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ON THE COMPRESSIBLE EULER EQUATIONS IN
THERMOELASTICITY

Gui-Qiang Chen®  Hermano Frid *®

Abstract

We discuss some recent developments in studying global entropy so-
lutions with large initial data of the compressible Euler equations in
thermoelasticity, for a class of constitutive relations, which is compatible
with the first law of thermodynamics. The asymptotic decay of large
entropy solutions without bounded variation is shown. The uniqueness
and stability of Riemann solutions in a class of large entropy solutions in
L or BV are analyzed.

Resumo

Discutimos desenvolvimentos recentes no estudo de solugoes globais
entrépicas das equagoes de Euler em termoelasticidade, para uma classe
de relagoes constitutivas que é compativel com a primeira lei da ter-
modindmica. O decaimento assintdtico de solucoes entrépicas de grande
amplitude sem variagdo limitada é mostrado. A unicidade e estabilidade
das solucoes de Riemann numa classe de solugdes entrépicas com grande
amplitude em L° ou BV sdo analisadas.

1. Introduction

The balance laws of mass, momentum, and energy for one-dimensional elastic
media that do not conduct heat are expressed, in Lagrangian coordinates, by

the equations
O — Opu = 0,
O + Opp = 0, (1.1)
9 (e + u?) + Oa(up) = 0,

*Key words and phrases. Existence, compactness, uniqueness, large-time behavior, dis-
continuous entropy solutions, Euler equations, conservation laws, Riemann problem, scaling
sequence
1991 Mathematics Subject Classification. Primary:35B40,35L65; Secondary:35B35, 7T6N10


http://doi.org/10.21711/231766361998/rmc155
https://orcid.org/0000-0001-5146-3839
https://orcid.org/0000-0003-3289-3782

68 G.-Q. CHEN H. FRID

where v, u, p, and e denote respectively deformation gradient (specific volume
for fluids, strain for solids), velocity, pressure, and internal energy. Other
relevant fields are the entropy s and the temperature §. The system (1.1) is
equivalent to the system (5.1) in the Euler coordinates, and hence we focus on
(1.1) for notational convenience throughout the paper (see Remark 2 in Section
5).

The above system of conservation laws is complemented by the Clausius
inequality

Os > 0, (1.2)

which expresses the second law of thermodynamics.

Selecting (v, u, s) as the state vector, we write the constitutive equations
e=¢€(v,s), p=pv,s), 0= é(v,s) (1.3)
satisfying the first law of thermodynamics: 6ds = de + pdv, that is,
p=—6, 0=¢,, (1.4)

whose role is to ensure that (1.2) holds automatically (as an equality) for any
smooth solution of (1.1), that is, to make system (1.1) close.
The system (1.1) is a prototype of hyperbolic systems of conservation laws
(see [21]):
U+ 0, F(U) = 0. (1.5)
Under the standard assumptions p, < 0,0 > 0, the system (1.1) is strictly
hyperbolic. It is well known that solutions of the initial value problem, starting
out from smooth initial data, generally develop discontinuities that propagate
as shock waves. Thus only a theory of weak solutions in the large may be
feasible. As usual, we say that U(xz,t) = (v(z,t),u(z,t), E(x,t)),E = e+ 1u?

(the total energy), is a weak solution of (1.1) in II7 with initial data
L/vlt:o = U()(.’L'), (16)
if, for all ¢ € C'(II7) with compact support in IIz, one has

//HT{U@ + F(U)¢,} do dt + /R Uo(2)$(0, z) dz = 0, (1.7)
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where F(U) = (—u,p(v,s),up(v,s)). Since the mapping from (v,u, F) to
(w, u, s) is one-to-one, we will not distinguish these two coordinates in terms of
solutions. In the context of weak solutions, (1.2) is no longer a consequence of
(1.1), (1.3), and (1.4), but rather an independent condition identifying physi-
cally admissible solutions of (1.1).

When the initial data have small total variation, a global BV solution of
(1.1) can be constructed by the random choice method of Glimm [14]. For
large L* initial data, the situation is much more complicated. In this paper
we discuss some recent developments in studying large entropy solutions for the
compressible Euler equations with the following class of constitutive relations,

proposed by Chen-Dafermos [3],
v=w+as, p=nh(w), e=H(w)+Ps, 0§ =ah(w)+0, (1.8)

where h(w) > 0 is a function with h'(w) < 0, o and (3 are positive constants,

and
H(w) = f/w h(w)de. (1.9)

Of course, (1.8) can be written in the form (1.3) as
e=H(v—as)+ s, p=nh(v—as), §=cah(v—as)+f. (1.10)

Observe that the relations (1.10) are compatible with (1.4).

The model (1.8) is special. Even so, when one is dealing with solutions
in which the entropy does not deviate much from some constant value 5 (i.e.
relatively weak shocks), one may obtain a reasonable approximation of general

constitutive equations (1.3) by the equations of the form (1.10) upon choosing
a = —p(9,3)/p.(5,5), B=0(3,5) —ap(5,5), h(w)=pw+as,35), (1.11)

so that é(v, 3) and p(v, s) are matched for all v and the values of é, Ps, and 0, are
matched at a particular point (9,3) with © > 0 and § > 0. For the polytropic
gas, @ > 0 and 3 > 0.
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In Section 2, we recall the results of the existence and compactness of entropy
solution operators established in [3].

In Section 3, we show the asymptotic decay of periodic entropy solutions.
An interesting feature here is that, because of the linear degeneracy of the
second characteristic family, one can not expect the decay of all components of
the solutions. However, it is proved that some important quantities such as the
velocity, the pressure, and the temperature do decay as t — oco.

In Section 4, we discuss the uniqueness and stability of Riemann solutions
in the class of entropy solutions in L* or BV with L' N L*° or L' N BV initial
perturbation. A framework is analyzed to ensure that the uniqueness of Rie-
mann solutions in the class of L> or BV entropy solutions and the compactness
of the self-similar scaling sequence imply the stability of Riemann solutions in
a certain sense. Then we discuss the uniqueness of Riemann solutions in the
class of L™ or BV entropy solutions. The first is the uniqueness of Riemann
solutions in the class of L* entropy solutions, provided that the initial left and
right states of the Riemann data are connected only by rarefaction curves of
the first and third families and, possibly, a contact discontinuity curve of the
second family. No assumption of small oscillation is required here. Some basic
facts of divergence-measure fields in [7] are used. Combining this uniqueness
result with a compactness result in Section 2 yields the asymptotic stability of
shock-free Riemann solutions with respect to the initial perturbation (with the
entropy function s(z,t) in a weaker sense). The second is the uniqueness of
general Riemann solutions in the class of BV solutions. Again, no assumption
of small oscillation is required for this case. This result together with the com-
pactness of bounded sets in BV implies the asymptotic stability of Riemann
solutions in the class of BV entropy solutions with O(Ty) growth of its total
variation over [0, 7p] x R.

Finally, we comment on some essential differences between our asymptotic
results and earlier results on related problems. First, there has been a large
literature on the asymptotic stability of viscous shock profiles and rarefaction

waves (see, e.g., [16, 19, 20, 27, 23, 30] and references cited therein). In general,
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their analysis is based on energy estimates and gives more precise information
about the large-time behavior of the solutions, besides implying the asymptotic
stability in the sense of (4.1). However, they are suitable only for viscous
equations and, as far as we know, it has not been possible to treat general large
perturbation of Riemann data with both shock and rarefaction waves for such
systems by a similar analysis. There is also an important analysis of large-
time behavior of Glimm solutions of hyperbolic conservation laws introduced
by Liu (see [25, 26]), which is designed specifically for solutions obtained from
the Glimm method. In his analysis the asymptotic approach to the Riemann
solution is obtained in terms of a norm, which is equivalent to the total variation
for small initial data. It is not difficult to see that the results obtained for 2 x 2
systems in [23] imply the asymptotic stability of the Riemann solution in the
class of solutions, obtained from the Glimm method, in the sense of (4.1).
The main motivation of our program is to develop some approaches that are
applicable to general large entropy solutions, constructed by any method, for

hyperbolic systems of conservation laws.

2. Existence and Compactness of Entropy Solutions

In this section we recall some results proved in [3], which will be referred later
in Sections 3-4. We refer to [3] for the proofs of both theorems of this section.
Consider the Cauchy problem for (1.1) and (1.8) with initial data

(10,1, 8)li=o = (wo(), uol), so(), (2.1)
satisfying
jwo(@)] < o, foo(@)] < o, sole) € Mie(R),  (22)
and
(wo(z), ua()) € T, = {(wu)| —Cr Su [ W@ i}, (23)

which contains only physical admissible states. In particular, if (w,u) € X¢,

then § = ah(w) + 3 > 0.
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For concreteness, in this section we assume that h(w) is a smooth function

with 2/(w) < 0 satisfying

B (w)? o 5
ah/(w) {>07 it w<w, (2.4)

" AN
s 4ah(w) +8 | <0, if w>w,

and « and 3 are positive constants. Then we have

Theorem 2.1 There exists a global distributional solution (w(z, 1), u(z,t),s(z,1))
for the Cauchy problem (1.1), (1.8), (2.4), and (2.1)-(2.2), satisfying

(w,u) € Lm(Ri), (s,8¢) € MIOC(R?‘_), f(w) > 0, (2.5)

|s|{[—¢To, cTo] x [0, To]} < CTE, (2.6)

Jor any ¢ > 0,Ty > 0, with C > 0 independent of Ty, where |s| denotes the vari-
ation measure associated with the signed measure s. Moreover, (w(z,1),u(z,1),

s(x,t)) satisfies the entropy condition:
Om(w,u) + dpq(w,u) <0, s; >0, (2.7)

in the sense of distributions for any C* entropy pair (n(w,u),q(w,u)) of the
prototypical system

Oyw — Jpu = 0, Oru + Oph(w) = 0, (2.8)

for which the strong convezity condition holds:

anww - ahl(w)nw Z 0: 077““ ‘I’ QT 2 O (2 9)
(0 — @ ()1 ) (O + ) = 20.

Furthermore, if the initial data (2.1) are periodic, then there exists a global pe-

riodic distributional solution satisfying (2.5)-(2.7).

Observe that

ne(w,u) = H(w) + %uQ, g(w,u) = uh(w) (2.10)
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is a strictly convex entropy-entropy pair satisfying (2.9) (with strict inequali-

ties).

Theorem 2.2 Assume that the sequence (w” (z,t),u”(x,1)) satisfies the follow-
mng:
(1) There exists a constant C > 0 such that

I(w”, w2 < C;
(i1) The sequence
Im(wT ul) + 0pq(w™,uT) <0 in the sense of distributions,

Jor any C* entropy pair (n(w,u), q(w,u)) of the system (2.8) satisfying (2.9).
Then the sequence (w” (x,t),u”(z,1)) is compact in L}, (R2).

3. Decay of Entropy Solutions Without Bounded Varia-
tion

This section is concerned with the asymptotic decay of periodic entropy solu-
tions without bounded variation of (1.1), (1.8)-(1.9), and (2.1). Our main result

is the following.

Theorem 3.1. Let (v(z,1),u(z,t), s(x,1)), |u(z, )] +]v(z, ) —as(z, )| < C, be
a periodic entropy solution of (1.1), (1.8)-(1.9), and (2.1) with period P salisfying
(2.1)-(2.7). Then the velocity u(z,t) asymptotically decays to u = ﬁ /P up(x)dz
in LP(P), 1 < p < co. Moreover, the pressure p(w(z,t)) and the temperature
O(w(z, 1)) decay to

p=pO7" |P|/ (wo(z))dz)), and 0—0 |P|

O(wo(z))dx),
in LP(P),1 < p < oo, respectively, where O(w) = fw + a/wh(w)dw.
0

Sketch of the proof. We give a sketch of the proof; see [5] for more de-
tails. Let (vT(z,t),u”(z,t),sT(z,1)) = (v(Tz,Tt),u(Tz,Tt),s(Tz,Tt)) be the
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scaling sequence associated with the periodic solution (v(z,1),u(z,t),s(z,1)),
where now the scaling of s(z,t) must be taken in the sense of distributions.
Using rescaling arguments, it is not difficult to verify that the condition (2.6)

is also satisfied by s” with the same constant C' > 0. Theorem 2.2 implies

(w'(z,t),u”(x,1)) is compact in L},.(R3). From the uniform boundedness of

(wT, uT), we have that there exists a subsequence {T}}2%,, Ty — oo as k — oo,

such that
(wT(z, 1), uT(z, 1)) = (w(z,1),u(z,t)), ae. k — oo.

Then we conclude (¢f. [5]) that the function (w(z,t),u(z,1)) depends only on

t. Using the conservation of momentum
Ou + Jph(w) =0

in the sense of distributions, we conclude that

u=1u= ﬁ /P uo(x)dz.

We now return to the equations in (1.1). For the limits in the sense of

distributions of (vT,pT, eT), (v, p, €), we get

This implies

O(fw — aH(w)) = (B0 — ae) =0

in the sense of distributions. Hence, the function O(w(z,t)) = Bw(z,t) —
aH(w(z,1)) does not depend on ¢ either. We obtain

O(w(z, 1)) = %L@(um(w))dm.

Since O'(w) = §(w) > 0, O(w) is a monotone function. Therefore, w(x,1) also

does not depend on ¢. In fact, one has

w(z,t) =w = G)_l(l;ﬁ/P@(wo(x))dx).
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The entropy inequality (2.7) with n = n.(w, u), given in (2.10), implies (¢f. [5])
that there exists a set 7 C (0, 00), with meas((0,00) —T) = 0, such that

/ [(w(z,t) —u,w(z,t) —@)Pde -0, t—o0, €T, foranyl<p< cc.
P

The decay of p(w) and #(w) follows from that of w.

4. Uniqueness and Stability of Entropy Solutions

First we have the following observation.

Theorem 4.1. Let S(RY) denote a class of functions defined on RY. Assume
that the Cauchy problem (1.5)-(1.6) satisfies the following.

(i) The Riemann solution R(x/t) is unique in the class S(RZ);

(ii) Given an entropy solution of (1.5)-(1.6), U € S(RZ), the sequence
UT(z,t) = U(Tx,Tt) is compact in L}, (R%), and any limit function of its
subsequences is still in L},. N S(R2).

Then the Riemann solution R(x/t) with Riemann data Ro(z) is asymp-
totically stable in S(R2) with respect to the corresponding initial perturbation

Po(z) € L'(R) in the following sense:
1 /T
= | W0 = R@ldt » 0, in L, (R), T = o, (4.1)
0

where U(x, 1) is an entropy solution of (1.5)-(1.6) taking Up(x) = Ro(z)+ Po(x).

In this section the class S(R3) will be always either a subset of BVi,.(R3)N
L>*(R%), or a subset of L>(R3%).

Theorem 4.1 indicates that the compactness of scaling sequences and the
uniqueness of Riemann solutions imply the asymptotic stability of Riemann
solutions in the sense of (4.1).

For BV solutions, the compactness of the scaling sequence is obtained
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through the following observation.
Lemma 4.1 Assume U(z,t) € BV),.(R%} x (0,00)) satisfies

IV@nUH{lz] < elo} x (0,T0)} < CT, (4.3)

Jor any ¢ > 0, Ty > 0, and some C' > 0 independent of Ty, where |V (5 U] is
the variation measure associated with the signed measure V (, yU. Then UZ (. £)

also satisfies (4.2) with the same constant C'. In particular, for U € L= (R7H)

the sequence U is compact in L}OC(R:“_H).

This condition is satisfied by the entropy solutions possessing total varia-
tion in z uniformly bounded for all ¢ > 0, which is the case for the solutions
constructed by Glimm’s method (see [14, 15]). Hence, the compactness follows
from Helly’s theorem for bounded sets in BV

For L* solutions of the systems considered here, the method of compen-
sated compactness has been applied successfully and yields the compactness of
uniformly bounded sequences of entropy solutions. See Section 2.

The uniqueness of Riemann solutions in the class of BV solutions for the
2 x 2 systems is due to DiPerna [13]. In this section we discuss uniqueness
theorems for Riemann solutions for (i) L* solutions with large oscillation and
initial Riemann states connected only by rarefaction wave curves of the first and
third families, and, possibly, a contact discontinuity curve of the second family;
(ii) BV solutions with large oscillation and general Riemann initial states.

As we indicated above, once we have the compactness of the scaling sequence,

the asymptotic problem reduces to the uniqueness problem of Riemann solutions

of (1.1) and

(v,u, E)|t=0 = Ro(x)

{ (vauLa EL)7 T < 07 (43)

(vr,ur, ER), x> 0.

Therefore, in what follows, we mainly study the uniqueness problem with the

aid of entropy analysis.
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Throughout the following, we assume that A(w) in (1.8) satisfies
heC® h(w)>0, A(w)<0, and A"(w)>0, (4.4)

for w in the region of interest.

4.1. 3 x 3 Euler Equations: Shock-Free Riemann Solutions.

We first prove the uniqueness of large Riemann solutions in the class of L™
solutions, when the Riemann solutions do not contain shock waves. In this
case, besides rarefaction waves of the first and third families, it may contain a

contact discontinuity of the second family.

Theorem 4.2. Let R(z/t) be the classical shock-free Riemann solution of (1.1)
and (4.3). Let Uz, 1) = (v(a,t),u(z,t), E(z,1)) € L=(II7;R3) be any weak
solution of (1.1) and (2.1) in Iy, satisfying (2.7) in the sense of distributions.
Assume (4.4) holds. Then U(x,t) = R(x/t), a.e. in Ily.

Sketch of the proof. We sketch the proof as follows; see [6] for further details.
Let W(x,t) and W(x,t) be the projections of U(x,t) and R(x/t) on the w-u
plane. We notice that W is a Lipschitz solution of (2.8) for ¢ > 0. Indeed, by
assumption, R(x/t) does not contain any shock discontinuities, and s is constant
along rarefaction wave curves, while u and p (hence, also w) are constant along

the contact discontinuity wave curves. We consider the strictly convex entropy

pair (n.(w, u), g(w,u)) in (2.10) for (2.8). Then W(x,t) is a weak solution of
0w — Opu = —adys = k(O (w, u) + Opqu(w,u)), Ou+ dpp(w) =0, (4.5)

from (1.1) and (1.10), where k = /8.
Next, we consider the family of quadratic entropy pairs, parameterized by
W = (w,u), given by

(W, W) = (W) = (W) = Vi (W)(W — W),
BW,W) = ¢.(W) — (W) = V(W) (f(W) — f(W)),

=
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where f(W) = (—u, h(w)). We use Theorem 3 in [7] for the divergence-measure

fields to conclude
(a(W(w,1), Wz, 1)), B(W (x,1), W(x,1))) € DM(IIr),

and the validity of the product rule, since W (z,t) is locally Lipschitz in IIr.
Consider the measures
0 = 0. (W (z,0)) + Bue(W(z, 1),
v = W (z,t), W(z,t)) + 0.8(W (z,t), W(z, 1)),
where the fact that € is a nonpositive measure is granted by the entropy condi-
tion (2.7). We have
v = 0(W, W) + 0:3(W, W)
= 0o (W) + e (W) — 5o () Bon (W) + Do)
=Vi(W) (W(W = W) + We(F(W) = /(7))
<0 — V(W) (f(W) = f(W) = V(W)W = W)) W,

where we used again the fact that V1.V f is symmetric and that 9,7. is nega-
tive. Therefore, we conclude that W (z,t) = W(z,). To conclude the proof, we
notice that, by the first equation in (4.5), we must have 9,(s(z,t) —3(z, 1)) = 0,
a.e. in Ilp. It then follows that s(x,t) = 5(x,t), a.e. in Iy, from s(z,0) =

5(z,0), z € R. Hence we obtain U(z,t) = U(z,t), a.e. in Iy, as desired.

Although we have assumed U € L°°(TI7; R®) through the proof of Theorem
4.2, we only used the property (w,u) € L°°(Ilr; R?). Hence the same proof gives
the uniqueness of Riemann solutions in the class of weak solutions satisfying
(2.6)-(2.7), with (w,u) € L*(Il7;R?) and s € M(Il7), where the definition of
weak solution should be adapted in an obvious way.

Therefore, combining Theorem 2.2 with Theorem 2.2 yields the following

result.

Theorem 4.3. Suppose U(x,t) is a weak solution of (1.1), (2.1), and (4.5)
such that (w,u) € L®(R3), (s,s) € M, (RY), satisfying (2.1)-(2.7), and
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(wo, uo, o) satisfies (2.2)-(2.3) and Py(z) € L'(R). Assume that Uy, is con-
nected to Ur by a Riemann solution (W, S)(z,t) consisting of only rarefac-
tion waves of the first and third families and possibly a contact discontinuity of
the second linearly degenerate family. Then (w,u)(z,t) asymptotically tends to

W(xz/t) in the sense of (4.1). Moreover, for any ¢ € C§°(),

csl . b>—=8d>.

The Riemann solution (W, S) is the unique attractor.

Sketch of the proof. The only thing to be observed is that if (w”,u”, s7) is the
scaling sequence associated with the weak solution (w,u,s), where the scaling
of s must be taken in the sense of distributions, then s” also satisfies (2.6) with
the same constant C' > 0. Hence, the theorem follows from Theorem 2.2 and the
straightforward extension of Theorem 4.2 to the case where (w, u) € L (Ilr; R?)

and s € M(Il7).

4.2. 3 x 3 Euler Equations: General Riemann Solutions

We now investigate the uniqueness of general Riemann solutions in the class of
BV solutions. The existence of BV solutions can be obtained by the Glimm
scheme for BV initial data with moderate oscillation. The idea is to prove
first the uniqueness of solutions of the corresponding Cauchy problem for the
subsystem (2.8). The difficulty is now that the projection of any Riemann
solution in the w-u plane no longer satisfies the entropy identity: dm.(W) +

0:q(W) = 0 in the sense of distributions. Therefore, more careful analysis is

needed.

Theorem 4.4. Let U(z,t) = (v(z,t),u(x,t), E(z,t)) € BV(II7; R?) be a weak
solution of (1.1), (2.1), and (4.4) in Uy, satisfying the entropy condition (2.7)
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in the sense of distributions. Then U(z,l) = R(z/t), a.e. in Il.

Sketch of the proof. The strategy is to consider first the subsystem (2.8) to
get the coincidence of the projections on the w—u plane, and then to conclude
immediately the coincidence of U(z,t) and the Riemann solution R(z/t) a.e..
For concreteness, we consider only a generic Riemann solution U (z,t) consisting
of the constant state U;, connected on the right by a l-shock to the constant
state Ups, a stationary contact discontinuity connecting Ups to Uy on the right,
and a rarefaction wave connecting Uy on the right to Ur. Using DiPerna’s
method in [13], we consider the auxiliary function
N L:/'L, z<az(t), 0<t<T,
Ulz,t) = § Un, z(l) < 2 < max{z(l),ot}, 0 <t < T,
U(z,t), x>max{z(l),ol}, 0 <t <T,
where (1) is the minimal 1-characteristic of U(x,t), and & = ot is the line of

1-shock discontinuity in R(x/t). We then consider the measure
5 = (W (2, 0), Wz, 1)) + 0,B(W (z,0), W(a, 1),

where W is the projection of U over the w—u plane, and a(W, VV) and (W, Wv)
are defined above. Our problem essentially reduces to analyzing the measure
7 over the region where the Riemann solution experiments a rarefaction wave
and over the curve z(t), which for simplicity may be taken as the jump set of
W(z,1).

By the Gauss-Green formula for BV functions and the finiteness of propa-

gation speeds of the solutions, we have
N +oo ~
A{IL} = /_ W(z, 1), W(z,1)) dr. (4.6)
On the other hand,
{0} = F{L0)} + {Q(1)} + 0{T1 — (L(1) U Qa(1))}, (4.7)

where L(t) = {(s,2(s))|0 < s < t}, since ¥ reduces to the measure # on the

open sets where W is a constant, and I/~V(35,t) = W (z,t) over Q. Hence, if one
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shows that
L)} <0, (4.8)

the problem reduces to the same verification as in the shock-free case. Thus,

we consider the functional
D(a, W_, W, I/T/—v I7V+) = ola(W, VV)] —[B(W, VT/)]’

where the square bracket denotes the left limit minus the right limit of shock
wave curve in the (z,1)-plane for the function inside the bracket. We conclude

that

D(o,W_,W,, W_,W,) <0, (4.9)

if W_, W, are projections over the w—u plane of states U_, Uy, respectively,
which are connected by a 1-shock of speed o, and W_, W, are projections over
the same plane of states U_, UL, respectively, which are connected by a l1-shock
of speed &, and also either U_ = U_ or U, = U,. Using Theorem 4.4 in [6] for
the 2 x 2 case, it is then clear that (4.9) immediately implies (4.8).

As we already said, from (4.9) and the arguments in the shock-free case,
we get that W(z,1) = W(af;,t), a.e. in II7. From the last equality and the
Rankine-Hugoniot relations for (4.5), we conclude that W (z,t) = W(x,1), a.e.
in 7. Now, by the same arguments in the proof of Theorem 4.2, we conclude

U(x,t) = U(z, 1), a.e. in 7. This leads to Theorem 4.4.

Again, as an immediate consequence of Theorem 4.4 and the Lioc—compa,ctnes:

of bounded sets in BV, we have the following theorem.

Theorem 4.5. Suppose that U(x,1) € BV}, .(R x (0,00);R?) is an entropy
solution of (1.1), (2.1), and (4.4), satisfying (2.1)-(2.6) and the entropy condition
(2.7) in the sense of distributions. Then U(x,t) asymplotically tends to the
Riemann solution of (1.1) and (4.3), the unique attractor.
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5. Final Remarks

1. Applying Theorem 2.3 in [6], we conclude, from the convergence in time-
average given in (4.1), the convergence in the usual sense, that is, |U({, L) —

R(€)] = 0, as L — oo, in LiOC(R). The rationale of the referred result is the

same as in [4, 5, 29]. It may be summarized in the sentence: “Convergence in
9 b y

average plus entropy inequality implies convergence in the usual sense”.
2. Using the transformation between the Lagrange coordinates and the Euler
coordinates (see [33]), one can transform all results presented in this paper to

the corresponding results for the following system (1.1) in the Euler coordinates:

Op + 0x(pu) =0,
dulpu) + B, (pu® + p) = 0, (5.1)
O (pe + %puz) + Oy (u(pe + p + %/’UZ)) =0,

where p = 1/v denote the density. Related two special cases of (5.1) were also
discussed in [1].

3. The assumption on h(w) in (2.4) can be easily relaxed in Theorems 2.1-2.2
by following the arguments as in [18].

4. In the above sections, we discuss the class of constitutive relations (1.8)
to study the existence and compactness of the entropy solutions of the Cauchy
problem with arbitrarily large initial data. It would be interesting to explore
some approaches to deal with other classes of constitutive relations. For poly-
tropic gases, the global existence of entropy solutions of the Euler system for
small initial data has been established (see [23] and [32]). Also see [8] for more
complicated physical situations.

5. We also discuss the class of constitutive relations (1.9) to study the
asymptotic behavior (decay and stability) of the entropy solutions of the Cauchy
problem with arbitrarily large initial data. It would be interesting to explore
some approaches to deal with such problems for other classes of constitutive
relations. For polytropic gases, the asymptotic behavior of entropy solutions,
obtained from the Glimm scheme, of the Euler system for small initial data has

been studied (see [25, 26]).
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6. The approach of Section 4 can also be applied to proving the asymp-
totic stability of Riemann solutions for the degenerate 4 x 4 system of Maxwell
equations for plane waves in electromagnetism and the m x m systems with
symmetry as models for magnetohydrodynamics and elastic strings (e.g. [2]).
It can also be applied to studying the large-time behavior of solutions of hyper-
bolic systems with relaxation for the same type of initial data. For these and

other correlated results, see [6].
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