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Abstract

Using the geometrical concept of Darboux covering we survey in a
unified manner results connecting the Kadomtsev-Petviashvili (KP) hi-
erarchy of integrable PDEs and the Darboux method. After reviewing the
Darboux-KP (DKP) hierarchy, which was recently introduced by some
of the authors, we show that suitable reductions thereof lead to rational
reductions of the KP hierarchy. We also show that the KP hierarchy is a
projection of the DKP hierarchy, the modified KP hierarchy is a restric-
tion of KP to a suitable invariant manifold and that a certain discrete
version of the KP equations can be obtained as iterations of the DKP
ones.

Resumo

Fazendo uso do conceito geométrico de recobrimento de Darboux, a-
presentamos de forma unificada resultados ligando a hierarquia de EDPs
completamente integriveis de Kadomtsev-Petviashvili (KP) e o método
de Darboux. Apés revermos a hierarquia de Darboux-KP, que foi re-
centemente definida por alguns dos presentes autores, mostramos que
reducoes apropriadas da mesma levam a redugoes racionais da hierarquia
KP. Mostramos também que a hierarquia KP é uma projecao da DKP,
que a hierarquia KP modificada é uma restricio da KP a uma variedade
invariante apropriada, e que uma certa versdo discreta das equagoes da
KP pode ser obtida como iteracoes das equacoes da DKP.
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1. Introduction

Darboux transformations were introduced more than a century ago [9] in the
context of differential geometry and ordinary differential equations. Then they
were used (sometimes implicitly) in different fields, e.g., in the study [19] of the
Huygens property of hyperbolic partial differential equations (for more informa-
tions see, e.g., [2,24]). In particular, Darboux transformations were rediscovered
in connection with the theory of soliton equations, as a powerful method to con-
struct exact solutions (see [23] and references cited therein). Soliton equations
are a class of nonlinear partial differential equations admitting solutions in the
shape of a solitary wave (with additional interaction properties, see [6]). They
can be integrated by means of the inverse scattering method, first described in

[14]. Examples of soliton equations are

Ut — Ugpzy + O,y =0 (Korteweg—de Vries)

U — Ugge + 6uu, = 0 (modified KdV)

Ugpr +sinu =0 (sine-Gordon)

it + gy + 2)u)?u =0 (nonlinear Schrédinger)
Wt — Ty — Bigmmp 1 BB Jer =T (Boussinesq)

(s + Upgy — Outy)y + Uy =0 (Kadomtsev—Petviashvili)

In this paper we will present a geometrical description of the Darboux technique,
allowing us to clarify some links among important elements of soliton theory
[11,13,15], such as the Kadomtsev-Petviashvili (KP) hierarchy, the modified KP
(mKP) hierarchy, the Miura map, and the discrete KP hierarchy (dKP), also
called the generalized Toda lattice (see [17]). The results presented are part of a
project aiming to give a coherent and geometric description of the integrability
properties of soliton equations (for more informations see [8,20] and references
therein; in particular, for a bihamiltonian approach to Darboux transformations
see [22]). In particular, this paper may be considered as an introduction and a

summary to the papers [7,21], were full proofs and details are given. However,
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there is some novelty, that will be pointed out through the paper. We would
like to point out that, although familiarity with solitons is surely helpful as a
motivation to the different equations under consideration, knowledge of soliton
theory is not crucial to read this paper, which we tried to write as self-contained
as possible.

The main points are the following: We introduce a geometrical setting for
studying Darboux transformations, namely the concept of Darbouz covering,
and a new hierarchy, the Darboux-KP (DKP) hierarchy, which is a Darboux
covering of the KP hierarchy. Then we show that suitable reductions of DKP
lead to interesting reductions of KP (known in the literature [12,16] as rational
reductions of KP). Finally, we show that DKP collects KP, mKP and dKP;
more precisely, the KP hierarchy is a projection of DKP, the mKP hierarchy
is a DKP restriction to a suitable invariant submanifold, and the discrete KP

equations are obtained as iterations of the DKP ones.

2. Darboux coverings: a geometrical setting for Darboux
transformations

Let M and N be two differentiable manifolds, X a vector field on M, and
Y a vector field on A. We say that Y is a Darboux covering of X if there
exist two (different) maps o and g from N to M mapping Y into X, that is,
p(Y) = o0.(Y) = X. In other words, integral curves of ¥ are sent into integral

curves of X by means of two distinct maps.

Example 1. Let F be some space of C'*—functions of one variable z (e.g.,
the space of C'°—functions from the circle §! into R), let M = F and let X
be the vector field on M associated to the Korteweg-de Vries (KdV) equation,
that is,

X(u) = uUpgr — buu,. (1)

A Darboux covering of X can be constructed by putting A = F and by taking
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Y to be (the vector field associated to) the modified KdV (mKdV) equation,
Y (v) = vops — 61)2%, (2)

and
u(v) = o + v,
o(v) = v? —uv,. (3)

This is easily seen by checking that, if v is a solution of mKdV, then p(v) and
o(v) are both solutions of KdV.

A Darboux covering of a vector field X can be used to generate new integral
curves of X from old ones (i.e., new solutions of the corresponding differen-
tial equation from known solutions). To this aim, let us suppose N to be

a vector bundle over M, and u the canonical projection of the bundle. Let

(%153 Tmy @i, - - -, a,) be local fibered coordinates on N; this means that
(21,...,2,) are coordinates on M, and that the local expression of p is
BTy e Ty G 1y« ey ) > (T2 ey T ).

Then the condition p.(Y) = X entails that the vector field Y has the form

i = X'(z) (4)
& = Y¥z,a), (5)

where the X7 are the components of the vector field X. If a solution z(t) of
(4) is known, then it can be lifted into a solution (z(t),a(t)) of Y by solving
the auxiliary system (5), controlled by z(¢). Once these equations have been

solved, the map o : ' — M produces a second integral curve

(t) = o(x(t), a(t)) (6)

of the vector field X, depending on as many arbitrary parameters as there are
arbitrary constants entering into the solution of the auxiliary system (5).
Another use of Darboux coverings which will be considered in this paper

is to construct invariant submanifolds of a vector field. Using the notation
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introduced above, let § C A be invariant for ¥ (that is, ¥ is tangent to S).
Then, both u(S) and o(S) are invariant for X. In particular, if o(S) C p(S),
we have a Darboux covering for the restriction of X to p(S). In Section 4 we
will see that this (quite trivial) remark has nontrivial consequences, namely the

existence of the so—called rational reductions of the KP hierarchy.

3. The DKP hierarchy: a Darboux covering for KP

In this section we will introduce a Darboux covering for the KP hierarchy,
which is one of the most important hierarchies in the theory of soliton equations
[10,11]. We will deal with the KP equations in a form which is natural from the
point of view of the bihamiltonian approach to soliton equations. We refer to
[8,20] for more informations and for the proofs of some assertions of this section.
Let again F be some space of C*—functions of one variable x, and h a Laurent

series of the form

h(z)=z+ Y hjz ™, (7)
i1

whose coefficients h; belong to F. Then we define the Faa di Bruno iterates of
h as

RO =1

, . (8)

RUHY = (8, + h)AY) [Vj>0.

Notice that this recursion relations can also be solved backwards, in order to
define (algebraically) h(=1 h(=2)_ ... and to obtain a basis {h()};cz, with h(?) =
20 + O(2'71), in the space of Laurent series. Let Hy (resp. H_) be the linear
space spanned (over F) by {hWD};5q (resp. by {h()};0). Notice that H_ is
also spanned by {z/};co. Finally, define the canonical projections 7, and m_
associated with H, and H_. At this point we can introduce the KP currents

as

HO = n (). (9)
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This means that HU) is the unique linear combination of the Fad di Bruno

iterates of h,
s , J=2 3
HY) = pl) 1 pr[h]h(”, (10)
=0

with the asymptotic behavior HW) = 2/ + O(27") as z — oo.

Example 2. Tt is clear that H) = h. Let us compute the second current
H®,
HO = 1 4 b 1 oh®. (1)

Since

B =h =24 bz + hoz 2+ ...
RO = by + B2 = 22 4 2hy + (hug + 2h2) 2™ + (hop + A2 4 2h3)z~2 + . ..

we obtain H® = 22 4+ ¢,z + (2hy + o) + O(27!'). Therefore the asymptotic
condition H® = 22 + O(z7") entails

¢ =0, co = —2hy, (12)
so that
H® = p@ — 9p B = 2% 4 (By, + 2hg)z "+ (Rop + 13 + 283)2 2 +.... (13)
In the same way one computes

H® = 1B _ 3h, M) — 3(hy + hy,)hO
H® = p@ — 40, h® — (6hy, + 4hy)AY — (4hg + 4hyzy + 6hgy — 2R2)RO).

Having defined the currents HU), we can now write the KP equations as the

conservat ion ldW S

O,h = 8, HY), (14)

to be thought of a family of vector fields on the space S? of Laurent series of

the form (7). It can be shown that these vector fields commute.
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For the reader who is familiar with soliton equations, we are going to show
how to compare this definition of the KP hierarchy with the usual one. Let us
develop z on the Faa di Bruno basis,

z=h" 4 > u;h(9), (15)
i1
in such a way to define a new set of variables {u;};>; which are related to
the coefficients {h;};>1 by an invertible transformation. If one introduces the
pseudodifferential operator
L=8+Y, uwd?, (16)
i1
then one can show that the KP equations (14) take the Lax form

= ) (17)
where (£7); denotes the purely differential part of the pseudodifferential oper-
ator £7.

A Darboux covering for the KP hierarchy is provided by the Darboux-KP
(DKP for short) hierarchy. In this case M = S% and V' = S? x S, where S, is
the space of monic Laurent series of degree 1, with coefficients in F. Elements

in A will be denoted with (h,a), where

a:z—l—Zakz_k, a, € F. (18)

£>0

The map g is simply the projection onto the first factor, u(h,a) = h, while
o(h,a) = h+ 0;log a. We will call 4 and o the Miura and the Darboux map of
the KP theory. Finally, the DKP equations are the equations

Oh = 9,HV
N (19)
dya = a(HY — HW)

where H) is the current HO) evaluated at the point & = o(h,a). In order to
show that the DKP hierarchy gives a Darboux covering of the KP hierarchy,
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one simply has to check that solutions of DKP are mapped into solutions of KP

by u (trivial) and o (easy).

Remark 3. It is worthwhile to notice that the DKP equations can be written
in such a way to avoid the computation of & and of the corresponding currents.
This can be done as follows. First of all, we remark that the relation R =
h + . loga is equivalent to the operator relation a(dy + h) = (9, + h)a. This
implies that a(d, + h)¥ = (9, + h)*a, so that aHY) is in the linear span of
{(@x—l—h)ka}kzo. Hence a HY) can be characterized as the unique element DY) in
this span having the asymptotic behavior DU) = i+t +apz +.. .—I—a]-_lz—l—O(zo),

and the second DKP equation can be written as
Ora+ alHU) = D(j), (20)

without using the map o.

4. Invariant submanifolds of DKP and rational reductions
of KP

In this section we will give an example of the use of Darboux coverings to
construct invariant submanifolds for a given vector field [7]. More precisely,
we will construct the rational reductions of the KP hierarchy. These reductions
give rise to the so—called constrained KP hierarchies recently studied both in the
mathematical (see, e.g., [12,16]) and in the physical literature (see [1,4,5] and
references quoted therein). From the point of view of Darboux coverings, the
rational reductions of KP are simply the projections of very natural constraints
on the DKP equations. To show this, let us introduce, for I = 0,1,..., the
subset S; of N defined as

S ={(h,a) e V| 71'_(2:[(],) =0} ={(h,a) e V| Zae HY, (21)

where m_ and H have been defined in the previous section. In [21] the following

result was proved.
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Theorem 4. For each | = 0,1,... the submanifold S; is invariant for the DKP
equations. In other words, the DKP vector fields are tangent to S;.

In order to write explicitly the equations of &, let us note that the currents
HU), j >0, form a basis of H,.. Keeping in mind their asymptotic behavior, it

is easily shown that z'a € H, means that

l
da=HE) 4+ 3 g, HE™), (22)
m=0
or j
G = f{l+1,k a8 Z amHl—m,k. (23)
m=0

This shows that & may be parametrized by the components of the Laurent
series h(z) and by the first (I + 1) components (ag, a1, ...,a;) of a(z). Thus
w(S1) = SY, the whole phase space of KP, and therefore no reduction of KP
is obtained this way. Nevertheless, & N 84y, is also invariant for the DKP
hierarchy, and S7,,, = u(Si N Siyn) is a proper subset of S2. The explicit

equations of S7,,can be obtained by writing the pair of equations

1
Za = HU) 4 ) ayHI=P

k=0
I4+n
Zl-l—na = H(H—n-{—l) + Z akH(H—n—k)’
k=0
and by eliminating a, to get
I4+n !
H(Z+n+1) o E akH(l+n—k) — Zn(H(l+1) 4 ZakH(l—k))« (24)
k=0 k=0

Since the map p : N — M is simply given by the canonical projection u(h,a) =

h, equation (24) may be seen as the equation defining S7,,, in S2. Tt can be

checked that it gives h;, for j > [+ n+1, in terms of ag, ..., a; and hq, ... hiyy.

Example 5. Let us consider the simple intersection

SO,I . 80 N 81. (25)
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As we shall see, it leads to the AKNS system, which is known to encompass
both the nonlinear Schrodinger and the mKdV equations. The constraints of

So,1 are

a H® + a4
(26)
za = H® 4 qoHY 4 q, ,
and in this case (24) takes the form

z(h+ ap) = hs + h? 4 aoh + ay, (27)

where we have used the computations done in Example 2. This equation can be
solved in terms of (ag, hy) or also (ag,ay). If we choose this second possibility,

we get

h1 = a
hy = —(a1,+ aoay)
hy = +2 —ai+aj
3 = dlge Tt Gogd Goay,y — a7 + apay,

and so on. Substituting these constraints into the first two DKP equations we

obtain )
g—jj = (2a1 + apr — al)s
de (28)
B_tg = —(a1,5 + 2a001)s
and
(Z—Z) = (ao,py — 3aoao, + ag — 6apa )y
- 2 2 (29)
8—L3 = (@155 + 3aoa1 » — 3a; + 3agas),.

They coincide with the ¢, and ¢3 flows of the so—called (1]1)-KdV theory [3,4],

which gives, after the identifications

aw=—", @ =-rg (30)

the classical AKNS hierarchy.
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In terms of the coordinates u; (i.e., of the pseudodifferential operator L)
introduced in Section 3, the equations of the submanifold 57, . can be written

(see [7] for the proof) in the form
L" = (Las)) ™ Litnt), (31)

where L(z+1) and L(l+n+1) are differential operator of order ([+1) and ({+n+1).
This is the constraint on £ considered for the rational reductions of the KP
hierarchy. Hence the restrictions to the submanifolds S7,,, give exactly the

rational reductions of KP.

5. Elementary Darboux transformations and the modified
KP hierarchy

In this section we describe in detail the simplest restriction of the DKP hierar-

chy, i.e., the case of
So={(h,a) e N |ae Hy}={(h,a) EN |a=h+ao}. (32)

The elements of Sy can be parametrized by a(z), so that h = a — ao. Hence the
submanifold Sy is diffeomorphic to S, and the restriction of the DKP equations
to Sp gives evolution equations on a. We will write explicitly these equations,
and show that they coincide with the modified KP (mKP) equations, using the
second form of the DKP equations derived at the end of the previous section.
For a proof which relies on the first form of DKP see [21].

All we have to do is to write the equation
O,a+aHY) = DO (33)

solely in terms of a. Remember that H@ is the KP current of h = @ — ag and
DY is the unique element in the span of {(9, + h)ka} >0 having the asymptotic
behavior DU) = 23%1 4 qozd +.. . + aj_1z+ O(z°). The key point is to introduce
the Fai di Bruno iterates al¥) of a defined by

(34)
¥t = (9, + a)a?) ,Vj >0,
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and to combine them in such a way to define the currents AY) associated with
a. They are the unique linear combinations of the iterates {a,(j)}jzl of a with
the asymptotic behavior

AV = 27 4 0(=%)

as z — co. Then, we can show

Proposition 6. With the above notation, we have thal
gy — AU _ 4i0 (35)
1
DY = A(H—l)-l-jzalA(j_l)a (36)
1=0

where A is the 0-th order coefficient of AV) (ie., AU = 27 4 Yiso Atz

Proof: Since a = h + ag, it is not difficult to check that the iterates a®) of
a belong to Hy = span{h(® | I > 0}. Therefore AY belong to H,, and so
AW — A30: hut the asymptotic behavior of the latter is 2/ + O(z7!), hence it
must coincide with the KP current H, showing (35).

As far as (36) is concerned, one immediately realizes that both members have the
same asymptotic behavior, namely 2/*! + agz? + ...+ a;_1 2+ O(z°). Moreover,
since for all k > 1 the iterates a¥) belong to the span of {(0, + h)'a | [ > 0},
we also have that the mKP currents A%¥) belong to this subspace. Then (36)

follows from the characterization of DWW,

Theorem 7. The restriction to Sy of the DKP hierarchy takes the form
875](), = &UA(H , (37)
where the AY) are the mKP currents previously defined.

Proof: Since the operator 0, + a sends the span of {(l(l)}121 into itself, and the

mKP currents form a basis in such a span, we have that

. , i1 , .
(8 + a)AY) = AUFD 4 57 g, 407D 4 AP0 (38)

=0
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By eliminating AU+!) between this equation and equation (36) we obtain

DY = (9, + a) AW — AI0, (39)
Finally, the DKP equation (20) entails
37 = aHY 4 DO = _g(AD) — 490 4 (9, + a)A) — 410 = §, 4O, (40)
J

and the proof is complete.

We can then conclude that the mKP hierarchy provides another Darboux

covering of KP. The restrictions ji and & of the maps p and o to Sy are
h=jf(a)=a—ag (41)

and

h=35(a) = (a® — agaV)/a . (42)
If h = fila) and h = &(a) we will say that h and % are connected via the
elementary Darbouz transformation generated by a.

Another important fact is that we have a very simple splitting of mKP into
KP plus one equation. Such property was already observed by Kupershmidt
in [18]. However, we believe that in the present setting it takes a neater form.
Indeed, from Theorem 7 it follows that @ = h + ag is a solution of mKP if and

only if A is a solution of KP and

day '

%, B2, (43)
Moreover, we can show in this simple example the use of Darboux coverings
to construct new solutions (of KP, in this case). Suppose h(t) to be a solution
of KP; let ao(t) be a solution' of the “auxiliary problem” (43). Then a(t) =
h(t) + ao(t) is a solution of mKP, and h = h 4 , log a is a new solution of KP.
Notice that A7 is a differential polynomial in (ag, k1, kg, ...). Hence equation

43) is to be seen as an equation for ao which is “controlled” by the given
q Y g

solution A(t) of KP.

!Such a solution can be, at least formally, constructed from h(t) as ao(t) = —h(t, z0),
where zj is fixed. We will not prove this assertion.
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6. Further reductions of mKP and the Gelfand—Dickey
hierarchies

In the previous section we showed that the restriction of DKP to the invariant
submanifold &y is the mKP hierarchy, providing in this way another Darboux
covering of KP. Now we will see that mKP admits a family of further restric-
tions, which are known as modified Gelfand-Dickey (mGD) hierarchies. This
entails the existence of reductions of KP, the well-known Gelfand-Dickey (GD)
hierarchies.

Consider the submanifold T, of Sy defined by the constraint
Al = (44)

It can be shown [21] that this submanifold is invariant for the mKP hierarchy,
i.e.,

9,(A™ — ") =0 (45)

on T,. The restriction to T, of the mKP equations are the modified n-GD
equations. We remark that on T,, the time ¢, is stationary, i.e.,

da

Sk g 46

oL (46)
as a consequence of the form (37) of the mKP equations.

Consider now the projection 7! = pu(7T,) of T, onto the phase space of the
KP equations. Since h and a are related by h = a—aq, from (35) we immediately
have that

T — gt (47)

if hisin T!. The restriction to T of the KP equations are the n—-GD equations.

Furthermore, since on T,
0=0da=a(H™ — H™), (48)

we also see that

7t = o, (49)
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and, therefore, o(7),) is contained in T!. We can then conclude that the mGD
hierarchy is a Darboux covering of the GD hierarchy. The restriction to T, of

the maps

= fi(a) = a — ao

are called the Miura map and the Darboux map of the GD equations.

Example 8 (KdV). The simplest case is n = 2,
AR = 22, (50)
According to the definition of the mKP currents, this amounts to setting
ay + a* — 2apa = 2* (51)

on the Laurent series a(z). This constraint allows to compute the coefficients
a; of a(z), for j > 1, as differential polynomials of the first coefficient ao. In
particular we have

a = %(—am + ad). (52)
In the same way the constraint H® = 22 allows to compute all the coefficients
hj, for 7 > 2, as differential polynomials of the first coefficient k. The re-
striction to T of the mKP hierarchy (that is, the modified 2-GD equations) is
called the mKdV hierarchy; that of the KP hierarchy to T (that is, the 2-GD
equations) is called the KdV hierarchy?. The restrictions of the maps i and &
to T, are given by

hi = a1 = =(—ao: + ad)

B 2
hy = hy + ag,.

In order to compare these expressions with the ones in Section 2, we introduce

the variables v = —ag and u = 2h; used in the literature. Then the Miura map

2The KdV (resp. mKdV) equation written in the Introduction corresponds to the third
time of the KdV (resp. mKdV) hierarchy.
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and Darboux map take the usual form

of the KdV theory.

We conclude this section with the remark that the GD reduction could be
seen as a particular instance of the rational reductions discussed in Section 4.

It is sufficient to consider also the submanifold
Sy ={(hva) | 70 € Hy} = {(h,a) | a = 2}, (53)

so that S.1 NS, = {(h,a) | a = zand 2" € Hy}. But 2" € Hy implies that
H™ = 2" which is precisely the n-GD constraint.

7. Iterated Elementary Darboux Transformations and the
discrete KP hierarchy

In Section 5 we have seen that, starting form a solution A of the KP hierar-
chy, one can generate a new solution I by means of an elementary Darboux
transformation. Now we will iterate this procedure, and, as a last application

of our construction, we will show how to make connection with the discrete KP

hierarchy.
Suppose a(0) to be a solution of mKP; then we know that h(0) := fi(a(0))
and h(1) := &(a(0)) are solutions of KP. Now, if we are able to solve the auxiliary

=
problem (43) for i = h(1), then we find another solution of mKP, say a(1), such
that g(a(1)) = h(1). Hence we obtain a third solution A(2) := &(a(1)) of KP.
Suppose that we can iterate this process, in order to find a sequence {a(n)},ez

of solutions of mKP fulfilling the Darboux recursion relations

f(a(n +1)) = 5(a(n). (54)

Then we will say that the a(n) are the generators of a sequence of iterated

elementary Darbouz transformations. We are going to see that there is a very
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deep link between iterated elementary Darboux transformations and solutions
of the discrete KP equations.

The procedure to construct the dKP equations is very similar to the one
used to define the KP and the mKP hierarchies. We associate to any sequence
{a(n)}nez of Laurent series of the form a(n) = z 4+ ¥y50 ai(n)z™" the discrete®

Faa di Bruno iterates a¥)(n) defined by

a(o)(n) =1
a"m) = am)aP(n+1).

Then we combine these iterates in such a way to force the Laurent series

. . J=1 3
KO() = a(w) + 3 rflala(n)
=0
to have the asymptotic behavior KU)(n) = 27+ O(z7!) as z — co. The discrete

KP equations are
O,a(n) = a(n)(KD(n+1) — KD (n)) . (55)

They can be shown to be equivalent to the equations given in [17] for a discrete
Lax operator.
The key result to compare sequences of elementary Darboux transformations

and solutions of dKP is the following one, for whose proof we refer to [21].

Theorem 9. Let {a(n)},ez be a sequence of Laurent series of the form (18)
satisfying the Darbouz recursion relations (54), and let h(n) = a(n) — ao(n).
Then, the differential KP currents H'Y(n) associated with h(n) coincide with
the discrete KP currents K9 (n) attached to a(n).

Now, we can show that a sequence {a(n)},cz iterated elementary Darboux

transformations is a solution of the discrete KP equations. Indeed, we recall

3We remark that in this case the coefficients a;(n) are not assumed to depend on a space
variable z.
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that the pair (h(r),a(n)) is a solution of DKP for each solution a(r) of mKP.

Therefore, the sequence {a(n)} verifies the equations

da(n)
ot;

= a(n) (H(j)(n—l— 1) — H(j)(n)) ,

where HW(n) and HY(n 4 1) are the KP currents associated to the points
h(n) and h(n 4 1), respectively. By Theorem 9, this sequence also verifies the
discrete KP equations

Jda(n)
ot;

= a(n) ([x”(j)(rz +1)— ]\"(“(n)> : (56)
Conversely, let {a(n)} be a solution of dKP, and let us set = {; and h(n) =
a(n) — ag(n). Then the first equation of the dKP hierarchy is

da(n)
Ox

= a(n)(h(n + 1) — h(n)), (57)

that is, the Darboux recursion relation. At this point Theorem 9 can be used
again to deduce that the discrete currents K9 (n) coincide with the differential
currents H(j)(n) associated with h(n). Then (h(no), a(ng)) solves for all ng the
DKP equations

da(ng)
ot;

= a(no) (HD(no +1) — H(no)) (58)

as a consequence of (56). It follows that a(ng) is a solution of mKP, and that
{a(n)} is a sequence of elementary Darboux transformations. For a different

proof of this fact, involving the evolution equations of the currents AU, see [21].
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