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MULTIPLE SOLUTIONS FOR A CLASS OF
STRONGLY INDEFINITE PROBLEMS

David G. Costa®

Abstract

We consider variations problems associated with differential equations
(P) of the form
Lu=VF(u) ,

where £ : D(L) C H — H is an unbounded, selfadjoint operator
on a closed subspace H of L*(Q,RY),Q C RN is a bounded domain
and F : R® — Ris a C! function. If V.F(u) satisfies suitable growth
conditions, then the weak solutions of (P) are precisely the critical points
of a related functional J = ¢— N on an appropriate Hilbert space K C H,
where ¢ is the quadratic form on £ corresponding to the operator £ and
N(u) = [q F(u)dz. We are interested in situations where J is strongly
indefinite in the sense that it is neither bounded from above nor from
below, even modulo subspaces of finite dimension or codimension.

Assuming that N is nonquadratic at infinity and that the functional
J is invariant under a given Z, or S! action, we prove multiplicity
results on critical points of J which depend only on the behavior of the
quotient 2F (u)/|u|? as |u| varies from 0 to co. Such results, which apply
to Hamiltonian Systems, Nonlinear Wave Equations and Noncooperative
Elliptic Systems, partially extend and complement many other results in
the literature.

Resumo

Consideramos problemas variacionais associados a equagoes diferen-
ciais (P) da forma
Lu=VF(u) ,

onde £ : D(L) C H— H ¢é um operador autoadjunto, nao-limitado,
num subespago fechado H de L*(2,R™) , 2 ¢ RN é um domfnio limitado
e F : R® — R é uma fungio de classe C'. Se V.F(u) satisfaz uma
condi¢do adequada de crescimento entdo as solugoes fracas de (P) sdo
precisamente os pontos criticos de um funcional associado J = ¢ — N
num espaco de Hilbert apropriado £ C H, onde ¢ é a forma quadratica
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correspondente ao operador £ e N(u) = [, F(u)dz. Estamos interes-
sados em situagoes onde J é fortemente indefinida no sentido de que o
funcional J éilimitado tanto inferiormente quanto superiormente, mesmo
médulo subespacos de dimensao ou codimensao finita.

Supondo que N é ndo-quadrdtico no infinito e que o funcional J é
invariante sob uma dada agdo de Z, ou de S' no espago F, provamos
resultados de multiplicidade para os pontos criticos de .J, os quais de-
pendem apenas do comportamento do quociente 2F(u)/|u|? quando |u]
varia de 0 a co. Tais resultados, os quais podem ser aplicados a Sistemas
Hamiltonianos, Equacoes Nao-Lineares de Onda e Sistemas Elipticos
Nao-Cooperativos, estendem parcialmente e complementam muitos out-
ros resultados anteriores na literatura.

1. Introduction

This paper is concerned with multiplicity results for a class of differential equa-

tion problems of the form

Lu = VF(u). (P)

Here, £ : D(L£) C H — H is an unbounded, selfadjoint operator on a closed
subspace H of L?(Q,R"), where @ C RV is a bounded domain and F : R — R
isa C! function. If VF(u) satisfies suitable growth conditions, it turns out that
the weak solutions of (P) are precisely the critical points of a related functional

J : F — R of the form

J(u) = q(u) 7/9.7:(11) de ,

on an appropriate Hilbert space £ — H, where ¢ is the quadratic form on £
corresponding to the operator L.

We are interested in situations where the functional J is strongly indefi-
nite in the sense that it is neither bounded from above nor from below, even
modulo subspaces of finite dimension or codimension. In particular, both the
quadratic form ¢ and its negative have infinite Morse indices. Such situations
cover Hamiltonian Systems, Nonlinear Wave Equations and Noncooperative El-
liptic Systems (cf. [8]).

Roughly speaking, our basic hypotheses say that the functional N(u) =
Jo F(u)dz is nonquadratic at infinity (cf. [8,9]) and that the quotient 2F (u)/|u|?
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crosses m points of the discrete spectrum of £ as |u| varies from 0 to oco. Then,
assuming that the functional J is invariant under a given Z, or S' action on E,
our main result says that problem (P) has at least m nontrivial solutions. This
complements the results in [8] and extends some of the results in [11].

It should be mentioned that the basic common underlying structure of prob-
lems on Hamiltonian systems, nonlinear wave equations and elliptic systems has
been previously noticed by Amann [1] and Benci-Rabinowitz [4], among others,
and that there is a vast literature on such problems when the assumptions are
placed on the nonlinearity VF(u) itself (see the basic references [13, 18, 21]).
Moreover, the situations where VF(u) is sublinear or superlinear are handled
separately (see e.g. [5, 7, 12, 15, 16, 17, 20, 19]).

In Section 2 we present the abstract framework to which our main result
applies, while Section 3 is reserved to the proof of that result and to applica-
tions. We consider applications to the problem of finding multiple time periodic

solutions for the nonlinear wave equation
U — Upp + f(u) =0 , O0<az<m, (WE),
under Dirichlet boundary condition
u(t,0) =wu(t,m)=0, (WE),

as well as to the problem of finding multiple solutions of noncooperative elliptic

systems
—Az = F,(z,w) in Q
Aw = F,(z,w) in Q (ES)
z = w =0 on 09,
where 0 C RY is a bounded domain. Typical results are given by the following

theorems which complement results in [8, 10].

Theorem 1.1 Let f : R — R be a continuous function satisfying f(0) = 0,
F(u)= [ f(s)ds >0 and

lf () < Afu["+ B YueR, (f1)
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for some r > 1. Assume further that

lim inf >0,
g ] (f2)
2F 2F
lim sup (2u) < XN <A < liminf (2u) , (f3)
w—0 U || —o0 U

where p > r — 1 and 0 < N < X\ are eigenvalues of L = 02 — 97 in the
space H = { u € E*((0,m) x (0,7)) | u(t,m — x) = u(t,z) a. e. }. Then,
problem (WE);,(WE), has at least m = k—1+1 (t dependent) solutions which
are m-periodic in t and geometrically distinct (that is, do not differ by a time

translation).

Theorem 1.2 Assume that F' € C*(R* R) is even, VF(0,0) = (0,0) and
IVF(u)| < Clul"+ D Yu=(z,w) € R?, (h1)

where 1 <r < (N +2)/(N —2), N> 3. Assume further that
- VF(u)—2F(u)

lim inf >0, h
T )
lim sup F(z) < XN <A <liminf 2F(';1) ; (hs)
Ju]—0 u| [u]—o0 |u|

where p > N(r —1)/2 > 0 and A\; < )y, are eigenvalues of the operator L =
diag(—A, A) on L*(Q) x L*(Q). Then, problem (ES) has at least m = k—[+1
pairs of nontrivial solutions u = (z,w) € Hy () x Hy(Q).

2. The Abstract Framework

We shall start by recalling some definitions as well as an abstract multiplicity

result due to Benci-Capozzi-Fortunato [3].

Let E be a real Hilbert space with inner product (- ,-) and norm || - || and
assume that {T'(g)lg € G} is a unitary representation of a compact topological

(abelian) group G on the space E (see [13]). In other words, for each g € G the
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mapping T(g) : E — F is a linear isometry and the following properties are
satisfied:

(i) T(0) = Identity;

(ii) T(g1)T(g92) = T(g1 + g2) for all g1, 92 € G}

(i) (g,u) — T(g)u is continuous on G x K.

In particular, each T'(g) is a unitary operator with inverse T'(—g).

The orbit of an element u € K is the set O(u) = {T(g)ulg € G}. A given
functional J : E — R is said to be invariant if J(T(g)u) = J(u) for all
(g,u) € G x E, and a subset A C FE is called invariant if T(g)A = A for all
g € G. The fized set of the representation {T(g)} is the (closed) subspace

Fiz(G)={ue E | T(g)u=uVg e G}

consisting of the most symmetric elements of E. Finally, we say that a functional
J € CYE,R) satisfies the Cerami compactness condition at the level ¢ € R if
the following holds (cf. [6]):

(Ce)e Any sequence {u,} C E such that J(u,) — ¢ and (14||w,]|)[|VJ (wn)|| —

0 possesses a convergent subsequence.

This condition, which was considered by Cerami in [6] and allows for rather
general minimax results (cf. [2]), is a variant of the famous compactness condi-

tion introduced by Palais-Smale in [14]:

(PS). Any sequence {u,} C F such that J(u,) — ¢ and ||VJ(u,)|| — 0

possesses a convergent subsequence.

The following abstract multiplicity result was proved by Benci-Capozzi-Fortunato

in [3]:

Theorem 2.1 Suppose that a unitary representation of a group G acts on a real
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Hilbert space E, where G = Zy or G = S*. Let J € C'(E,R) be an invariant
Sfunctional of the form

J(u) = %(Lu./u> — N(u) ,

where L : B — F is a bounded selfadjoint operator which does not contain 0
in ils essential spectrum and VN : E — FE is a compact operator. Moreover,
assume that there exist constants 0 < a < b, p > 0 and closed, invariant
subspaces V.W C E with dim(V N W) < oo, codim(V + W) < oo such that

(i) J(u) <b YueV;

i) Jw) 2 a if ull=p, ueW;

(iii) Fiz(G) CV or Fiz(G) C W;

(tv) J(u) <a if we Fiz(G), VJ(u)=0.
Then, the functional J possesses at least m orbits of critical points with critical

values in [a,b], where
m = 0[dim(V N W) — codim(V + W)]

and § =1ifG=Zyord=1%ifG=5"

Next, we describe the differential equation scenario to which the above theo-
rem will apply. Following [8], we start by introducing some structural hypotheses
((£1) = (£3), (I) below) involving the underlying spaces as well as the linear
part Lu of the equation in (P).

Let H be a closed subspace of L*(Q,R") endowed with its usual inner
product (-|-) and norm | - |, where @ C R" is a bounded domain, and let
L:D(L) C H— H be an unbounded, selfadjoint operator having a discrete
pure point spectrum and no essential spectrum, that is, the spectrum o (L) of

L consists solely of isolated eigenvalues with finite multiplicities
S)\—ZS)‘—1<)\0:O<)‘ISA2S (21)

with corresponding eigenfunctions forming an orthonormal basis for H (Ao = 0

may or may not be an eigenvalue). We assume that

DLYCECH, |[ul <Ci|u| YueE, (L)
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(Lulp) < Collullllv]| Vu,ve DL), (£2)

for some constants Cy, Cy > 0, where we recall that |- || denotes the norm in the
Hilbert space E. It follows from (L), (L) and the Riesz-Fréchet theorem that
the bilinear, symmetric form (u,v) — (Lu|v) defined on D(L) x D(L) extends

to a bounded, bilinear, symmetric form a : £ x F — R given by
a(u,v) = (Lu,v) , (2.2)
where L : E — F is a bounded, selfadjoint operator. Similarly, we have that
(ulv) = (Tu,v) Yu,v € E , (2.3)

where T': F' — F is a bounded, positive, selfadjoint operator. In addition, we

assume that
E — H is compact and LTu=TLu Yu € E . (L3)

It follows that LT is compact, selfadjoint and, in view of the spectral theorem,
the operators L and T can be simultaneously diagonalized, that is, there exists

an orthonormal basis {¢;|j € Z} for £ and sequences {y;},{r;} C R such that

Loy = pid;, Ty =vid; VjEL,

where we may assume, after suitable relabelling, that ju; > 0 and that p;/v; =
A; are the eigenvalues of the operator £ listed in (2.1) (or, equivalently, of the
eigenvalue problem Lu = AT'u for the operator L with respect to T').

Now, given a € R, let us consider the quadratic form

1 1 1
Ga(u) = §<Lu,u> — §oz|u|2 = q(u) — §0z|u,|2 , uek, (2.4)

and the subspaces
Vo = span{¢;|A; < o},
Za = span{¢;|A; = a} , (2.5)
Wa = span{¢;|A; > a}

where span denotes the closed span in the space F. We observe that V,, Z,

and W, are orthogonal, invariant subspaces under both operators L and T and

E=V,0Z, e W,.
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Finally, as our last structural hypothesis, we assume that there exists a Ba-
nach X, with norm |- |x, such that £ < X and the following interpolation type
inequalities hold,

() fubx < bl VueF,
(i6) Jul < Clulllull’ Vue E @
where C > 0, t,s € (0,1) and ¢ : X — R is a positive homogeneous function

of degree 1.

On the other hand, concerning the C! functional N : F — R, we assume
that VN satisfies the growth condition

IVN(u)|| <blulx +d YueE, (Ny)

for some r,b,d > 0, and that N is nonquadratic at infinity in the sense that
either

(VN(u),u) —2N(u) > ap(u)* —c Yu€e FE (NF)

or

(V N(u),u) — 2N (u) < —ap(u)*+¢ Yu e E (Ny)

holds true for some constants a,¢ > 0 and some g > 0. Then, the following

results can be proved (cf. Proposition 2.1 and 2.6 in [8]):

Proposition 2.1 Assume (£1) — (L3) and that p = 0 is at most an isolated
etgenvalue with finite multiplicity of the bounded operator L (representing L in
E). Then, given o € R, there exists v = v, > 0 such that

(u)
(u)
(u)

< — yllul* YueV,,
0 Yue Z, , (2.6)

o
o
G viful? Yue W, .

AVAmT

Proposition 2.2 Let conditions (L£1) — (L3) and (I) hold true and assume
N € CYE,R) satisfies (N1),(NS) (or (N3)) with VN : E — FE compact.
Then the functional J(u) = q(u) — N(u) salisfies the compactness condilion
(Ce). for all ¢ € R provided that tr < 1.
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3. Main Result and Applications

We are now ready to state and prove our main result.

Theorem 3.1 Under the conditions of Proposition 2.2, assume that the operator
L and the functional N € C*(E,R) are invariant under a unitary representation
{T(9)} of G on E, where G = Zy or G = S*. Further, assume that N(u) is

bounded whenever |u| is bounded,

N
# < A € A < liminf

&(l;‘) , (N3)

lim sup
[ulsco  |u

=0 |u

where \; < Ay, are eigenvalues of L, and that
o(Lo) C Nl <k} or o(Lo) C{Nl7 21}, (%)

J(u) <0 if we Fiz(G), VJ(u)=0, ()
where Loy is the restriction of L to the subspace Fix(G). Then, J has at least
m orbits of critical points outside Fix(G), where m = 52;?:1 dim ker(L — X))
and §=1ifG=Zyord=1%ifG=5"

Proof. Recalling the definitions (2.5), let us define the subspaces

V=5, &2, = span{g|); < M} |

& = Tr—— 3-1
W = Z,\l (&) W,\l = Sp(ln{gbjl)\j > )\l} 4 ( )

Then, using (N3) and the fact that N(u) is bounded for |u| bounded, we have

N(u) > %[)’Iu|2 —K Yuekl, (3.2)

N(u) < %a|u|2 Via| < e, (3.3)

for some ¢, K > 0 and a < A\ < A, < . Also, (N;) and the continuous
embedding £ — X imply that

N(u) d
a7 S0 ”ul”r <M Vul>e, (3.4)

for some by, di, M >0, since |u| < Cy||u]| Yu € E.
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Therefore, using (3.2) and Proposition 2.1 we obtain the estimate
1 .
J(u) < gfu) = LB+ K = gs(w) + K < —vsllulP + K YueV, (35

so that we have

Ju)<b VueV, (i)

for some b= K > 0. On the other hand, (3.3) and (3.4) give
N(u) < %a|u|2 + Ml YueE |

and hence

J(u) > q(u) — Salul? — Mljul ™" = g, (u) — Mul™

3.6
> vl - M = (v — Ml Yuew . OO

Since r > 1, we can find 0 < a < b and p > 0 such that
Jwy2aif ful=p,ueV. (i)

Finally, (+#) obviously gives condition (iv) of Theorem 2.1, whereas condition
(71) of that theorem follows from ().

Therefore, since V4+ W =Eand VNW = Z,, @ ... 3 Z, = span{¢j|\; <
Aj < A}, we can use Theorem 2.1 to conclude that J possesses at least m =
§ o8 dim ker(£—);) orbits of critical points with critical values in [a, ], hence

outside Fiz(G) by (iv). The proof of Theorem 3.1 is complete.

I. Semilinear Wave Equations
Next, as our first application, we consider the problem of finding multiple
time-periodic solutions with period T for the wave equation
U — Upe + f(u) =0 , O<z<m, (WE)
under Dirichlet boundary condition

u(t,0) =u(l,7)=0. (WE),
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In order to avoid problems with small divisors the period T should be a rational
multiple of the length 7 of the space domain.

Taking 7' = 7 for simplicity and letting Q@ = (0, 7) x (0,7), we consider the
usual Hilbert space L?(f2) of square integrable functions u : @ — R, endowed

with the inner product

(ulo) = > urVr;

keEN,jE€Z
where u = Y uy, jsin(kz)e?t, v = ¥ vg jsin(kr)e? ! with uy j,vp; € C, ug—; =
Uk, Vk—j = Ug;, for k € IN and j € Z. From now on, unless stated otherwise,
all summation signs are taken over k € IN and j € Z. Also for v € L*(Q) as

above, we let
leall® s= D2(1 + K2 — 452 e 1°

and define the Sobolev space
Worper = {u € L*(9) | |lul| < o0},
whose norm || - || clearly derives from the inner product

(u,v) := > (1 + |k — 45wy 05 ; -

Now, let O be the selfadjoint d’Alembertian operator O = 92 — 9} on L*(Q)

with domain
D(0) = Wo, :={u € LX(Q) | (1 + |k? — 457 |)|us* < o0}

and defined by Ou := (452 — k?)uy, jsin(kz)e?t if u = Y uy jsin(kz)e?it €
D(D).

Also, consider the closed subspace H = { v € L*(Q) | u(t,m —2) =
u(t,z) a. e. } of L?(Q) and the restriction £ = O]y with domain D(L) =
D(O) N H. Clearly, the space H is invariant under O (that is, Ou € H if
weD@O)NH)and L : D(L) C H— H is a selfadjoint operator.

Finally, we define the Sobolev space £ = VV&ﬁerﬂH and consider the unitary

representation of the group S' = R/7Z on the space E given by T'(8)u(t,z) =
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u(t+6,z),0 € [0,7). Then, the fized set of this representation consists of those
functions u(t,z) = u(x) of E which are {-independent.

We point out the fact that subspaces of L*(2) such as H above have the im-
portant property of being transversal (cf. [7]) to the infinite-dimensional kernel,
ker(O) = {u = ¥ ugjsin(kz)e*t € D(Q) | k = 2|j] }, of the d’Alembertian; in
particular, we have ug; = 0 if k = 2|j| and u € H, so that ker(L) = {0} and £

(unlike O) has no essential spectrum.

From the above definitions it is clear that D(£) C £ C H with |u] <
|lu]| Yu € E. Also, using the transversality property of H and the fact that

|[sin(kz)e® || = (1 + |45 — k?|)|sin(kz)e? 7[> ,

it is not hard to show that the embedding ¥ — H is compact. In fact, one
can show (see [8]) that all the structural hypotheses (L1) — (L3), (I) assumed
in Section 2 hold true in this case, with ¢(u) = |u|,, X = L™ (Q) for suitable
ry > p, and where the operators L,T : E — E are given by

L 45" — k2 in(kx)e2it
= g o1
Tu=), Lsin(k‘m)e%ﬁ : (3.8)
1+ |45% — kY

Finally, we note that the operator £ is invariant under the representation {7'(8)}
and its spectrum consists of the eigenvalues Ay; = 45% — k?, where j = 0,1,2,. ..
and k = 1,3,5,... (k odd). Moreover, the spectrum of the restriction £y =

L|Fiz(s1) is given by
o(Lo) ={-k* | k=1,3,5...} . (3.9)

Next, letting F'(v) = [;' f(s) ds, we are going to apply Theorem 3.1 to the

functional
Ty = g (Buwy— [ 7 F(w) dude (3.10)
o Jo
First of all, we note (cf. [7]) that £ = W}}jier N H is continuously embedded in

LiN H for all ¢ > 1. From this, it is not hard to show that .J is well-defined and
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of class C'! on the space F provided that f(u) satisfies the growth condition
|f(u)| < Alu|"+ B VueR, (f1)

for some A, B> 0 and r > 1. In fact, since the Nemytskii operator u(t,z) —
f(u(t,z)) obviously leaves the subspace H C L*(f}) invariant, it follows that

(VJ(u),h)y = (Lu,h) — /W /W S(u)h dtdz VYu,h € E |
o Jo

so that the critical points of J are the weak solutions u € FE of the problem
(WE). Finally, since ' = W&ferﬂ[‘[ — LN H for all ¢ > 1 and the embedding
E — H is compact, we conclude that VN : ¥ — FE, defined by

(VN(u), h) :/" /W flu)h dtdz Vu,h e E
0 0

is a compact mapping.

Proof of Theorem 1.1 We have seen above that all the basic hypotheses
involving the underlying spaces and the operator £ hold true in this present
situation. In addition, it is not hard to check that (fi), (f2) and (f3) imply
(M), (NF) and (N3), respectively.

On the other hand, since (3.9) gives that o(Ly) C (—00,0] and 0 < A, <
Ak, we have that condition (%) is satisfied. Moreover, since (3.7) implies that
(Lu,u) < 0 for all w € Fiz(S') and since F(u) > 0 by assumption, we have
that J(u) <0 for all u € Fiz(S'), so that (x*) also holds true.

Therefore, since ker(L — X) is even-dimensional for any eigenvalue A, it
follows from Theorem 3.1 that J has at least m = k — [ + 1 orbits of critical
points outside Fiz(S'). In other words, problem (W E);, (WFE), has at least
m = k — [+ 1 (t-dependent) weak solutions which are m-periodic in ¢ and

geometrically distinct.



100 D. G. COSTA

II. Noncooperative Elliptic Systems

Now, as our second application, we consider the problem of finding multiple

solutions of noncooperative elliptic systems

Aw
z = w =0 on 00,

I
=
\S/
5
=

—Az = F,(z,w) in Q
i (ES)
where Q C R" is a bounded domain.

Letting H = L*(Q,R?) and denoting u = (z,w) ,VF = (F,, F,) and

1 0 ? A 0
w=(o 7)) 5= (5 3).
problem (£.S5) can be rewritten as

Lu=VF(u),

where £ : D(L) C H — H is the selfadjoint operator given by Lu = —ARu
with domain

D(L) = W23(Q,R?) N W, *(Q,R?) .

Choosing the norm || - || in £ := WOI'Z(Q, R?) induced by the inner product

((z,w), (p,¢)) = /QVZ - Vpdz —|—/va -Vipdz

standard arguments show that the embedding £ — H is compact and that
hypotheses (£1) and (£;) are satisfied. Also, considering the Z;-representation
{T(0),T(1)} on E given by T'(0) = Identity, T(1) = —Identily, and recalling
the F'is an even function, it is clear that both the operator £ and the functional
N(u) = [o F(u)dz are invariant under this representation and that Fiz(Z;) =
{0}. Finally, one can show (cf. [8]) that the remaining structural hypotheses
(£3) and (Z) are satisfied with ¢(u) = |ul,, X = L™ (Q,R?) for suitable u <
ry < 2N/(N-2), and where L,T : E — F are given by Lu = Ru and (T'u,v) =
Jo u-vdz. In particular, the eigenvalues of £ (that is, of the problem Lu = AT'u)

are given by aj, —a;, with corresponding eigenfunctions (¢;,0), (0, ¢;), where
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{a;} and {¢;}, 7 € IN, denote the eigenvalues and eigenfunctions of —A in
Hy (9.

Proof of Theorem 1.2. As before, we are going to apply Theorem 3.1 to the

pertinent functional

J(u) = %(Lu, uy — /07r /OW Fu) dtde = q(u) — N(u) . (3.11)

It is well-known that, under the growth condition
|[VF(u)| < Clul"+ D VueR?, (h1)

where 1 <r < (N+2)/(N —2), N > 3, the functional .J is of class C"* on F and
its critical points are the weak solutions of (ES). And the compact embedding
E — H implies that VN : E — FE is a compact mapping.

On the other hand, using integration and Holder’s inequality, conditions
(N1), (N5) and (N3) of Theorem 3.1 follow from (%), (hs) and (hs), respec-
tively.

Finally, in view of the fact that Fiz(Z;) = {0} and J(0) = 0, conditions ()
and (#*) are clearly satisfied.

Therefore, Theorem 3.1 implies that .J has at least m = k — [ 4 1 pairs of
nontrivial critical points. In other words, problem (E£S) has at least m = k—I+1

pairs of nontrivial (weak) solutions u = (z,w) € Hy(Q) x H3(Q) .
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