set* of this representation consists of those functions u(t,x) = u(x) of E which are t-independent.

We point out the fact that subspaces of $L^2(\Omega)$ such as H above have the important property of being transversal (cf. [7]) to the infinite-dimensional kernel, $ker(\Box) = \{u = \sum u_{k,j} sin(kx)e^{2ijt} \in D(\Box) \mid k = 2|j| \}$, of the d'Alembertian; in particular, we have $u_{k,j} = 0$ if k = 2|j| and $u \in H$, so that $ker(\mathcal{L}) = \{0\}$ and \mathcal{L} (unlike \Box) has no essential spectrum.

From the above definitions it is clear that $D(\mathcal{L}) \subset E \subset H$ with $|u| \leq ||u|| \quad \forall u \in E$. Also, using the transversality property of H and the fact that

$$||sin(kx)e^{2ijt}||^2 = (1 + |4j^2 - k^2|)|sin(kx)e^{2ijt}|^2$$

it is not hard to show that the embedding $E \hookrightarrow H$ is compact. In fact, one can show (see [8]) that all the *structural hypotheses* $(\mathcal{L}_1) - (\mathcal{L}_3)$, (\mathcal{I}) assumed in Section 2 hold true in this case, with $\psi(u) = |u|_{\mu}$, $X = L^{r_1}(\Omega)$ for suitable $r_1 > \mu$, and where the operators $L, T : E \longrightarrow E$ are given by

$$Lu = \sum \frac{4j^2 - k^2}{1 + |4j^2 - k^2|} u_{k,j} \sin(kx) e^{2ijt} , \qquad (3.7)$$

$$Tu = \sum \frac{u_{k,j}}{1 + |4j^2 - k^2|} \sin(kx) e^{2ijt} . \tag{3.8}$$

Finally, we note that the operator \mathcal{L} is invariant under the representation $\{T(\theta)\}$ and its spectrum consists of the eigenvalues $\lambda_{kj} = 4j^2 - k^2$, where $j = 0, 1, 2, \ldots$ and $k = 1, 3, 5, \ldots$ (k odd). Moreover, the spectrum of the restriction $\mathcal{L}_0 = \mathcal{L}|_{Fix(S^1)}$ is given by

$$\sigma(\mathcal{L}_0) = \{ -k^2 \mid k = 1, 3, 5, \dots \} . \tag{3.9}$$

Next, letting $F(u) = \int_0^u f(s) \ ds$, we are going to apply Theorem 3.1 to the functional

$$J(u) = \frac{1}{2} \langle Lu, u \rangle - \int_0^{\pi} \int_0^{\pi} F(u) \ dt dx \ . \tag{3.10}$$

First of all, we note (cf. [7]) that $E = W_{0,per}^{1,2} \cap H$ is continuously embedded in $L^q \cap H$ for all $q \geq 1$. From this, it is not hard to show that J is well-defined and

of class C^1 on the space E provided that f(u) satisfies the growth condition

$$|f(u)| \le A|u|^r + B \ \forall u \in \mathbb{R} , \qquad (f_1)$$

for some A, B > 0 and r > 1. In fact, since the Nemytskii operator $u(t, x) \mapsto f(u(t, x))$ obviously leaves the subspace $H \subset L^2(\Omega)$ invariant, it follows that

$$\langle \nabla J(u), h \rangle = \langle Lu, h \rangle - \int_0^{\pi} \int_0^{\pi} f(u)h \ dt dx \quad \forall u, h \in E ,$$

so that the critical points of J are the weak solutions $u \in E$ of the problem (WE). Finally, since $E = W_{0,per}^{1,2} \cap H \hookrightarrow L^q \cap H$ for all $q \geq 1$ and the embedding $E \hookrightarrow H$ is compact, we conclude that $\nabla N : E \longrightarrow E$, defined by

$$\langle \nabla N(u), h \rangle = \int_0^{\pi} \int_0^{\pi} f(u)h \ dt dx \quad \forall u, h \in E ,$$

is a compact mapping.

Proof of Theorem 1.1 We have seen above that all the basic hypotheses involving the underlying spaces and the operator \mathcal{L} hold true in this present situation. In addition, it is not hard to check that (f_1) , (f_2) and (f_3) imply (N_1) , (N_2^+) and (N_3) , respectively.

On the other hand, since (3.9) gives that $\sigma(\mathcal{L}_0) \subset (-\infty, 0]$ and $0 < \lambda_l \le \lambda_k$, we have that condition (*) is satisfied. Moreover, since (3.7) implies that $\langle Lu, u \rangle \le 0$ for all $u \in Fix(S^1)$ and since $F(u) \ge 0$ by assumption, we have that $J(u) \le 0$ for all $u \in Fix(S^1)$, so that (**) also holds true.

Therefore, since $ker(\mathcal{L} - \lambda)$ is even-dimensional for any eigenvalue λ , it follows from Theorem 3.1 that J has at least m = k - l + 1 orbits of critical points outside $Fix(S^1)$. In other words, problem $(WE)_1$, $(WE)_2$ has at least m = k - l + 1 (t-dependent) weak solutions which are π -periodic in t and geometrically distinct.

II. Noncooperative Elliptic Systems

Now, as our second application, we consider the problem of finding multiple solutions of noncooperative elliptic systems

$$\begin{cases}
-\Delta z = F_z(z, w) & \text{in } \Omega \\
\Delta w = F_w(z, w) & \text{in } \Omega \\
z = w = 0 & \text{on } \partial\Omega
\end{cases}, \tag{ES}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain.

Letting $H = L^2(\Omega, \mathbb{R}^2)$ and denoting u = (z, w), $\nabla F = (F_z, F_w)$ and

$$R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \ \vec{\Delta} = \begin{pmatrix} \Delta & 0 \\ 0 & \Delta \end{pmatrix} ,$$

problem (ES) can be rewritten as

$$\mathcal{L}u = \nabla F(u) ,$$

where $\mathcal{L}: D(\mathcal{L}) \subset H \longrightarrow H$ is the selfadjoint operator given by $\mathcal{L}u = -\vec{\Delta}Ru$ with domain

$$D(\mathcal{L}) = W^{2,2}(\Omega, \mathbb{R}^2) \cap W_0^{1,2}(\Omega, \mathbb{R}^2) \ .$$

Choosing the norm $\|\cdot\|$ in $E:=W_0^{1,2}(\Omega,\mathbb{R}^2)$ induced by the inner product

$$\langle (z,w), (\varphi,\psi) \rangle := \int_{\Omega} \nabla z \cdot \nabla \varphi dx + \int_{\Omega} \nabla w \cdot \nabla \psi dx \;,$$

standard arguments show that the embedding $E \hookrightarrow H$ is compact and that hypotheses (\mathcal{L}_1) and (\mathcal{L}_2) are satisfied. Also, considering the Z_2 -representation $\{T(0), T(1)\}$ on E given by T(0) = Identity, T(1) = -Identity, and recalling the F is an even function, it is clear that both the operator \mathcal{L} and the functional $N(u) = \int_{\Omega} F(u) dx$ are invariant under this representation and that $Fix(Z_2) = \{0\}$. Finally, one can show (cf. [8]) that the remaining structural hypotheses (\mathcal{L}_3) and (\mathcal{I}) are satisfied with $\psi(u) = |u|_{\mu}$, $X = L^{r_1}(\Omega, \mathbb{R}^2)$ for suitable $\mu < r_1 < 2N/(N-2)$, and where $L, T : E \longrightarrow E$ are given by Lu = Ru and $\langle Tu, v \rangle = \int_{\Omega} u \cdot v dx$. In particular, the eigenvalues of \mathcal{L} (that is, of the problem $Lu = \lambda Tu$) are given by $\alpha_j, -\alpha_j$, with corresponding eigenfunctions $(\varphi_j, 0), (0, \varphi_j)$, where

 $\{\alpha_j\}$ and $\{\varphi_j\}$, $j \in \mathbb{N}$, denote the eigenvalues and eigenfunctions of $-\Delta$ in $H_0^1(\Omega)$.

Proof of Theorem 1.2. As before, we are going to apply Theorem 3.1 to the pertinent functional

$$J(u) = \frac{1}{2} \langle Lu, u \rangle - \int_0^{\pi} \int_0^{\pi} F(u) \, dt dx = q(u) - N(u) \,. \tag{3.11}$$

It is well-known that, under the growth condition

$$|\nabla F(u)| \le C|u|^r + D \quad \forall u \in \mathbb{R}^2 , \qquad (h_1)$$

where $1 \le r < (N+2)/(N-2)$, $N \ge 3$, the functional J is of class C^1 on E and its critical points are the weak solutions of (ES). And the compact embedding $E \hookrightarrow H$ implies that $\nabla N : E \longrightarrow E$ is a compact mapping.

On the other hand, using integration and Holder's inequality, conditions (N_1) , (N_2^+) and (N_3) of Theorem 3.1 follow from (h_1) , (h_2) and (h_3) , respectively.

Finally, in view of the fact that $Fix(Z_2) = \{0\}$ and J(0) = 0, conditions (*) and (**) are clearly satisfied.

Therefore, Theorem 3.1 implies that J has at least m=k-l+1 pairs of nontrivial critical points. In other words, problem (ES) has at least m=k-l+1 pairs of nontrivial (weak) solutions $u=(z,w)\in H^1_0(\Omega)\times H^1_0(\Omega)$.

References

- [1] Amann, H., Saddle points and multiple solutions of differential equations, Math. Z. 169 (1979), 127-166.
- [2] Bartolo, P., Benci, V. and Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, J. Nonl. Anal. TMA 7 (1983), 981-1012.

[3] Benci, V., Cappozi, A. and Fortunato, D., Periodic solutions of Hamiltonian systems with a prescribed period, University of Wisconsin, MRC Tech. Summ. Rep. 2508, 1983.

- [4] Benci, V. and Rabinowitz, P. H., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273.
- [5] Brezis, H. and Nirenberg, L., Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1978), 1-30.
- [6] Cerami, G., Un criterio de esistenza per i punti critici su varietà ilimitate, Rc. Ist. Lomb. Sci. Lett. 112 (1978), 332-336.
- [7] Coron, J. M., Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Annalen 262 (1983), 273-285.
- [8] Costa, D. G. and Magalhães, C. A., A unified approach to a class of strongly indefinite functionals, J. Diff. Eqs. 125 (1996), 521-547.
- [9] Costa, D. G. and Magalhães, C. A., Variational elliptic problems which are nonquadratic at infinity, J. Nonl. Anal. TMA 23 (1994), 1401-1412.
- [10] Costa, D. G. and Magalhães, C. A., A variational approach to noncooperative elliptic systems, J. Nonl. Anal. TMA 25 (1995), 699-715.
- [11] Costa, D. G. and Willem, M., Multiple critical points of invariant functionals and applications, J. Nonl. Anal. TMA 10 (1986), 843-852.
- [12] de Figueiredo, D. G. and Felmer, P. L., On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99-116.
- [13] Mawhin, J. and Willem, M., Critical point theory and Hamiltonian systems, Applied Mathematical Sciences 74, Springer-Verlag, New York, 1989.
- [14] Palais, R. and Smale, S., A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171.

- [15] Rabinowitz, P. H., Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967), 145-205.
- [16] Rabinowitz, P. H., Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), 31-68.
- [17] Rabinowitz, P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184.
- [18] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, AMS, Providence, RI, 1986.
- [19] Shujie, L. and Szulkin, A., Periodic solutions of an asymptotically linear wave equation, Topol. Methods Nonlinear Anal. 1 (1993), 211-230.
- [20] Silva, E. A., Multiple solutions for a semilinear elliptic systems, CMS Tech. Summ. Rep. # 93-7, 1992.
- [21] Struwe, M., Variational Methods and Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990.

Department of Mathematical Sciences University of Nevada - Las Vegas 4505 Maryland Parkway Box 454020 Las Vegas, NV 89154-4020 USA e-mail: costa@nevada.edu