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ON THE TIME DECAY OF DIFFUSION WAVES FOR

A CLASS OF PARABOLIC SYSTEMS OF
CONSERVATION LAWS

Paulo R. Zingano *®

Abstract

We derive time decay rates in L2%-norm for solutions to the Cauchy
problem of the parabolic system

u, + (ue(lu))), = (Bw)w,),

and its N-dimensional analogue
Y9 N9 [k] ou
g (9_ u ka |u| Z 0_ ) 0_‘,1/_1:

provided only that the initial state w(-,0) is in L' N L% but otherwise
arbitrary. Here, w = (w,, ..., uy,) is the vector of unknowns, ¢, Py Py
are given scalar functions, and B, b‘m H[N] are uniformly positive def-
inite matrices of order m whose off- dlagonal elements b;;(u) are bounded
in terms of u;. The method is based on energy estimates and can be

adapted to other problems. The decay rates obtained are optimal.

Resumo

Sdo derivadas taxas de decaimento na norma L? para as solugdes do
problema de Cauchy do sistema parabdlico

u, + (up(lu])), = (Bw)u,),

e do problema correspondente em N dimensoes
N9 N9 [k] du
2:: 0— uﬂ (Ju])) g (u) E
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assumindo-se que o estado inicial u(, 0) pertence ao espago LN L% sendo
possivelmente grande. Nas equagdes acima, @ = (Uyy coy U )y @y Py s oee ?y
sao fungdes escalares dadas, e B, 8" - B™ denotam matrizes definidas
positivas de ordem m cujos elementos b;;(u) fora da diagonal sio limi-
tados em termos de u;. O método é baseado em estimativas de energia
e pode ser adaptado para outros problemas. As taxas de decaimento
obtidas sdo optimais.

1. Introduction

We will establish in this article the time-asymptotic decay in L’ norm of solu-

tions to the initial-value problem

u, + (ue(lu])), = (Bw)u,), (la)
u(-,0) € L'(R) N L*(R) (1b)
and some of its generalizations, where w(z,t) = (u,(z,1),...,uy(x, 1)) stands

for the vector of unknown quantities, |« | is the Euclidean norm of u, ¢ is
a continuously differentiable scalar function and B(w) is an m xm uniformly

positive definite matrix, i.e.,

(&,Bu)€) > ul€]° ¥V €eR™ (2)

for all w concerned, where p is a positive constant and (-, ) denotes the standard
inner product in R™ We also assume that the off-diagonal entries b;;(u) of B(u)

satisfy, for all w = (u, ..., u,,) concerned,

for some constant C' > 0. For basic properties of (1), we refer the reader to
[11] and references therein. One example is given by the class of rotationally

invariant systems considered in [6], [13], namely

u, + (u|u|2)z = pu,, (4)

where 1 is a positive constant. The inviscid form of equation (4) was considered

in 1979 by Keyfitz and Kranzer in connection with the elastic string problem in
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elasticity [9]. This system has also been studied in one-dimensional multiphase
flow [7], [12], magnetohydrodynamics [1], [5] and more generally in continuum
mechanics as a basic model for the propagation of plane waves in isotropic,
multidimensional systems [1], [2]. For these and all systems of the form (1)—(3),

we will show in Section 2 that

—-1/4

Ju )l < €1 +1) (5)

for all ¢ > 0, where the constant C' depends on the magnitude of || u(-,0) ||L1(R)

and || u(-,0 the dimension m and p > 0 given in (2) above. Thus,

) ||L2(R)’
the solution w = 0 of (1)—(3) is asymptotically stable under arbitrarily large
disturbances, provided only that they belong to L'(R) N L*(R). The same

. 2
decay behavior in the L-norm has been shown to hold for general systems of

conservation laws

u, + f(u), = (Bw)w,), (6)
with an arbitrary viscosity matrix B(u) and flux function f(u) such that the
Jacobian matrix f'(0) is completely hyperbolic [3], [4], [8], under the further
assumption that w(-,0) is small enough to satisfy

/+| w(@,0)] (1+|z]) dm+/ (@, 0) [ + |u,(2,0) ") do < 5 (7)

for § < 1. In the particular case of systems verifying (1)—(3), condition (7) is
not necessary and we will show in Section 2 using a very simple argument that
the estimate (5) holds for any initial state u(-,0) in L'(R) N L*(R), however

large. If one replaces (1a) by the slightly more general equation

u, + (up(u)), = (Blu)u,), (8)

then we can still derive (5) provided that || w(-,0 is sufficiently small,

Morem,
see Section 2. Finally, in Section 3 we will use a similar argument to investigate
the corresponding behavior for the nN-dimensional analogue of (1),

+E (o) = £ 5p (Mwg) o

k=1
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where ¢, ..., ¢, are scalar functions and B[l](u), ,B[N](u) are positive defi-

nite matrices of order m such that

(g,B[‘“](u)g> >ulé] ¥V E€R", k=18  (10)

and whose elements satisfy, for each k = 1,..., N,

1 w) ) < Cluil YV 4,5=L,m,i#j (11)

ij
for all values of w in the region concerned, where p,C' are positive constants.
It is then shown that

—N/4

) gy < C(1+0) (12)

whenever u(-,0) € LY(R”) N L*(RY), where C is a positive constant which de-

and “ ’U,(-, O) ||L2(RN
parameters m, N and g > 0 given in (10). For all these problems, the decay

pends on the magnitude of || (-, . the dimension

0) ||Ll (RN)
rates given above are optimal, so that the method discussed here, in spite of its

simplicity, gives sharp results. Moreover, it can be applied to other problems,

see e.g. [14], [15].

As to the notation used, boldface characters will always denote vector quan-
tities, while capital letters will be usually reserved for matrices, with the excep-
tion of letters C' and K, which will be used for scalar constants. A symbol like
C, represents a constant whose value depends on a set of parameters specified
by A; we note that distinct references to the same constant symbol will not

necessarily mean the same numerical value, so that we will write 2, again as

Ca

tiation, as in u, = %’ fu), = a%f(u(:ct)), and so forth. All other notation,

, and so on. Also, we will often use subscripted variables to indicate differen-

when not standard, will be explained right after its first occurrence in the text.

2. One-dimensional systems

We will consider in this section the L? decay of solutions u(z,t) of the Cauchy

problem (1)—(3) described above. The initial state «(-,0) is any Lebesgue mea-
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surable pulse with finite mass and energy, i.e., u(-,0) € L'(R) N L*(R), and we
let K > 0 be sufficiently large so that

||u(’0) ||L1(R) S B’ ? ||u(’0) ||L2(R) S ]X’ (13)

Under these conditions, we will show below that there exists a positive constant

C, depending on the set of parameters K = { m, K, ut }, such that

—1/4

)l ey < Ce (1 +1) v i>0 (14)

We will prove this estimate in the following way. First, we note that the solution

operator of (1) is L'-contractive, i.e., we have

luC Ol g < leC0l g ¥V >0 (15)

where

Nl = NnCoD gy + o F HenCo 0y

and similarly for || u(-,0) . In fact, more is true: one has, for each individ-

e
ual component u;(-,t) of the solution vector u(-,t), ¢ = 1,...,m, the estimate

it t) gy S N0y ¥ >0 15y

This can be proved in a standard way as in [10], but for convenience of the reader
we will briefly review the argument. Taking a regularized sign function L; (see
e.g. [10], [14]), we multiply the " component of equation (1a) by L;(u,(a:,t))

and integrate the result over Rx [0, 7] to get, after a few integrations by parts,

[t ) de 4 [T e, 0) (1) (aa) dodi =

oo x

00 e 00 auZ
= [Tyt 0) de 4 [T w0 it ) S (e t)|) de

m T p+oo " au? S
+ 12_21/0 /_mLa(“i(xat))bz'j(u(w,t)) T a—;dxdt
I#
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Since L;’(uy) and b;(u) are nonnegative, we then obtain, using (3) above,

+oo oo
/ Ls(ui(x,T))dx = /_mL&(ui(x,O))dxﬁ—

—00

+/T/_JFOOL;/(W(;I;J))U?:(?CJ)%@(|u($,i)|)dwdt

" Ou; Bu]
+C’jz_:1//L xt)|u£t|' 52 dz di
i#

where C' is the constant given in (3). Letting § — 0, we get (15)), since

// L!(wi(e,1) (Jct)% o(|u(z,)|) dzdt — 0

// L” (2, 1)) | u :vt)|‘au1 ‘

by Lebesgue’s Dominated Convergence Theorem. Another property which can

and

drzdt — 0

be easily derived is the following energy estimate,

2

lel ) + 26 IDuCOI @ < w02, (16)
where N
2 2
O gy = 30 N0
and N au 2
1DuC Oy = 3 15 O

=1

In fact, multiplying the i"* component of equation (1a) by u;(x,), integrating
the result over Rx[0,7"] and summing from 7 = 1 to m, we get, after a few

similar computations,

/_+|(;1;T|dx+2// u,) dedt =

:/_+| (2,0) d1+// (|l 5| )%m(m)ﬁdwdt
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from which we immediately get (16), in view of assumption (2) and

[ e lue ) 5= fute ) de = 0 (17)

In order to obtain a decay rate for | w( however, we need to do a

) ||L2 R)’
more careful analysis. To this end, we multiply the :** component of equation

(la) by (1 + t)u;(z,t) and integrate the result over Rx[0,7], which gives,

summing from ¢ = 1 to m,

(1+ T)/+Oo|u(;v,T) s+

-0

+2/T(1 +t)/+m(uz,3(u)uz) dedi —

+
:/|x0|dx+// :cz‘|d:z:d1‘—|—

F w0 [Teunl) o a0 ded

so that, recalling (2) and (17), we obtain

2 T 2
(14 T) ) [ + 20f) (1 + O IDUC O, o de

, = , (18)
< UGy + [ 101, g
Using the elementary Sobolev inequality
» 2/3 Qu;, . 1/3
1 sy < C ) 120 IS 1 (19)
we get, from (13), (15),
1/3
19D sy S Cpe I DuCD 1L

for each t > 0, where C'
(18) yields

- denotes a constant which depends on m, K. Hence,

, 2

(14 D) w17,
2 4 2/3

Nl 01, + Cose [ DGO dt

I*(R) I*(R)

T 2
2/ 14 1) || Du(-,t
+ 2] (L+¢) || Du( )||L2(R)

(20)



306 P. ZINGANO

Since, by Holder’s inequality, we have

/3
T 2/3 2/3 T 2 :
. 9 .
[ Due o < {<1+T>/0 <1+t)||pu<,t)||m)dt}
we see that, setting
B(T) = (1+ D) [ul. Dl + [+ 01 D015, d (@)

we get, from (20),

E(T) < C, {1 L1 4 TP E(T)”S}

for some constant C. which depends on K = {m, K, u}. This immediately gives
1/2
B(T) £ O, (1+T] (22)

for some suitable constant ' which, again, depends on K = {m, K, u}. Re-

calling (21), we then have the following result.

Theorem 1. Let u(z,t) be the solution of (1)—~(3) corresponding to an initial
profile u(-,0) in LY(R) N L*(R). Then, there exists a constant C (depending
on the set of parameters K = {m, K,u} given in (2), (13)) such that

(1+T)lul D) dt £ @14+ 7)"

T 2
o L L+ O IDuC D)

L*(R)

Jor every T > 0.

In particular, this shows (5). As mentioned in the previous section, we can

extend the above analysis to the slightly more general equation

u, + (vyp(w)), = (Bu)u,), (23)

where B(u) satisfies (2), (3) and ¢ now depends more generally on the conserved
variables u instead of their magnitude |w | only. Observe that, changing the

variable = to £ =  — ¢(0) ¢ if necessary, we may assume without any loss of
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generality that ¢(0) = 0. Thus, we will make the assumption that, for all «
concerned, we have

lp(u)] < @ |u] (24)

for some constant ® > 0. As before, the initial state w(-,0) is taken in the space

L'(R)N L*(R), and we let K > 0 be large enough so that

Multiplying the i * component of equation (23) by (1+¢) u;(z,) and integrating

the result over Rx[0,7'], we then obtain, summing from ¢ = 1 to m,

(14 Tl T+ 20 (14 0) [ D),
2 T 2
< NuC 0, g + [ GO, d (26)

+2/0T(1 + t)/_:o(u,uz) i) dsds

where we have used (2). Since, for p, ® given in (2), (24) above, we have

400
[ 1w | )| de <

£ 3||u(.,t)||4 + £ Du(, 1)

|2
24 LA(R) 2

17(R)
we see that (26) yields

(4 Tl T) gy + 0 (4 DGO,

2 d 2 7
< N0 + [ w1, g (26)

w2 [ 0 uco)!

LY(R)

Using the Sobolev inequality

Hu 1y S Con 1)l gy DO (27)
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we then obtain, from (26)’,

2 T 2
(14 DY D) [ + [ (L DI DuC 7,
2 T 2
suwmm®+ﬁuwwmmw (25)
2
+ 20 [0+ O a0 I, g DI, o d

Since (15) remains valid for equation (23), we then obtain, from (13), (25), (28),

(1+ D) uC D)l + (1 + D 1DuC O, g
N (29
€0, {1 + [ IenY . dt}
provided we assume that ||«(-,0) ||L1(R) is small enough to satisfy
o 1
i &
2o )y < (30)

where p, ®,C,, > 0 are the constants given in (2), (24), (27). Proceeding with
(29) as we did with (20) above, we then get the following result.

Theorem 2. Let u(z,t) be the solution of (23) corresponding to an initial
profile u(-,0) in the space L'(R) N L*(R). Then, there exists § > 0 (depending

on p, ®,C, . given in (2), (24), (27)) such that, whenever | u(-,0) HL‘(R) <9,
one has
/ 2 1/2
(4 7Y [Ty + [+ D IDul0IE, < Ce(1+T)

Jor every T > 0, where Cy. is a positive constant which depends on the set of

parameters K = {m, K,u} given in (2), (25).

3. Multidimensional systems

In this section, we will extend the analysis above to multidimensional systems

of the form

02 £ 2 () - £ 2 (H022)

k=1 k
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where ¢, ..., ¢, are given scalar functions, w(®,t) = (u,(@,1), ..., un(®, 1)) is

the vector of unknowns, @ = (z,,...,z,), and Bt ]( u), k =1,...,N, are positive

definite matrices of order m satisfying (10), (11) for all « concerned, i.e.,

(E,B[k](u)£> >ulef ¥V E€R™, k=18 (32

and
10 w)| < Clui| ¥ 6j=1,m,itj, k=1,..,8 (33
for some positive constants ji, C, where b5 (), i,j = 1,...,m, denote the

elements of B[}c](u)7 k =1,...,~n. One then obtain

Js) gy < N0 ey ¥ 10 (34)

which can be shown in the same way as (15) above. In fact, it is straight-
forward to extend the one-dimensional analysis of the previous section to the
~N-dimensional equation (31), so that we will only give here a brief sketch of the
argument in this case. To get the appropriate decay rates, we multiply the 7
component of (31) by (1 + ) u;(a,) and integrate the result over R¥x [0, 7]
to get, summing from 7 = 1 to m,

LN 2 T N 2
(4 7Y uC D)y + 20 [ (14 )" || Du(,1) (S

(35)
< | 0 2 /T t) |2
< Nl Oy + 5[ (40 T NGO,
where
Du(-, )| = E .
1D gy = 3 2 g O
Using (34) and the Sobolev inequality
. & N+2 N+2 ‘
1660 sy € Con NG OITE D0 ITE, (36)
we get
N+2
Hu )”Lz (RY) < me’K u("t) L2(RY)
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where €' denotes a constant which depends on m,~ and K" > 0 such that

10 gy < Ko 00 gy < K (37)
Hence, (35) gives

N 2 2
(1+ 1) Jul- D) -

L*(RN)

+ 2M/UT(1 + )" || Du-, 1) |

(38)
< NG, + Cor [ (14 0T Dl 07
— ? L2(RY) "m, N, K 0 ’v L2(RN)
where C' . denotes a constant which depends on m, N, K. Since
N4z
L 0 e I <
N (39)
< (2 L+ [ (140" | Dul0 | a b
< ()™ ca+n) [+ 0" 1 DuCl,
we then get, from (38),
N 2
(4 7Y I, )+ [ O+ 0" DGO,
(40)

NL T N 9 NLH
<C {1—|—(1—|—T) (/0 (1+41) ||Du(-,t)||L2(RN)dt> }

where €. is some positive constant which depends on the set of parameters
K ={m,n~, K,p}. Proceeding as in (20)-(22), we then immediately obtain the

following result.

Theorem 3. Let u(x,t) be the solution of equation (31)—~(33) corresponding
to an initial state w(-,0) in the space L'(RY) N L*(RY). Then, there exisls a
positive constant C\. (depending on K = {m,N, K, } given in (32), (37)) such
that

2
L*(R)

N/2

N 2 T N
(4 T ) + (1 0 Du, 0]

LZ

dt < C.(14T)

for every T > 0.
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