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A FREE-BOUNDARY VALUE PROBLEM FOR THE
NAVIER-STOKES EQUATIONS OF COMPRESSIBLE
SHEAR FLOWS

Vladimir Shelukhin *®

1. Introduction

We consider the Navier — Stokes equations of a viscous compressible fluid [1]
under the assumption that, given a Cartesian coordinate system &, 7, and ¢,
solutions depend on time and the vertical coordinate ¢ only. Such solutions

satisfy the reduced system

pDwu = —pe +vuge, pDiv = pve, Dip+pue =0, p=0bpb, (1)

pDie = k0 — pug + v|ug|* + pl|vel*, e=df, D;= % + u(%
Here u is the projection of the velocity vector on the £-axis, v is the two-
dimensional vector of the horizontal velocity with the components v; and v,
along the n— and (— axes, p is the density, p is the pressure, 8 is the tempera-
ture, and e is the internal energy. The set of the positive constants (v, u, £, b, d)
defines a 5-dimensional vector f which corresponds to a fluid.

In the class of shear flows that are governed by system (1), we study a
joint motion in the layer |£] < 1 of two fluids defined by vectors f* and f~
respectively.

To formulate a corresponding free-boundary problem, we incorporate an

interface function I'(¢) such that equations (1) should be satisfied in the domain

{t >0,T(t) < £ <1}, with f = f*, and in the domain {t > 0,—1 < £ < T(1)},
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with f = £~. To control the interface motion, we put at £ = I'(¢) the no-jump

conditions for velocity vector, energy, heat flux, and tensions:

[u] = [€] = [=p+vug = [w0] = 0, [V]=[uve] =0, TI'(t) =u(T(t),1); (2)

here the brackets are used to denote a jump, for example [df] = dTO(T'(¢)+,¢) —
d=6(I'(t)—, 1) and etc. The last condition in (2) implies that the interface does
not propagate through the medium.

We formulate boundary conditions at [£] = 1 as follows

1
i1 il vfé;ﬂza (3)
where a = (a1,az2) is a two-dimensional vector depending on time with the

components a; and ap along the n— and (— axes. The boundary conditions
correspond to a flow between two parallel horizontal solid plates, with the upper
one, £ = 1, moving irrotationally at a constant distance, equal 2, from the lower
plate £ = —1, being fixed. It is assumed that the layer || < 1 of the liquids is
heat insulated and the liquids stick to the bounding plates

Given functions ug(€), vo(€), po(€),00(€), and a constant I'g, |T'g| < 1, we set

the initial conditions
(u,v,p,0,T)|t=0 = (0, Vo, po, fo, Lo)- (4)

Let us normalize the initial data by assuming for simplicity that

Ty

/ Pl = /1 o= 1., (5)
To

1
The flow under consideration can also be treated in the Lagrangian coordinates.

By defining x = L(&,1),
4

L(&,t) = / ply,t)dy, (6)
r(t)

system (1) in the coordinates (z,() takes the form

W =0y Vi=Te, €= q+0ou+pp|vel’, pe+pus =0, (7
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O=VpUuy —p, T =upvy, q=rkplhy, e=df, p=>bph.

The interface becomes fixed by the equation x = 0 with the following no-jump

conditions on it

[u] = [e] = [o] =[g] =0, [v]=I[r]=0. (8)

It follows from (1) and (5) that L(f1,¢) =T 1 for any ¢, so equations (7) are
defined for = € (0,1) = Q4 and ¢ > 0, with f = f*, and for z € (—1,0) = Q_
and t > 0, with f =f~.

The boundary and initial conditions remain the same in the new coordinates,
with the substitution z for £ in (3) and (4).

We look for solutions of problem (7),(8),(3), and (4) (A-problem) in the
domain @ = Q4 U Q- where Q+ = Q+ x [ and [ is a time interval 0 < ¢ < T
To give precise statements of our results we require that the initial and boundary

data satisfy the smoothness conditions

H’LL(),UZ'(),00||02,Q(Q+) < oo, ||f)0||01,a(ﬂ+) & 100, ||(I,i(l)||cz([) < 160 (9)

for some a € (0,1). Here we entered into the following agreement. Given
functions uy, us,. .. in the same function space equipped with some norm || - ||,
the notation |[uy, ua,...||* stands for the sum |lus]|? + [Juz|* + .. ..

Our goal is to prove (with notations from [2])

Theorem 1. Suppose the initial and boundary data satisfy conditions (8), (9),
and po > 0,00 > 0, and let the compatibility conditions be satisfied at |z| = 1:

LA | r+1,
usle) =0, wold)= ;—a((]), enld =0, mla)= ;—a(()),

and at x = 0:
[UOx] = [(]Or + ooUgs + /1’/)0|v01'|2] — Oa [TOX] =0.
Then there exists a unique solution to the A-problem in the class

uavive € Cl+%,2+O(Qt); Ps Pty P e C%n(@t): P > 07 0 > 0.
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To prove the theorem, we define for ¢ > 0 a perturbation to the A-problem

by replacing conditions (8) at @ = 0 by
[u] = [e] = [eus — o] = [ces —q] =0, [v]=[ev,—7]=0. (10)

Problem (7),(10),(3), and (4) will be refered to as the A.-problem.

2. Estimates for solutions of the perturbated problem

In this section we obtain global estimates for solutions of the A.-problem uni-

formly in e. Introduce the following notations for norms
t
llully = llulle@, lull® = (v, wa, lullg, = / lu(s)llgds, @ = QLUQ-, Q: = 2x(0,
0

where (-,+)q is the scalar product in L*(Q). In what follows we denote by ¢
different positive constants dependent on 7" and independent of e.

The functions U(t) = u(0,1), V(1) = v(0,1), and E(t) = ¢(0,t) are well de-
fined due to (10). To start on consecutive estimations, we observe that equation
(7)a , conditions (3),(5), and (10) imply that [, p~ (2, t)dz = [ pg'(z)dz = 2
for any ¢ > 0.

Lemma 1. The following bound is valid for any t € I:

[villoe < max{llai|lze @), [lvoillec} = €0, 7 € {1,2},

Proof. Given a non-negative convex function F' : R — R, we infer from

equation (7)y and conditions (10) that

e

d d . 5 i 0 -
SNl + 25 F (V) + el (o)l = o= (o)=L

The assertion of the lemma now follows if, for § > 0, we choose F' such that

F(s)=0for |s| <co+ 6 and F(s) > 0 for |s| > ¢o+ 26.
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Lemma 2. The following identities are valid in Q):

||* v]® v IvE
2

+—+ ||1+e(7+ +E)> = ag, (11)

i{||2+|"2|+\11( )+Z\IJ(;)||1+5< +|V| —|—\I/(E))}+

kpby | vpug | pplve|*
t t
po(z)e?@1) b /6( / / 11
=|14+- s)ds = - ——)d 1
P(l,/) i po(.L') e® 1-5) S p [)0) Ty ( 3)
0 0
where ¥(s) =s—1Ins—1 and
1 g 1
2g(l) = pta — [V + (—,/vtdy) +gv’/_dz-, (14)
pJ o g P

2 (Vso(fcvt)Jron(y)dy) - (ﬂ&ﬂ/x%(y)dy) —]Iu2+69||1d8 - [V]/tUdS

0 0

+/p-1(y, 1) (/u(z 1dz + (U — UO)A(:L',y)) dy — E/U(U — Uo)ds, (15)

A(z,y) = sign(signz — signy).

Proof. First, we obtain from equations (7) that equalities (11) and (12) hold
with g = ppvy|s=1. To prove the representation formula (14) for g, it suffices to
consider equation (7); as a linear ordinary differential equation for v and apply
integration with respect to x, taking into account the equality [, p~'dz = 2 and
boundary conditions.

Formula (13) follows immediately from equation (7). To prove (13);, we
derive from the first two equations (7) that ¢ = —v(Inp); — p. Then we consider
this equality as an ordinary differential equation for p and integrate it to obtain

(13)1, with ¢ equal to ™! [ ods. To justify the representation formula (15) for
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@, we define ®(z,1) =

Jo o(z,s)ds + [y uo(y)dy and see that, due to equation
(7), ¢ = 0, &, = u, and

0o 5
O(z,1) = O(y,1) —I—/u(z,t)dz + Az, y)[P](1). (17)

Next, we multiply (17) by p~!

(y,t) and integrate with respect to y to obtain
that

1
20(z,1) = (~, ®)g / / u(z,Odzdy + [ p(y,0) A, y)[@)dy. (13)
P
Y
Now, formula (15) follows immediately if we find the first term of the right-hand
side of (18) by integrating equality (16) over (2.

Lemma 3. The following bounds are valid for any t € 1

pbz pui Vx
l(@)II” + V(1) + eW(EW) + 155 == plval 15, < el < e

Proof. Let J;(¢) stands for the right-hand side of equality (12). Due to the
representation formula (14)

1 1
d 1 1
+1a2 o1 . b
(u,a-v)g — [p]V-a+ puT|al —SV'a/—d:c—st~a—2[—]U
P

which gives

t

|/J1(s)ds| < et [ (U%s) + llu(s) ) ds

0

Now, Gronwall’s lemma finishes the proof of the first estimate of the lemma
If we again use the representation formula for J;, we obtain from (11) that

10()]]1 < ¢ and eE(t) < ¢ for any ¢ € I. Now, we conclude, by formula (5)
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that ||p(t)]|ec < ¢ for any ¢ € I. Using the representation formula (13);, we

obtain the second estimate of the lemma.
Lemma 4. The estimate ||p(1)||cc > ¢ > 0 is valid for any L € I.

Proof. It follows from (13);, that

) < et [ 106 s, () = i e

On the other hand, a simple calculation shows that (cf. [3])

Jay pb?
101l < 110]1:(2 + L) =75l

By Lemma 3, ||.Jo(¢)|L'(1)]| < c. So, the Gronwall lemma can be applied to the
inequality y(t) < ¢+ ¢ f§ Joyds to finish the proof of the lemma.

Lemma 5. The following bounds are valid for any t € I :

t

J10) ewds < e, [ (102 (3) + 16205) 1) ds < e s vl <

0

Proof. The first estimate is a consequence of Lemma 4. The second one results

from the following inequalities

t t
J162)llds < max (16l [ 110(s)rds,
0 0

(/w |ds> g/ p(’wd// " dwds.

To obtain the last estimate, it suffices to multiply equations (7); and (7)2 by u
and v respectively and use the lemmas above. The lemma is proved.

Let us denote
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Thus, we get in @

22, = 2 (upzy), —au —wa', [zl =0, [ppZ]ls=0=cV — %, (19)

and z vanishes at |z| = 1. Multiplying equation (19) by |z|*z and using the

estimate ||z|L>°(Q)]| < ¢, we obtain in a straightforward manner that
4 2
o2 < —
g 2001 + T sl < o 3= (o1 (20)
where Z(t) = z(0,1).
Lemma 6. The following bound is valid for any t € I :

IOON + (@) lla + 1162, wtiallg, < e

Proof. Multiplying equation (7); by u®, we get

d o 2 :
= (U + llull) + 12llvpuu2 |l = 12(p, u*uz) = Js(1). (21)

Let us denote m = e + % + % Using the inequality ||ulce < |luz|| and the
Young inequality, we find that J3 < §||vpuu|y + e8! ||ue||?||m||? for any small
4. Thus, it follows from (21) that

L [CTTIIT 2,02 o 112

= (U H llulld) + 6oy < cllm]* (22)
Equations (7) are endowed with the equality

’
pa? ua-z waz

my = (pzez + ou+q), + 1 + pa-z, — 5 T~ 5 (23)
Denoting M (t) = m(0,1), we multiply (23) by m to get
d
LTed 1 mlP) +2 ezl vl w2l = Ji(0). (20

where the function J4() meets the bound

Ju < 5-\-/_-/+§||1/pu2ui||1 + %Hm7 ub, |22,|, |2, |||* + ecM? + cM.
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Since M < ||0]]1 + ||0z]l: + [|u]|* + ||uvz]lr and |Julle < ||us||, we get from (24)
that

d
Tt T < edlvputull + T () lmlP + (1), (25)

where ||J5(8)| L (1)]] < c.

Combining inequalities (22) and (25) we have

=)

d -
i (sc*L’4+c*\|ul|i+ gL cllml|* + J,

where Jg(1) is bounded on L*(I). Now, by Gronwall’s lemma, we obtain the
required estimates of the lemma.

As a consequence, we have the following bound
lp=(V)]| <e, tel (26)

Indeed, denoting h = u + v(Inp), and multiplying the equality hy = —p, by h,

we arrive at

b
thHhH2 o ||—Pah2||1 = (h,J7)a, Jr= ;w)é’ + bpl,.

Sine J; is bounded in L?*(Q), estimate (26) follows.

Lemma 7. There is a positive constant ¢ independent of & such that § > ¢

untformly in (z,1) € Q.

Proof. (iven a non-negative convex function F' : Rt — R, we get from
9

equation (7)3 that

(/F _1d$+€F ) /F pdac

By taking F'(s) = s**~! and sending k to co, we obtain the lemma.
The next lemmas assert that solutions of the A.-problem in Theorem 2, in

fact, are more regular.

Lemma 8. The bounds y;(1) < ¢ and [; Yi(t)dl < ¢ are valid in I, where

y1 =1+ ||o,05,0,q Ve, 2|2 +e|Z P+ €|U2, Yi=¢€|E|*+ ||aws Oves Bots T |*-
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Proof. Because of the embedding-like inequalities || f||% < |[f1I* + 2| S]] /=l
and oo < llofll + (o)ells, the relationships

lusllee < cllosow, 0,qll,  [IVallZ < e+ cllva,zell®, 10115 < cll0,qll”,  (27)

hold.
Let us multiply equations (7)1, (7)2, and (7)s by oy, 7, and ¢, respectively.
As a result, we get

1d

o? 2 2
3| I+ el + ol = Ju(0), (29)

1
1 % 2 2 Tz 2 1
o) Vel eV ) = M{ (] v }+Jg<n, (29)

dq*
Mu E o+l B'P + lgall” = o). (30)
Then we differentiate equat10ns (7)1 and (19); with respect to ¢ and multiply

the resulting equations by u; and z; respectively. It gives

L (ol + <0 P) + [l = ), (31)
L (4 < 2) + o)zl = 1 (2) 4+ hafr). (32)

We omit description of the functions Jg — .Ji3 since it is clear how to reproduce
them. It should only be noticed that, as far as equations (29) and (32) are
concerned, we used the representation formula (14) for ppv, at @ = 1. Using
the Yung inequality and inequalities (27), we can estimate the functions Jg—.J,

as follows

(6
Js < 8)lq:|* + gy1||<7» vall?,
Jo < el V'] + ey ||, Vel
e
']10 S 5”(11”2 + 5y1||0-7 HIVQCHZT

[

1, 1 o r
Ji < Sl (vp)2owall® + ellgell® + eyl o, vl |,
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Jiz < c|Z| + ce|Z' 2 + cc|U' |2 + ey (1 55 ||Vz||2)

Now, combining equalities (28)-(32), choosing ¢ small enough, and taking into
account that ||, 0, us, v;||* are bounded in L'(I), we apply the Gronwall lemma
to prove Lemma 7.

Remark 1. In order the proof above be absolutely strict, we should use a regu-
larization with respect to ¢ before differentiating equations (7). For illustration,

let us consider the linear diffraction problem for the domain Q = Q_ U Q,:
ur = (aug)e + F, [u]le=0 =0, el = [au,], u||z|=1 =0, U=u(0,t).
Denoting up(z, 1) = bt [T u(x, s)ds, we see that for t € (0,7 — h)
Zdt (||uhtH2 o+ Uht) + |la(z,t + h 1ﬂuhm” (uhm,ahtuz)g + (uht:fht)ﬂ
Thus, the differentiation with respect to ¢ is justified, provided as, f; € L*(Q).

Lemma 9. The following bound is valid for anyt € I :

xt”Qt S C.

Proof. Let us differentiate equation (7); with respect to ¢ and multiply the

resulting equation by e;. On this way we obtain that

1d

57 Uledll? + Sl B') + Indpb | = Jus,

J13 7||Hdp6 t”l + (1 + ”()t;a QH ) (1 + HO’, vaarr;‘g’q’ ZzaztazthQ) .

It implies the assertion of the lemma.

The next lemma is a consequence of the above estimates.

Lemma 10. Solutions of the A.-problem satisfy the following estimates which

are uniform in ¢ € (0,¢0]:

su;) <||u7v,9||€[/22 e |u?‘avt7017/)z’[)t||2> +¢||U, V, F||C1 <ec
te
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||um¢,vm,67m||422 <e¢, O<c'<p<e, O>c

This lemma provides conditions of Lemma 3.1 from [2], therefore the func-
tions u, v, 0, ug, vy, 0, are bounded in /3 ,(Q+) for some v € (0, a] uniformly
in e. Then it follows from the representation formula (13); that p, p, are also
bounded in CW/QN(QJ:) uniformly in . Thus, there is a positive constant ¢

independent of ¢ such that
||U7Va07/): Uy, Vrvazvf)mf)t”CW/.zﬂ(Q.;.) < c, p > C, 0 > c. (33)

It now follows from the jump conditions (10) that ||U, V, E|ci+-/2(p) < ¢(e).
Let us treat the first three equations (7) as linear parabolic. Due to the Schauder
estimates [2] ,we have |lu,v,0lc,,. 1204, @+) < c(€) where 1 = min{y,a}.
Returning to formula (13); for p and using the parabolicity property again, we

see that

||u7v’0||ol+u/2.2+a(Qi) < C(é‘), ||p1f’pt|lccx/2,cx(Qi) < C(S). (34)

We emphasize that estimate (34) depends on ¢.

3. Unique solvability of the perturbated problem

We follow basically the same line of arguments developed in [4] for the flow
without a shear component. To make the presentation self-contained, we repeat

the argumentation briefly.

Theorem 2. Let all the conditions of Theorem 1 be satisfied. Then A.-problem
has a unique solution in the domain Q in the Holder class described in Theo-

rem 1.

Proof. First, we discuss uniqueness. Given two solutions (u;,v;,0;,p:), ¢ €

{1,2}, the functions u = u; — uz, v =vy —vq, 8 = 0, — by ,p = p1 — p, satisfy
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the following equations in the domain @
t
Uy = Oy Vi =Ty P= —p]p«z/uzds, (35)
0
€t = (p + 01Uy — Ooloy + M,01|V1ac|2 — /JP2|V2x|2,
and the jump conditions at = =0
[u] = [e] = 07 [V] = 07 el = [0]7 eVy= [7—]’ eby = [Q]a

where 0 = 0y — 03, T = 71 — 72, and ¢ = ¢1 — g2. Due to (34) and the regularity

of the solutions, the function
1 2, & (12 2 2 / 2 7 4 & g
y(t) = Sluvaell? + 5 (U2 + B+ IVE) + [ [ o (vl plval? + 562 dads
00

satisfies the inequality y" < ¢(t)y, with a non-negative function ¢(t) from L'(I).

Thus, the uniqueness is proved.

Remark 2. The proof of uniqueness for the A-problem is the same.

To prove existence, we apply the Leray-Schauder fixed point theorem.

For A € [0, 1], we define an operator Ay : C'(h) = C(h), C(h) = Ci4a/2(0,h)*,
as follows. Given a vector-function S#(¢) = (U#(t),V#(t),E#(t)), we first
solve two initial boundary value problems for equations (7) in the domains ¢)_

and Q4 respectively, with the boundary conditions
(09, Dlomor = 0, (v, €)lomo = (UF(0), VAW, E#(1)),  (36)
for the first problem and
(1, v, 0)lemr = (0,2,0), (u,v, €)oo = (UF(), VF(), B*(1)),  (37)
for the second one. The initial conditions for both the problems are

(U7Va97p)|t=0 = (u07v07907f)0)|xegt7 (38)
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with Q_ standing for the first problem and Q4 for the second one. The data
(to, Vo, 0o, po) in (38) are those of the A.-problem. We note that in these prob-
lems the constants v, p1, £, b, and d in (7) are different.

The problems described are locally solvable in the following sense (see [3-7]).
For simplicity, we formulate a result for the second problem in the domain Q4

only.

Lemma 11. Given positive numbers M, and My, let the initial and boundary

data for the domain Q4 satisfy the conditions
||U0,U01,U02790||%2+u1n+ + ||P0||é“ruanr <M., ingf/’)o > 0, il;fgo >0, (Al)

1#*, Vi# Vi av,aall?, ., < Mo, (A2)

(Ut#7Vf#7 Et#) |t=0 = (001, Tows Qoo + Totios + ,up0|V0z|2) |z=0, (A3)
(Ovat)|t=0 = (O-Or:TOz)|z‘=1a (A4)
(U#,V#, E#) |t=0 = (UOaVO; ﬁo)lzzo =S, (Oaa)|t=0 = (UO;V0)|z:1~ (145)

Then there is a unique solution of problem (7),(37), and (38) in the domain
QF = Q4 x (0,h) such that

”u’U17'0270||2'1+a/2)2+u(Q;t) T ||P7 pz»pt”éu/z)u(Q;{-) S N; p> 07 0> 0’ (39)

with h and N depending on M. and M,.

Next, given a positive number K, we define a set M(h, K) C C(h). We say
that S* € M(h, K) if ||S* — S.lle(ry £ K and the vector-function S# satisfies
conditions (A3) and (A5) of Lemma 11. Clearly M(h, K') is convex and closed
in C(h).

Now, we define an operator Ay : M(h, K) — C(h) by setting S = A,(S#),
where S(t) = (U(t), V(t), E(1)) and

elUy=Ao], eVe=Mr], eE: = \g], S(0)=5#(0)=S..

Here 0,7 and ¢ are found by solving initial boundary value problems (36),(38)
and (37),(38) for equations (7) in the domains Q+ with S#(1) in boundary
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conditions (37) and (38). Clearly, the value of S(¢) at { = 0 does not depend
on S(t) € M(h,K).

By Lemma 11, there is a positive number hq(K) € I such that the operator
Ay M(h,K) — C(h) is well defined for any h € (0, Ay (K)).

It is shown in [8], by using the Schauder estimates for linear parabolic equa-
tions and estimates (39), that the operator A, improves smoothness, more ex-
actly there are small § and hy(K) such that the operator Ay : M(h,K) —
Cl+“T+“(0a h)* is continuous for any h € (0, hy(K)). It means that the operator
Ayt M(h,K) — C(h) is compact for any h € (0, ho(K)).

It follows from the equalities

/\1—/\2
&€

t
A (S%) = Ay, (S#) = [ (0. 171, (£ ds (10)
0
and from estimates (39) that the operator A, : M(h, K) — C(h) is continuous
with respect to A € [0,1] uniformly in M(h, K). Obviously, the equation S =
Ao(S) has a unique solution S = S, and the map S — S — Ay(S) is bijective.

Lemma 12. Let a(l) € C*(I), then there is a positive number K such that, for
some hs € (0,hy(K)), each fized point Sy(1) of the operator Ay : M(h,K) —
C'(h) satisfies the bound ||S\(t) — S.||cny < K for any h € (0,hs(K)) .

Proof. Taking K = 1, we have that the operators Ay : M(h,1) — C(h) are
compact for any h € (0, hy(1)) and A € [0,1] . Putting Ay = 0 in (40) and using
estimate (39), we conclude that [[A\(S) — S.||¢(y < ANy, with Ny independent
of h € (0,hy(1)) . Thus, ||Ax(S) — Sullcny < 1 for S € M(h,1) if X € [0, N]']
and h € (0, h2(1)). By the Schauder fixed point theorem, each of the operators

M(h,1) = C(h), b € (0,h(1)), X € [0, N{'], has a unique fixed point Sy
(uniqueness is proved above) and ||Sx(Z) — S.|lony <1 .

Now, we repeat the considerations of section 2 to derive that any fixed point
Sx, A € [N, 1], satisfies a uniform bound ||Sx(%) — S.||cn) < ¢ . To this end
it is sufficiently to put € := eA™" and T' = hy(1). (At this step we requir that
a(t) € C*(I).)
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Let us define K. = 1 4 max{l,q}. Clearly, there is a positive number
ho(K.) such that the operators Ay : M(h, K.) — C(h) are compact for any
h € (0, ho(Ky)). Now, we set b, = min{hy(1), ho(KL)} to derive the assertion of
the lemma. Indeed, by the uniqueness property, the operator Ay : M (h., K.) —
C(hs) may have only one fixed point. Since M(h.,1) C M(h,, K.) and the set
M (h., 1) contains a fixed point of Ay, A € [0, NT'], we have that a fixed point
Sy of Ay : M(ha, K.) = C(h.) satisfies the bound [|Sx(1) — Si|lch,) < 1 < K.
for A € [0, N7'] . But for A € [Ny', 1] the bound |[Sx(t) — Su|lc(h,) < ¢ < K. is
shown above. Thus, the lemma is proved.

Taking into account all the properties of the operators Ay : M(h, K) —
C(h), we apply the Leray-Schauder fixed point theorem to conclude that there
is a unique local in time solution of the A.-problem in the Holder class desribed
in Theorem 1. By a priori estimates (34), this solution is, in fact, global. Thus

Theorem 2 is proved.

4. Proof of Theorem 1

By Lemma 10, we may send ¢ to zero to obtain a weak solution (u,v,#8,p) of
the A-problem satisfying equations (7) a.e. in @ , the bounds (33), and the
bounds of Lemma 10.

Let us show that this solution is, in fact, Holder continuous in the sense
of Theorem 1 . The second equation in (7) for v can be treated as a linear
parabolic one in the domains )4 and @_ with the diffraction conditions [v] = 0
and [ppv,] = 0 at their common boundary = = 0. Since p,ps € Cy/2,(Q+),
a(t) € C*(I), and vo € C24a(QF), we have, by [9], that v € C14y, /2,244, (Q+)
with 49 = min{v, a}. By the same reason, we conclude from the third equation
in (7) for @ that 6 € C11,, /2,24, (Q+). Then we treat the first equation in (7) for
u as a parabolic one with the diffraction conditions [u] = 0 and [vpu,] = [p] €
Crymj2(I). So, by [9], u € Ci4y,72244 (Q+). The solution (u,v,8,p) satisfies
formula (13) with ¢ = 0. Due to it, p and p, belong to Cy/2,4(Q+). Hence, by the
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second equation in (7), v € Cya/2,24a(Q+). The inclusion u € Cy 1y, /294, (Q+)

implies [2] that u, € Cw/lw(@j)a Yo = 1"'2”1. Let us denote v3 = min{a,y2},

then it follows from the equation for 6 that § € C14y, /2,244, (Q+). Now, due to
the equation for u, we have u € C1yyy 2,044, (@+) and uy € C., 2, (Q+), Where
Y4 = l—tﬁ In case 74 < a we repeat the procedure. Clearly, in finite number of

steps, we will arrive at the conclusion of Theorem 1.

Remark 3. Given a solution (u(z,t),v(z,t),0(z,t),p(z,1)) of the A-problem,
we obtain a solution of the free-boundary value problem (1)-(5) in the Eulerian

coordinates by the change of variables (z,1) — (£,1) :

€= Blat)= [ (u0dy =1, (41)

-1

with the function T'(1) = F(0,¢) being a free boundary. Due to formula (41),
one can easily reformulate Theorem 1 as a result on unique global solvability of

problem (1)-(5) in a Holder class.
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