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THE INITIAL VALUE PROBLEM FOR THE
EQUATIONS OF MAGNETO-MICROPOLAR FLUID
IN A TIME-DEPENDENT DOMAIN

Elva Ortega-Torres *® Marko Rojas-Medar '®

Abstract

In this work we study the equations of the mechanics of magneto-
micropolar fluids in a time-dependent domain. By using the spectral
Galerkin method together with the energy method and compactness ar-
guments, we prove the existence of weak solutions.

Resumo

Neste trabalho estudamos as equagoes da mecanica de fluidos magneto-
micropolar em um dominio dependendo do tempo. Usando o método de
Galerkin espectral junto com o método de energia e argumentos de com-
pacidade, provamos a existéncia de solugoes fracas.

1. Introduction

The domain occupied by the fluid at time ¢ € (0,7), 0 < T < oo, is denoted

by Q@ C R% Weset Q@ = |J @ x {t} CR®x (0,T). whose lateral bound-
0<t<T
ary is 0Q = Upcrer O x {t}. Let u(x,t) € R w(z,t) € R3b(x,t) € R?

and p(z,1) € R, denotes for (z,t) € @, respectively, the unknown velocity, the
microrotational velocity, the magnetic field and the hydrostatic pressure of the

fluid. Then, the governing equations are
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( 1

(;—1; +u.Vu = (u+ x)Au+ V(p + 5rb.b) = yrot w+rb.Vb + f

j%f + ju.Vw —yAw 4+ 2xyw — (a+ )V div w = xrot u+ ¢  (1.1)
% —vAb+u.Vb—bNVu=0

divu= divb=0 in Q.

together with suitable boundary and initial conditions.

In this paper we will consider the problem of existence of weak solutions for
that problem (1.1) in a time-dependent domain of R? x (0,7),0 < T < oc.

To (1.1) we append the following boundary and initial conditions:

u(z,t) = w(x,t) =blz,1) =0, V(zx,t)€0qQ, (1.2)

uw(0) =up, w(0)=wy and b(0)="by, Vaz & Q. (1.3)

where ug,wy and by are given functions. In (1.1), the differential operator
V, A, div and rot are the usual gradient, Laplace, divergence and curl opera-
tors, respectively. The constants p, x, 7, a, 3,7, and v are constants associated
to properties of the material. From physical reasons, these constants satisfy
min{y, x,r, j,v,a+ B +v} > 0; f(z,t) and g(z,t) are given external fields.

For the derivation and physical discussion of equations (1.1) - (1.3) see Con-
diff and Dalher [3], Eringen [5], [6], Ahmadi and Shanbinpoor [1], for instance.
Equations (1.1) (i) has the familiar form of the Navier-Stokes, equations but is
coupled with equation (1.1) (ii), which essentially describes the motion inside
the macrovolumes as they undergo microrotational effects represented by the
microrotational velocity vector w. For fluids with no microstructure this pa-
rameter vanishes. For Newtonian fluids, equation (1.1) (i) e (1.1) (ii) decouple
since xy = 0.

It is appropriate to cite some earlier works on the initial - value problem
(1.1) - (1.3) which are related to ours and also locate our contribution therein.

In cylindrical domain and when the magnetic field is absent (b = 0), the reduced
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problem was studied by Lukaszewicz [11], [12]. Lukaszewicz [11] stablished the
global existence of weak solutions for (1.1) - (1.3) under certain assumptions
by using linearization and an almost fixed point theorem. In the same case,
by using the same technique, Lukaszewicz [12] also proved the local and global
existence, as well as the uniqueness of strong solutions. Again when b = 0,
Galdi and Rionero [8] stablished results similar to the ones of Lukaszewicz [12].

The full systems (1.1)-(1.3) in the cylindrical case, was studied by Galdi
and Rionero [8] and they stated without proofs of existence and uniqueness of
strong solutions. Rojas-Medar [19], Ortega-Torres and Rojas-Medar [17], [18],
and Rojas-Medar and Boldrini [21], also studied the system (1.1)-(1.3) and
stablished the existence and uniqueness of local strong solutions, global strong
solutions, and existence and uniqueness of weak solutions, respectively, by using
the spectral Galerkin method, reaching the same level of knowledge as in the
case of the classical Navier-Stokes equations.

It has to be pointed out that similar time-dependent problems but for the
Navier-Stokes equations have been studied by many different authors. This is
the case, for instance, of the works by, J.L. Lions [9] (see also this book of
J.L. Lions [10]), H. Fujita and N. Sauer [7], H. Morimoto [16], R. Salvi [22].
In particular, we would like to emphasize that the arguments in J.L. Lions
[9], [10], requires Q; to be nondecreasing with respect to ¢ (see problem 11.9,
p- 426 of this book). Our paper, other that generalize these previous works
in the sense that problem (1.1)-(1.3) includes the microrotational velocity and
magnetic field, does not assume this nondecreasing condition on .

This paper is organized as follows. After this brief introduction, in section
2, we introduce various functions spaces. Next, in section 3, we state the main

theorem of existence of the weak solutions.

2. Function Spaces and Preliminaries

The functions in this paper are either R or R*-valued and we will not distinguish

these two situations in our notations. To which case we refer to will be clear
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from the context. We denote || - ||z2 by |- |-

Now, we give the precise definition of the time-dependent space domain @
where our initial boundary-value problems associated to the problem (1.1)-(1.3)
has been formulated.

Let T > 0, we consider the function R : [0, 7] — R? that is, R(¢) isa 3x 3
matrix. Let 2 be an open bounded set of R? which, without loss of generality,
can be considered containing the origin of R,

We suppose that the boundary 9 of € is smooth. We consider the sets
O ={r =yR(t);y € Q}, 0<t<T. (2.1)

It is worth noting that such domains €;, 0 < ¢ < T, generate a non-cylindrical

time-dependent domain of R*x R, Q@ = Upcser Q¢ x {t} whose lateral boundary

0Q = |J 99 x{t} is supposed regular.
0<t<T
We make the following hypothesis on R(t) : R(t) = o(t) M, where o :

0,7] — R, o € C'([0,T]), o(t) > 0, M is a 3x3 matrix whose entries are
real constant and that there exist its inverse.

The main goal in this paper is to show existence of weak solutions for the
initial value problem (1.1)-(1.3). Our strategy for setting this question con-
sists of transforming problem (1.1)-(1.3) into another initial-value problem in
a cylindrical domain whose sections are not time-dependent. This is done by
means of a suitable change of variable. Next, this new initial value problem
is tretated using Galerkin’s approximation and the Aubin-Lions Lemma. We
conclude returning to @ using the inverse of the above change of variable.

Sets of type (2.1) where R(t) = o(t) 1, I identity n x n-matrix, and Q is
the unit ball of R” were considered by R. Del Passo and M. Ughi [4] to study a
certain class of parabolic equations in noncylindrical domains.

Also, L. A. Medeiros and M. Milla-Miranda [13], [14] used the sets of type
(2.1) where R(t) = o(¢)I, and © is a bounded open set of R™, with regular
boundary J€? and 0 € © and mino(t) > 0, to study exact controllability for

Schréndinger equation in non-cylindrical domains.
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C. Conca and Rojas-Medar [2] use the analogous domain that [4] to study
the Boussinesq problem; M.A. Rojas-Medar and R. Beltran-Barrios [20] for the
magnetohydrodynamic type equations. The formulation of the general class
of domains considered in this paper was given by M. Milla-Miranda and J.
Limaco-Ferrel [15] to study the classical Navier-Stokes equations.

In order to state the main result we introduce some spaces, following the
notation of [15], let I/, be the space V; = {¢ € (C())?/dive = 0}
and V;(€2;) be the closure of ¥/, in the space (H*(Q:))* s € R;. We use the
particular notation Vi(€;) = V() and Vo(Q) = H(Q).

The inner product of V() and H(§,) are
z) Qv

gdx, (u,v) = Z;/QL wi(z)vi(z)da

dz;

st T*Uzjl S dx]
We observe that V() — (H(€%))? continuously for s > L and
V() = {u € (Hy(%))* / divu = 0}

We introduce in similar way the spaces V;(§), in this case I/ has the form
v = (¥ € (CRQ) / div(pM™) = 0}.

We put Vi(©2) =V, WL(Q) = H and
(uv,v)g = (u,v)rz, (u,v)v = ((u,v))r2 = (Vu, Vo)

Also, H=*(2) and (V;(2))* will denote the topological dual of H*(Q) and V()
respectively.

In continuation, we will define the notion of weak solutions for the problem

(1.1)-(1.3).

Definition. Let ug, by € H(Qo) and wo € L*(Qo). We say that (u,w,b) is a
weak solution of problem (1.1)-(1.3), if and only if u, b € L*(0,7;V(Q:)) N
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L0, T H(Q) ), w e L*0,T; Hy () ) N L>2(0,T; L*(Q) ), satislying:

T T T
—/ (w, 2)edt + (p + X)/ (Vu, Vp)di +/ (u.Vu, p)dl
0 0 0
7y T T
—T‘/O (b.Vb, p)dt = X/o (rot w,ap)tdt—l—/o (f,)edl
T T T T
—j/o (w, ¢y )edt +7/0 (Vw,Vo).di —I—/O (w.Vw, ¢).dl +2X/o (w, ¢)edt
T T T
+(a+ /3)/ (div w, div ¢)dt = X/ (rot u, ¢p).dt —I—/ (g, @)edt
0 0 0

T T T T

_/ (b, 1/;t)tdt—|—1// (Vb,Vz/;)tdt—l-/ (4. V, w)tdt—/ (6.Vau, 4 )edt = 0
0 0 0 0

Y, ¢, ¥ € CHQ) with compact support C Q, divep = divy =0,

u(0) = wo, w(0) =wo, b(0) = by.

Remark. As it usual, the above regularity condition is enough to guarantee

that the initial conditions has a meaning.

Our result is

Theorem 1. Under the above hypotheses on Q. If ug,bo € H(Qo), wo €
L*(Q), and f,g € L*(0,T; L*(Q)), then there exisls a weak solution (u,w,b)
of (1.1)-(1.8). Therefore,

u,b € Cu([0,TT; H(2)) N C([0, TT]; (Va2(%))") (22)
and w € Cy([0, T]; L*(%)) N C([0, T); H™>/*(Y)). (2.3)

Remark 1. In the proof of Theorem 1, the norm of a matrix will be denote by

|| - ||, since in finite-dimensional spaces all the norms are equivalent.

Also, C' will be denote a generic positive constant that only depend up €,

of fixed parameters u, x, 7, v,r,v,a, 3 and 0121&);{”]%(/)”7 RO, 1R @)}
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3. Proof of Theorem 1

Let us introduce the transformation ® : Q — U, given by ®(x,¢) = (xR (1), 1),

where U = @ x (0,7T). Since o(t) is a C'-function, the transformation @ is a

C'-diffeomorphism and its inverse @' : U — Q satisfies ®~'(y,t) = (yR(),1).
We also define

v(y,t) = u(yR(1),t), z(y,t) =w(yR(l),t), h(y,t)=>byR(?)1),
q(y,t) = p(yR(1), 1), fi(y,t) = fyR(t),1), a1(y,t) = g(yR(t),1). (3.1)

We denote R(t) = (y(t)), R™'(t) = (3;;(t)) and K(¢) = (R7'(t))". Also, since
R(t)R7(t) = I we have

RU(R™' (1)) = ~R(OR™(1) (3.2)

Consequently, using (3.1)-(3.2), we get

u, = —yR'(1 )R_l(’) Vo+ v u.Vu= ’I)R_l(t).Vv
Au = Z Zﬁu )Bri(t) 1) Vp = VqK(t)

i,l= 1 Yi k=1
V(b.b) = V(h.h)K(t) Vdivw = Vdiv(zR™'(¢)) K (t)
rot w = 23: VziAi(t) onde A;(t) = K(1)Ky(—1)K,,(—1) Ky, with
a; = (_1)1' el (4 * (2 _27")(3 - 7))7 5 = (_1)i+1 o (4 : (2 _2')(7 B 1))

and K;;i(—1), K,,(—1), K., are elementary transformations of matrixes,

divu = div(vR™'(1)).

Therefore, the system (1.1)-(1.3) defined on @ is transformed on U into the

system:
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+0 2

zl:l Y

E Bri(t)Bri(t) )+ vR™(t).Vv—yR (t)R™'(t).Vo

+V(g+ ﬁh.h)K(t) = fi+rhR7(t).Vh+ x ij VziAi(t), (3.3)

Jz: — Z dd Z/BU )Bri(t) ) + joR™'(¢).Vz — jyR' (t)R™'(1).V=2

2,l=1 t k=1

+2xz — (a + B)VAiv(zR™ () K(t) = 91 +XZV‘% i(1), (3.4)

hi —v Z Z Bra(1)Brilt —hl) —yR'(t)R™'(1).Vh + vR™'(1).Vh
=Y 1—kh11'% 1(t).Vo = 0, (3.5)
div(vM™") = 0 and div(hkM~') =0 in U, (3.6)
v(y, 1) = 2(y,t) = h(y,t) = 0 on 992 x (0,T), (3.7)
v(y,0) = vo(y), 2(y,0) = 20(y), h(y,0) = ho(y) in Q. (3.8)

The notion of weak solution for (3.3)-(3.8) is completely similar to the ones for
(1.1)-(1.3).

To prove the existence of solutions of the transformed system (3.3)-(3.8) we
will use the spectral Galerkin method. That is, we fix s = 3/2 and we consider
the Hilbert special basis {¢'(y)}22 of V5(Q) and {¢'(y)}2, of HZ(Q), whose

elements we will choose as the solutions of the following spectral problems:

(@', 0)s = Xil@',v), Yo € Vi(Q), (¢, w)s = Xi(¢',w), Yw € H(Q).

Let V* be the subspace of V,(Q) spanned by {¢'(y),...,¢"(y)} and Hj be
the subspace of H3(Q) spanned by {¢'(y),...,¢*(y)}, respectively. For every
k > 1, we define approximations v*, z¥ and h* of v,z and & respectively, by

means of the following finite expansions:

k k
D=3 Ve (W), 0= du®)d(v): A0 =L er()¢'(y)

for t € (0,T), where the coefficients (¢;;), (dix) and (e;) will be calculated
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in such way that v®, z® and A* solve the following approximations of system

(3.3)-(3.8):

(vF, @) + (1 + x)at; v*, ) + b(t; v*, vF, @) — &(t; 0%, @) = rb(t; BE, BE, )
HU o)+ 1 VA ). (39)
(k. 6) 4t 2, 68) 4 (o + B)(iv (FR- (1)) div (6 (1))
%, 25.6) = itt .0) + (4.0

= (91,¢) + x ZV'U i(1), ¢), (3.10)

=1

(RE, ) + va(t; hE ) — &(t; hE ) + 5(t; oF hE ) = B(t; R*, vk ), (3.11)
Vo, € VFand V ¢ € Hy,
v*(0) = vg, 25(0) = 2&, h¥(0) = Af, (3.12)

where v§ — vo, h§ — ho in H(Q) and z§ — zo in L*() as k — oo and

3 3.3 du-(?w-
a(t;u, (1) 2 =—d
a(t;u,w) = ;/9,,12:1 kz:;ﬁ (1) Bri(t (9yz . Y

3 a

b(t; u, v, ! d
(t;u,v,w) ;/ﬂ;}ﬁg ylw]y
. 3 3 , a
C(t,u,w) ;Alylz:lalm /611( )yk dy wjdy

for vector-valued functions u, w, v for which the integrals are well defined.

We observe that the following identity was used
(V(g+ %h.h)]((t),ap) =—(q+ gh.h,diw}z—l(t)) =0, Vo€ V-

Equations (3.9)-(3.12) is a system of ordinary differential equations for the co-

efficients functions ¢;x(t), dix(t) and e;(t), which defines vk,

2% and A* in an
interval [0,¢x]. We will show some a priori estimates independent of & and
t, in order to take t; = T. Also, we will prove that (v¥, z* h¥)converges in

appropriate sense to a solution (u, z, k) of (3.3)(-(3.8).
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We prove the following lemma.

Lemma 1. The transformed system (3.3)-(3.8) admits at least one weak solu-

tion (v, z, h) satisfying the following:

v, h € L0, T;V(Q)) N L=(0,T; H(Q)),
z € L*0,T; Hy(Q)) N L>=(0,T; L*()).

Proof. Setting ¢ = v*, ¢ = 2* and ¢ = rh* in (3.9)-(3.11) and observing that

b(t;u,v,v) = 0, we have

1d o
§a|1)k|2 + (/l + X)lvvk[((t)P = (f17 Uk) Es 6(t’ Uka vk) + Tb(ta hk? hk7 vk)

3

+X(Z VzEAi(t), v5),

=1
jd, L. o ; : -
L | TR + 20024 + (a4 AR (W) = (g1,

3
+78(t; 2%, 2%) + X(Z VuFA(t), 25),

i=1

£i|hk|2 + rv|VREK (8)|? = ré(t; BE, %) + rb(t; hE, vk, hF).

2dt

Adding the above equalities and observing that E(t; u,v,w) + Z)(t; w,w,v) =0,

we obtain

1d 5 vp B ; — .
§E(|Uk|z + 3125+ rlRFP) 4 (n+ ) VO K (@) + 4|V K (#)?
—I—rl/|thK(t)|2 + 2)(|,zk|2 + (a+ ,6’)|div(z}“‘R_1(t))|2
= (f17 Uk) + (gla Zk) + 6(t1 Uka vk) + .7 E(ti Zk; Zk) + Té(t, hk’ hk)
3 3
—I—X(Z szAi(t),vk) +X(Z V'UfAi(t)7zk). (3.13)

i=1 =1

Now we will estimate the right-hand side of (3.13). By using the Holder and
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Young inequalities, we obtain

2 1 1
(s S LA SUAP + o,

| .
(g1, 2)| < lgnll="] < @lg1|2 +2x|2",

_— + X ko RO\ R~ R()|]? )
|c(t;'ul“,vk)| S M T IV'U}“]X(t)P—{—(“ ()H “ ()“ H )H ||y||%oo)|vl“|2,

Bt X
» v - IR ONHNE ()] R(1)])? _
|]C([;Zk Zk)| S Zlvzkh(t)|2+( || ()” || 7( )” || ()” ||U||%oo)_]|zk|27
R . ruy R R/i 2 R— R 2
2
Zvﬁ4 K—WW«W+%MK

+ % . :
vaAi 1 ,zk g BT X VR K ()2 + (—2——)4|* 2
|X(; (t),z°)] 1 ] (](M‘|‘X))]| |

whence, we arrive to the inequality

d. s B . R .
WP 15+ R P) + (p+ )V KO + 4 VR ()]
+ry|VEEK (1)]? + 2(a + B)|div(zFR™ (1))]?
S CUAPR+ 1g1l?) + C(IW* P + 5151 + "), (3.14)
where C' is a positive constant that depends only of x,p,~,7, Jnax INAGI

<t<T
@ |B (O max R e llylz.

By integrating (3.14) from 0 to ¢, with 0 < ¢ < T, we conclude

(0 + 14 OP + IR OP) + () [ 1905(5) B () ds
+7 /Ot |V25(s)K (s)|*ds + rv /(Jt |VRE(s) K (s)|?ds
< G [URGF +lan()P)ds +C [ (o) + 1) + b (s))ds

+HH(0) + 515 (0) + r|R*(0) .

Due to the choice of vf, z¥ and Af, there exists Cy independent of k such that

[v5| < Calvol, |25] < Calzo] and  |hg| < Calhol.
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Then, since fi, g1 € L*(0,T; L*(Q)), result
(* @O + 515 + rl* (D) + (1 + x) /Ot [Vo'(s) K (s)|ds
Y /(: |V25(s)K (s)|*ds + rv /Ot |V (s) K (s)|*ds
< Cot C (05 ()F +3IH O + ol (s))ds.
By using Gronwall’s inequality, we have
(0 @R + SO + R OF) + (a4 x) [ 196565) K (5) s
ey /Ot IV24(s) K (s)ids + v /Ot (VhE(s) K (s)ds < C.
Thus for all k, we have that v*, z* and h* exist globally in t. Now, we put N =

1
b8 |[R(t)||, then we observe that N—,2|Vvk|2 5 IOIE |VoF|? < [Vor K (2))?,

t b
whence / IV’I)k(SHZdS < N*C. Moreover,
0

(vF), (h*) are bounded in L*°(0,T; H(Q)) N L*(0,T; V()
and  (2%) is bounded in L*(0,T; L*(Q)) N L*(0,T; HY(R)). (3.15)

The next step of the proof consists of proving that (vf), (hf) are bounded in
L*(0,T; (Va/2())*) and that (zf) is bounded in L*(0,T; H=3/*(Q)).
We consider Py : H(Q}) — V¥ and Ry, : L*(Q) — Hy, defined by

k k

Pru = Z(u, @i)api and Rpw = Z(w, (,b’)(/)l

i=1 =1
Since Vi() — H(Q) and H{ — L*(Q); VF — V,(Q) and H, — HE(Q) we
can consider Py : Vi(Q) — Vi(Q) and Ry, : H{(Q) — HE(Q). It is easily
to see that P, € L(V,(Q),Vi(Q)) and Ry € L(H{(Q), H(Q))(L(X,Y) denote
the space of the bounded operators of X into Y'), hence Py : (V;(Q))* —
(Vs())* and Ry : H™*(Q) — H~*(Q), defined by (P;(v),w) = (v, Py(w))
lies in L((V5(Q))*, (V5(2))*) and || P7]| < || Px]| < 1. Analogously, for R;. We
also observe that the autofunctions ' and ¢' are invariants by Py and Ry,

respectively.
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From it and (3.9)-(3.11) Vw, n € V¥ and V¢ € Hy, we have

L

Z Bra(t) Bri(t) "/z ——)) — "R (). Vo

Yi k=1

(v, @) = (Pe( (1 + x)( Z

3
+yR ()R (1).VoF + fi + rh*R72(8).VR* + x Y V2F A1) ), w),

=1

(2 £) = 23: 0 Zﬂu )Bri(t d—k))—jka_l(t).Vzk
Q=1 dyi oyl

+iyR ()R (1).V2F — 2x2% + (a + B)Vdiv(z* R~ (1)) K ()

3

+gl+xZVUA

k

S h / -1 k
(hy,m) “2_:1 Em Z/Bkl )Bri(t) o —)) +yR'(t)R™(t).Vh

—oFR7N(1). th + hERTI (). VR ), ).

Hence, by taking w = Pyu,n = Pyb, for u,b € Vi() and & = Ryw for
w € H§(Q), we obtain

vk

(vf,u) =(P;((p+x) Z By Zﬁkl (t)Bri(t) yl)) P;(vk]%—l([).vuk)

i,l= Yi k=1

(o5

+P (YR (R (4).Vo") + PL(f) + Pi(rh" R (1).VRY)
+PI:(X2:VZ£€AZ'(£))3“>7 (3.16)
3 k
(= w) = (Ry(y X2 Zﬁm (1)Brilt )a )) — Ry(jv*R™(1).V2¥)

i,l:la -

FRIGYR (R (). ) — Ri2x=") + Ri(x 3. Vol A1)

+Rk(91)+Rk((a+ﬂ)de( FRT(t))K (t))_,w>, (3.17)
(ht,b) = (P§ IZ kaZﬁu (t)Bri(t) BZ ) + Pr(yR(1)R™'(1).Vh)

P (v*R71(t).VR*) + Pr(R*R71(1). V), b). (3.18)
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We observe that

vk

125 ( (1 + x) Z Zﬁu )Bri(1) ,( M

zll Yi =1

<(u+x) sup |(VO'K(t), VuK(t))|

[lullv, <1
2 k k
< Clp+x) max (IR (0%} e, [Vo'||Vu] < C1Vv7,
them, from (3.15), we have
3 9 k
NGRS il (3" Buls)Buls) Myl <C.
L5 (3.19)
Analogously,

1P (R (R (). Vo)l < sup | <yR(RT(1). Vol u > |

[lullv, <1
< i IR IR O ylloo |V 0"l
/ -1 s K
< C mas (IR OIIR Oyl 74,
then
t - t i -
/0 1P (y R ()R (5). V0 (s))|[2y,yeds < C /0 IVok(s)[2ds < C.
(3.20)
Also,
& * 2 v 2
LI i@l yeds < € [ 1i(s)Pds < . (3.21)

Observing that

3
|| P ZVZA My < sup | <x D VaFAit),u> |
lllve<t i
< CIRT' @IV < V2,

and (3.15), we have

/ I1P; szz ) 12.y-ds <c/ [V2*(s)[2ds < C.
(3.22)
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Now, to estimate the term P} (vFR™!(¢).Vv¥), we will use the following inter-

polation result whose proof can be found in Lions [10, p. 73]:

Lemma 2. If (u*) is bounded in L*(0,T; V() N L>(0,T; H()), then (u¥) is

also bounded in L*(0,T; LP(Q)), where 1 =
»

1_ 1
2 2n”

Using the Sobolev imbedding H*~! — L?(s = 3/2), we have

1P (0" R (1). Vo)l <

IN A

IN

<

sup | < vFR7TN(t).VoF u > |
[lullv, <1

sup 0" R ()|l Vel o [0 o
[leallv, <1

CIRT O NZs sup [Vl

[Jullv, <1
CIR ONMEs sup fulls-

Jullv, <1

CIRT Oz < Cllv*l1Zs,

and from (3.15) using the Lemma 2 (n = 3), we have that (v*) is bounded in

L*(0, T; L3(2)). Moreover, we get

t t
L IR )T ) fyeds < C [ 104 (5)0ds < C.

Analogously,

(3.23)

t t
/0 1PE(rh*(s) R (). VR*(5)) |3 yeds < 0/0 B (s)|[4.ds < C.

(3.24)

By using the estimates (3.19)-(3.24) in (3.16), we get

T
/ ||'Ut(5
0

Therefore, (vf) is bounded in L*(0,7;(Vs(2))*). Analogously we can proved
that (h¥) is bounded in L%(0, T (V4(2))*)
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From (3.17), we have

k

8
il - < I1Bx(y Z Zﬁkl )Bri(t) ))||H + 1R (g0) -

111 Yi p=1

HIRL Gy R (R ().V ") -« + ||RZ(J'U R (1).V2") |-

HIRE2 X2 -+ + B (x D2 Vor Ai(t) |-
HIRy((a + B)Vdiv(z* B (1)) K (£)) || - (3.25)

We only estimate the last term of (3.25), the others terms are analogously

estimate. We have

| Ri((a + B)Vdiv(z* R () K (1)) -
<C sup | < Vdiv(z*R™! (K (), w > |

|Jw|| s <1

<C sup |(div(z"R7Y(1)), div(wR™Y(t))]

[Jw]|ms <1
<C sup [VERT()|IV(wR (1))
[lw]| s <1
SCIRT®)IPIVH sup  |lwllm < C|VZH,
w|| s <
and from (3.15), we obtain
1

/ IB:((a + B)Vdiv(z*(s)R™1(8)) K (8))|—eds < C. (3.26)
0

Therefore, (zf) is bounded in L%(0,7; H=*(Q)).

Arguing as in the book of Lions [10, p. 76] and making use of the Aubin-
Lions Lemma [10, p. 58], with By = V/(Q),po = 2, B = H(Q), B, = (V5(Q))*
and p; = 2, we can conclude that there exists v,k € L?(0,T;V(Q)) such that,

up to a subsequence which we shall denote again by the suffix &, there hold

v* —s v and A* — h weak in L*(0,T;V(9)),

v* — v and A* — b weak —* in L(0,T; H(Q)),
vf —s v and k¥ — by weak in L*(0,T; (Vi(Q))"),
v* —s v and h* — b strong in L*(0,T; H(Q)),
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also with By = Hj(Q), po = 2, By = H™*(Q), p1 = 2 and B = L*(Q), we have
that there exist z € L*(0,T; Hi(Q)) such that

F — 2 weak in L*(0,T; Hy (),

¥ — 2z weak —x in L*(0,T; L3(R)),
2F — 2 weak in L2(0,T; H*(Q)),
2F — 2 strong in L2(0,T; L*(Q)).

Now, the next step is to take the limit. But, once the above convergence
results, have been established, this is standard procedure and it follows the
same patter as in Lions [10, p. 76]. Consequently, we obtain that (v,z,h) is a

weak solution of problem (3.3)-(3.8), satisfying

(009) + (1 + (VoK (D), Vo (1)) + (R (). Vo, 0)
R(OR™ (1).V0,0) = (urp) + (kB (1).Vh, )
+X(§; VziAi(t), @), (3.27)
(20 8) £ AV (L), VEK(0) + (0B ().V2,6) + 2x(2, 9
CHRR(0).2,6) + (a-+ B)(div (<7 (1), div (671 (1)

= (91 6) + X(X Vedi(1), ), (3.28)
(R, ) + v(VRK (1), VYK (t)) — (yR' (t) R (t).Vh, %) + (vR™(t).Vh,9)
—(hR™'(t).Vv,¢) = 0, (3.29)
Vo, € V(Q)and Vo € HS(Q),
v(0) = vy, 2(0) = z9, h(0) = ho, (3.30)

in the distributional sense in (0,7"). This complete the proof of lemma.

To prove the theorem, we observe that the weak solution (v, z,h) of trans-
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formed problem (3.3)-(3.8), satisfies
T i
—/0 (v, @y)dt + (p —I—X)/ v, Q) dt—l—/ (t;v,v,¢ —/0 é(t;v, @)dt
T L
= [eyttr [ Bsh bt [ (VAL ) (331)
i=1

—j/ ¢t dt—l—'y/ ,d)dt—l—]f tvz,qb)dt—j/oTE(t;z,J))dt
+2x / S)dt + (a + ) / (div (zR71(1)), div (SR (1)))dt

3

_ /0 s, B 2 /0 (;vviAi(t),&)dt (3.32)
7/(;T(h,'lZ't)dt+l//T&(t'h i)dt—/oTé dt+/ (t;v,h
;/ (t; b, v, §)dt = 0 (3.33)

Ve, P, ¢ € Ch (U) with compact support C U,
div(gM™") = div(pM~') = 0.
To conclude the proof of theorem, let us consider a tests functions ¢, ¢, ¥ €

C](Q) with compact supports @ such that dive =0, divy = 0 and define
P(y,t) = det R(t) p(yR(1),1),
(3,1) = det R(t) $(yR(1), ),
P(y,t) = det R(t) p(yR(t),1).

B

It is easily seen that ¢, b, b e CY(U), with compact supports in U and
div (pM~1) = div (M) = 0.
Integrating by parts,

_/'T (0,50 dt—/T 8t 0, 8)d / det R(t) (v, py)dt,

i z//w |
/()Tl;(t;v,v Z/ /detR vka - v;)dydt,

k,j=1

i i - azk
/0 (div(zR™(1)), div ($RL(1)))dt = / det R(1) ( Zg,d ", divo)dr

k=1
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where zj is the k™ coordinate of yR(¢). By using the above identities in (3.31)-
(3.33), we obtain

_/ det R(t) (v, )dt + (1 + x) E/ /detR Z/G“ 81)]830]0! dt
Oz

k=1

_ Z/ /detR vkd—v])dydf /0 det R(t) (f1,p)dl

k,g=1
dy
. det R(t) (h h dydt
£ Lo
tx /0 detR(t)(i:VziAi(t),ap)dt, (3.34)
T 020
_J/O det R(t) (z, &) df—l—yZ/ /detR ;;15“ a@d di
= det R(t dydt +2x [ det R(t dt
J;I//S ——rzj)dy X/ et R(t) (2, ¢)dt
a—I—[i’/ det R(1 ng, d1v¢> )t = / detR(t) (g1, 6)dt
k,i=1
T 3
+X/ det R(t) (ZVviAi(t),@dt, (3.35)
\0h; 003
_/ det R(t hz/;tdt—{-uz:/ /detR g:lﬁkl 9y vt
%
+ det R(t) (hi 2240, dyd
SL Lo
//detR vk h;)dydt. (3.36)
k;j=1

Let us now consider the transformation ®=! : U — Q defined by

! (y,1) = (yR(1),1).

We observe that det(J ®~') is det R™'(¢). Consequently, from (3.1) and by
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change of variables in the integrals (3.34)-(3.36), become

2 du; 699]
_/Qu wrdrdt + (@ + x) Z / By O dxdl — k;lf uk—u] dzdt
_/fc,odet—r Z / o fb drdl—l—x/rot w o dedt,
k,g=1
[ R 9%s
—]/Q w Gy diﬂdt-l—’yk%::l/Q 2, Dzs dxdt jkg:l/ Ug w] dzdt

—|—2x/Qw qﬁdxclt—l—(a—l—,@)/@dlvw div ¢ dxdt

:/gqbd:vdterf rot u ¢ dxdt,
Q

3¢ 9b; 9y
_/qu/;tdzdt-|-y Z / awkaizd d— Y /uk—b dudt

k,g=1

> /bka’“ujdxdpo

k,j=1

which proves that (u,w,b) is a weak solution of (1.1)-(1.3), since the mappings

b(z,t) = kel {t),1)
10,7 I2(9)
w(z,t) = 2(zR7(t),1)

0,T;V(Q) — L*0,T; V(%))
v(y,t) — u(z,t)=v(zR(t),1)
h(y,t) — b(z,t) = h(zR7'(t),1)
L*0,T; Hy(R)) — L*0,T; HY())
2(y,t) — w(z,t) = z(zR7'(2),1)
L>(0,T; H(Q)) — L*(0,T; H())
o(y,t) — u(z,t)=v(zR™'(t),1)
) —
) —
) —

are smooth bijections of class C'1, it follows that

u, b € L0, T; V(%)) N L=(0, T; H()),
w € L*(0,T; Hy(9:)) N L2(0, T; L*()).
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Finally a standard arguments show that «(0) = ug, w(0) = wo and b(0) = by.

Assertions (2.2) and (2.3) are proved analogously as in the case of the classical

Navier-Stokes equations, see for instance, Lions [10]. This finished the proof of

theorem.
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