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A SHORT INTRODUCTION
TO HAMILTONIAN PDE’S

F. Magri ®

1. Introduction

This is an expository paper on Hamiltonian methods for PDE’s. The aim is
to stress few basic ideas by means of simple examples, rather than to discuss
actual specific problems. The paper starts from an elementary review of the
concept of Hamiltonian vector field in Mechanics, and it ends by showing how
the Hamiltonian techniques can be used to solve a special Cauchy problem
for the Korteweg—de Vries equation. In a rather loose sense, it can also be
considered as a very cursory introduction to Sato’s theory of KP equations [2].
This theme, however, is only touched on in this paper, mainly to provide a
perspective of the potentialities of the Hamiltonian techniques.

The basic concept around which the paper is constructed is that of Poisson
pencil introduced in Section 2. It is central in the theory of Hamiltonian inte-
grable systems, according to a beautiful result of Gel’fand and Zakharevich [4].
In Section 3 this concept is used to define the KdV hierarchy and to show its
Hamiltonian properties. Section 4 is a brief detour towards the KP equations,
here approached as the system of conservation laws associated with the KdV
equation. The paper ends by a simple application to the study of a particular
class of solution (the “n—gaps solutions”) of the KdV equation. According to
the spirit of the paper, the style is informal, and the proofs are omitted to keep
the paper into a reasonable size. However, a certain effort has been done to
isolate the main ideas from a congeries of disturbing details. The paper is an

attempt to discuss these ideas in a concrete and direct way, by means of selected
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examples.

2. The evolution of the concept of Hamiltonian vector
field

Let us start with the classical definition. If ¢ and p; are the coordinates and
the momenta of a mechanical system with n degrees of freedom, and H is the
Hamiltonian function, the equations of motion are written in the well-known
form

q=1, p=—H, (1)

Passing to the differentials, these equations are readily put in the coordinate—
free form

pdg — qdp = —dH, (2)

sometimes called the “central equation” of Mechanics [5, p.233 and p.288].
At this point we can recognize on the left-hand side the 1-form obtained by

contracting the symplectic 2—form
w=dpAdg (3)

with the Hamiltonian vector field

a a

X=¢—+p=—. 4
5t Py (4)
In this way we arrive to the third intrinsic definition of Hamiltonian vector field,
generally accepted in the framework of the so—called symplectic geometry. A
vector field on a symplectic manifold is Hamiltonian if the image of X by w is

an exact 1-form:

w(X,") = —dH. ()

The interesting feature of this definition is that it clearly points out that the
concept of Hamiltonian vector field is relative to the choice of a symplectic 2—
form. Usually the 2—form is assumed to be given. But we can also take the

other point of view, and ask how many symplectic forms on the manifold make
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a given vector field Hamiltonian in the previous sense. Along this paper we
shall try to convince the reader that it is this second point of view which is
worthwhile of interest when looking to PDE’s (since, in this case, we do not
have, usually, a symplectic form given at the beginning).

To pass to PDE’s, however, it is still required to move one step further,
by solving equation (5) with respect to the vector field X. This can be done
in several ways. A particular terse way has been suggested by Poisson and
developed by Lie. Following them, we introduce the Poisson bracket of the

functions H and K,
{H,K} := Xp(K) = w(Xy, Xk), (6)

defined as the derivative of the function K along the vector field Xpy. By
this simple step, we are exploiting the duality between the concepts of state
and observable, and we are introducing a description of the dynamics on forms
rather than on points of a manifold. By choosing any system of local coordinates

27, and setting K = 27, equations (6) are readily written in the form

. 2n . aH
a— kzz:lpjk(l‘l,...,l'zn)%, (7)
where the functions P*(z!,...,2%") are the “fundamental Poisson brackets”
P ..., 2" = {zf,2*}. (8)

Since the Poisson bracket verifies the well-known Jacobi identity, it is easily

recognized that the functions P*(2!,... ") obey the cyclic condition
i L OP* apt ap*
ol P P =0. 9
; ( ! i ozt i dz! (9)

It is presently common to refer the skewsymmetric solutions of this condition
as to the Poisson bivectors of the manifold M.
By the process outlined before we have obtained a new interpretation of the

concept of Hamiltonian vector field. A given vector field on a manifold M is
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Hamiltonian if it can be “factorized” in a Poisson bivector acting on an exact

1-form:

oH

B2l (10)

X5 g @) = D P B i1y 8
=1

From this new perspective, it is no longer necessary to assume the Poisson
bracket to be invertible. This gives us a lot of additional freedom which will be
essential when dealing with PDE’s. As a special consequence of this generaliza-
tion, there presently exist functions K commuting with all the other functions

or, what is the same, generating the null vector field:

L. oy OK
;P”(Il,...,x )8331 =0. (11)

These functions are called Casimir functions of the Poisson bivector. They are
the first element of the geometry of a “Poisson manifold”. The second element
of interest are the level surfaces of these functions. They enjoy the peculiar
property of being symplectic submanifolds of M. Thus a Poisson manifold can
also be viewed as a collection of symplectic leaves, whose symplectic forms join
together in a coherent way into a single Poisson bracket defined on the whole
manifold. The main purpose of this paper is to display, by selected examples,
the interplay between PDE’s, Poisson bivectors, Casimir functions, and their

symplectic leaves.

3. Poisson pencils

We presently exploit some unexpected consequences of the “relativization” of
the concept of Hamiltonian vector field. We use a concrete example. In the
space M = IR®, referred to coordinates (a;,b;), [ = 1,2,3, we consider the

vector field
ar = ai(byr — by)

(12)

by =a;—a—y

with the periodicity condition

as4; = ap, bg+1 = bz. (13)
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These equations define the so—called three—particle Toda lattice. (The general
n—particle system is recovered by replacing every where 3 by n). Our aim is to
show that this vector field admits several Hamiltonian formulations: actually
an infinite number of them.

As a first step, we remark that equations (12) can be written in the form

. ( 0K 8[()
a; = ay

by Ob
(14)
i — oK oK
;= ay B al_laaz_1
where
s Loy o 4o 2 .
K= 5(1)1+b2+b3)+a1+(12+(13. (15)

This remark shows that the Toda equations are Hamiltonian with respect to

the linear Poisson bracket

. S0 0F . OF
{F,K}, = Z(Gla—al‘l'baa—bl)

I+1

= 2

=1

OF 9K OF 9K IFOK  OF 0K
U\ 94 by Obir Bar) T\ 96 Ba;  Bay OB )|
(16)

In the same vein, one can remark that the Toda equations can also be written

in the form

. oH _ JoH + oH B 8_H
ap = ap | aj41 —Baz+1 al_l—aal—l I+1 —abl+1 lab,
(17)
B —b 0_H _ oH n oH B oH
1 =01 | g 5a; az—1aal_1 ag Do ar—1 obr,’
where
H = by + by + bs. (18)

This remark points out a second Hamiltonian factorization of the Toda equa-
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tions, relative to the quadratic Poisson bracket

iaa <B_F oG OF a_g)
=1 S da;daryy  daryy Oy

{Fa G}2

= a <B_Fa_Ga_Fa_G>
=1 B aa’labl+1 abl+1 aa,

n iab aF oG dOF 3G
£ Day Oby by Day

g a1
=\ Ob Obiyr Obyy Oby
So, the Toda equations are an example of “bihamiltonian equations”. The
possibility of giving the same equation different Hamiltonian factorizations is
a new feature previously unnoticed in Classical Mechanics. One of the reason
is that to find these factorizations from the mere knowledge of the equations is
a rather nontrivial problem, as shown by the example. However, the existence
of these multiple Hamiltonian factorizations is a powerful clue to solve the
equations. We shall presently try to prove this statement, following a procedure
suggested by Gel’fand and Zakharevich.

To put the procedure into work, we still have to remark that the second
Hamiltonian H is a Casimir function of the first Poisson bracket (16). This

entails that the Toda equations can be written in the “mixed form”

d*a(a o —a ] + b —aH ~ba—H>/\a (_BH 3_]-])

1 1l ai+ Bare 1—18(”_1 I+1 Dbrs lab, 1 Dbres  Oby

b (@ OHN OH  OH oH  oH

O P TR A e THI TV T
(20)

containing an arbitrary real parameter A. This suggests to consider the one—

parameter family of brackets
{F> G}/\ = {Fa G}Z . ’\{F7 G}l (21)

The surprising feature is that this bracket verifies the Jacobi identity for any
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value of the parameter A\. When this happens, we say that the brackets { F, G}
and {F, G}, are compatible.

Definition 1. A Poisson pencil is a one—parameter family of compatible Pois-

son brackels.

We are interested in the study of the Casimir functions of the Poisson pencil.

In our example they are:
C’ = ajalds
D(/\) = (bl = /\)(bg =— )\)(b3 = A) = (I,l(bg = /\) = (LQ(Z)I = )\) = (1,3(62 = A)
(22)
The first one does not depend on A. This means that €' is a common Casimir
for all the brackets of the pencil. The second depends polynomially on A. Tts

expansion in powers of A,
D) = =X + DoA? — D1\ + Do, (23)

gives the three functions

Dy =by 4 by + bs
Dy = biby + bybs + bsby — aq — as — a3 (24)

D2 = b1b2b3 — a1b3 — (lgbl = dgbz.

It is easily checked (and it could be easily proved) that the four functions
(C, Do, Dy, D,) are in involution with respect to all the brackets of the pencil
(21). Furthermore, the Hamiltonians H and K of the Toda system are given by
H =Dy
(25)
K =31D3— D.
This leads to the following simple geometric construction.
In the six—dimensional manifold M, consider a four—dimensional level surface

S of the pair of functions C' and Dy. It is a symplectic leafl of the brackets
{F,G}1. Restrict the remaining two functions D; and Dy to S. Since Dy
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and D, are in involution with respect to {F,G'}1, their restrictions will be in
involution with respect to the symplectic 2-form defined on S. Therefore, the
functions Dy and D, define a Lagrangean foliation on S. By condition (25), the
Toda vector field is tangent to this foliation, and hence it fulfills the conditions
of the Arnold-Liouville theorem on the complete integrability of a Hamiltonian
vector field on a symplectic manifold.

The main conclusion of this section is, therefore, that Poisson pencils are a

useful tool to construct integrable Hamiltonian systems.

4. The KdV equation

In this section we show, by a concrete example, how the technique of Poisson

pencils can be extended to partial differential equations. We consider the KdV

equation
i 4 (26)
Ut = 4u1'a717 2uu1‘
with periodic boundary conditions
w(0,1) = u(2m,1). (27)

We note that this equation admits the following two factorizations:

up = [—20,] [é(u” £ 3u2)]

(28)
where the “l-forms” a = —%u and § = é(um — 3u?) are the (Lagrangean)
derivatives of the functionals

2
H(u) = —i/ u?dx
0
(29)

2
K(u)=—3% [ (us”+2u®)da.
0
To conclude that equations (28) are two Hamiltonian factorizations of the KdV

equation, we have to check that the linear operators
Qu = _2892
(30)
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are skewsymmetric and verify the Jacobi identity. In the present infinite—

dimensional context the latter condition must be interpreted as follows: if

d
PB: Pay) = EHZOP““P”('B) (31)

is the (Gateaux) derivative of the bivector P, along the vector field u; = P,

and if the evaluation form is defined by

2m
(v, us) 2/ a(z)u(z) de, (32)
0
then the cyclic sum

la, Pi(8, Puit)y + b: Pl PuB)) + 4B, Pi(7, Putr)) (33)

must vanish for any choice of the 1-forms «, £, 4. This condition is easily
checked by integrating by parts and by using the periodic boundary conditions
(27). Furthermore, it is not difficult to check that the Poisson bivectors P, and
@, are compatible. So the KdV equation shares the same Hamiltonian features
previously displayed for the periodic Toda lattice.

We can, consequently, proceed as in the previous section by investigating

the Casimir functions of the Poisson pencil
Plg) = B, — &0y (34)
It is explicitly defined by

1
Ut = —5Qoa +2(u + 2%) g + uga. (35)

The problem is to find a functional
2m
H(z) = 2/ h(u,ug,...;2)dz, (36)
0

depending on the parameter z of the pencil, whose differential annihilates the
right-hand side of equation (35). It can be shown that this condition is equiv-
alent to ask that the corresponding Hamiltonian density h(u,u,,...;z) verifies
the Riccati equation

he + h? =u+ 2% (37)
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This equation can be formally solved by Laurent expansion,

One finds

_1
}1,1—2’1,6

_ 1
}Lz = 71'&1«

hs = L (tgw — u?)

}L4 =

y (38)

(39)

h‘5 = L(urrzr - 6uu1;1: = SU?E + 2U3)

32

and so on. By integrating these functions on the circle we get the functionals

2r
H, 2/ udx
0

2

H5: L

160

(40)

(us + 2u®) dz.

They are the Hamiltonian functions of the KdV theory. The KdV hierarchy is

defined by

ou_ Lo,
at]‘_ 2 (5U FEE =

The first equations are

o _
oty o

ou_1. 3
3t3 - 4ua::va: 2uuz
du 1 5

SUUzer —

5&) + ux% (4])

du Su

; 5 o
—Uplpy + — U Ug.

4 8
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They are examples of commuting bihamiltonian vector fields, on an infinite—
dimensional phase-space, described by PDE’s and defined by the Casimir func-
tion of a suitable Poisson pencil.

In the rest of the paper, our aim is to use the Hamiltonian techniques to

discover some important properties of these equations.

5. The KP equations

In this section we discuss the conservation laws associated with the KdV equa-
tion. The starting remark is that the coefficients of the Casimir functions com-
mute in pairs with respect to all the brackets of the Poisson pencil. So, each of

them is a constant of motion for all the flows of the hierarchy:

I,
dt;

= (43)

In terms of the associated Hamiltonian density h(z), these equations assume

the form of local conservation laws

Oh(z)
at;

= 0, HY(z). (44)

The first currents HU) can be easily computed by direct inspection by using the
Riccati equation (37). They are

HOY = h(z)
HA = b -1 B — s (45)
H®) = B, 4 8k - 5F — 3hy b — B(hg 4 Bus)-

The reader is referred to [1] for the general formula of the currents HU). The

point to be stressed here is that the expression of the currents HY) is a direct

outcome of the form of the Poisson pencil (35). By inserting the expressions
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(45) into the local conservation laws (44) we get the equations

oh
—_— = //
T (h)s
O (bt 12— 2h). (46)
% = (hez + 3hhs + h® — 3hih — 3he — 3h1)s.
3

Similar equations are obtained for the higher-order times. If h is a solution of

the Riccati equation (37), written in the form
H® = h, + h? — 2k, = 2°, (47)

these equations are the local conservation laws associated with the KdV equa-
tion for the function

u = 2h;. (48)

If & is a solution of the second order equation
H®) = hgy + 3hh, + B> —3hih — 3(hy + h1y) = 2, (49)

equations (46) become the local conservation laws for the Boussinesq hierarchy

[6], in the pair of functions
U = 3}],1 v = 3(}112 + }le). (50)

If we do not impose any constraint on h, we can regard equations (46) as an
infinite system of PDE’s in an infinite number of field functions, namely the

coefficients of the Laurent series
h(z) = Z+Z_1' (51)

These equations are a possible form of the celebrated KP equations [6]. To
recognize this fact some additional work is required, since the KP equations
are usually defined by an algebraic procedure (the Lax representation in the

algebra of pseudo—differential operators) which tends to hide the Hamiltonian
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origin of these equations. However, it would be inappropriate to try to explain
here, in more details, the intricacies of all these connections. Our claim is that
the Hamiltonian methods, suitably pushed far, are powerful enough to cover
the main parts of the modern theory of those integrable PDE’s called soliton

equations [1].
6. The restricted KAV flows

We now want to show that the Hamiltonian techniques can be used to solve a

special class of Cauchy problems for the KdV equation

1 3

on the circle. We assume that the initial condition
u(,0) = f(z) (53)

verifies the ordinary differential equation

T fooven = 3 Ffenn = Sfufen + 2 e =0, (54)
This means that f is an equilibrium point of the third equation of the KdV
hierarchy (relative to the time ).

Although strange from an analytical point of view, this restriction is natural
from the Hamiltonian point of view. Since the flow relative to the times ¢3 and
ts commute, one can show that the solution u(z,t) verifies itself the constraint
(54). So, our Cauchy problem amounts to solve the KdV equation on a finite-
dimensional invariant submanifold. On this submanifold the KdV equation
becomes a system of ordinary differential equations.

To construct this system we use the first five coefficients (hy, ha, hs, ha, hs)
of the Hamiltonian density of the Casimir function of the Poisson pencil (35).
They are related to the function u and its first four space derivatives {aiu},»zl,,,,A
by equation (39). We derive these equations with respect to the times ¢; and

t3, and we use the KdV equation to convert the time derivatives of the function
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u into space derivatives. Then we use the constraint (54) and its differential
consequences to eliminate the derivatives (92u, 9%u, d7) which appear at the pre-
vious step. Finally, we eliminate the variables (u, uy, Uy, Upps, Uzees) In favour
of the variables (h1, ha, hs, ha, hs) by using backwards the relations (39). The

outcome are the equations

o

ot —2h,
B = —(2h 1)
ZLZ“* = —(2ha + 2hahy) (55)
ZLZ‘ = —(2hs + 2h1hs + h3)
%”f = —(4h1ha + 4hshs — 2hThy)
and
%‘; = —2hy + 2h1hy
%‘j = —2hs 4+ b+ A3
‘2%? = —2h1hy — 2hshs + 4h2hy (56)
‘Z%* — K24 hy + B + 201 B2 — 2hoha
‘Z_L;: = —4hshy + 283hy + 2h2hy.

They represent the restriction of the KdV hierarchy on the five-dimensional

invariant submanifold defined by equation (54).

Not surprisingly, these equations are bihamiltonian. They can be written
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either in the form

. 8 oH OH
li 2h 2hg—
n =2, t gy, + 2
. OH oH OH oH
hy = —2— — 4} —2hg—— — (2h3 + R
12 3hl " By 8h3 I28h4 ( ' + Ll) 8h5
. oH oH oH
hy = 4hy — o + (2h3 + 2h? )8} . + (2hs + thhz)a} -
(57)
. OH OH OH OH
hy = —2h;—— + 2/ / h? h2 + 2n3
. 4 8h1 + L2a}12 <L3 T " )8}3 +( + )aha
. OH OH OH
h5 = 72}1/2871‘1 + (2}L3 + }L?)BTQ = 2(}111}1/2 + h4)%
—(2h5 — 6h1hs + hg + Qh?)a—H
8}L4
or in the form
oK
il/l = QBTM
oK oK
he = =2, ~ M,
oK oK
l)g = 28h2 4]’11871,4 (58)
. oK oK oK
}114 = QaTLl 4] N a}LS (4}1; + 2/L1)a} »
. oK oK
hs = dhi— o + (4hs + 2h1)(9} »

by a suitable choice of the Hamiltonian functions H and K. For instance, the
Hamiltonians of the second equation (56) are
H = hyhy — %hlbz hihs — / / + 3/11/13
(59)
K = %hgh;, — hshs + %h,‘;’ + h1h2 — hihohg — %hfhg + h2hs + %hi.
This bihamiltonian structure can be used to solve the equations (55) and (56) by

separation of variables. The main steps are the following. First, one considers
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a symplectic leaf S of the bivector (58). It is a four-dimensional level surface
of the Casimir function

L = hs — 2h1hs + RS, (60)

It inherits a Poisson pencil from the ambient space. This Poisson pencil defines
a system of canonical coordinates on S, namely four coordinates (Ay, Az, fi1, f12)

which verify the commutation relations

Pixh=0 {wh =348  {pi,ph =0 (61)
and
oAt =0 {Xpite=Ndi;  {ui,pita=0 (62)

with respect to the Poisson brackets induced by (58) and (57) respectively. It

can be checked that the coordinates \; are the zeroes of the polynomial

X =k + (hs — h}) (63)
while the coordinates y; are the values of the polynomial

= hoX + hy — 2h1hs (64)

at A = )\;. Finally, one writes the Hamiltonians H and K in these coordinates
and finds that they are in separable form according to the Stéckel theorem.
This is not a surprising result. Indeed there is a close connection between the
Hamiltonians H and K and the Poisson pencil defined by the bivectors (57)

and (58). The Casimir function of the Poisson pencil is indeed
H(\) = H+ MK + \L. (65)

Thus the moral is that a Poisson pencil separates its Casimir functions.

Coming back to the initial Cauchy problem, here is the recipe for its solution:

1. plug the initial condition f into the relations (39) to compute the variables

hj, j=1,...,5, as functions of z;

2. change x in t;: the previous functions h;(¢1) become a solution of the first

equation (55);
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3. by using the separation of variables, solve the Cauchy problem for the
second equation (56) with initial condition coinciding with the previous

solution h;(1) of equation (55);

4. change backwards ¢; in = in the solution h;(t1,¢3) found at the previous

step: the function

u(z,t3) = 2hy(z, 13) (66)

is the solution of the initial Cauchy problem for the KdV equation.

This method is usually described in the language of algebraic geometry [3],
by using the Lax formalism. In that approach the coordinates A; and y; must be
guessed. Our point is that the Hamiltonian approach gives a more systematic
procedure for the construction of these coordinates, and allows to plug the new

techniques into well established schemes of Classical Mechanics.
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