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DYNAMICS OF SOLID-SOLID PHASE INTERFACES
VIA A LEVEL SET APPROACH

Philippe G. LeFloch*®

Abstract

The so-called sharp interface model for solid-solid phase boundaries
describes the dynamics of interfaces in solid materials undergoing phase
transformations of the austenite-martensite type. Antiplane shear defor-
mations are modeled by the conservation laws of linear elastodynamics
supplemented with a two-well internal energy function together with a
kinetic relation, driving the propagation of the phase interfaces. In this
paper we introduce a new level set formulation adapted to this problem.
The phase interfaces are viewed as the zero-level set of a function that
evolves in time according to an Hamilton-Jacobi equation. The propaga-
tion speed in the latter is determined by suitably extending to the whole
computational domain the interfacial propagation speed known on the
interface only via the kinetic relation.

A numerical algorithm using centered differencing for the displace-
ment and upwind differencing for the level set function is proposed. We
demonstrate the interest of the method on antiplane shear deformations
in crystals. The scheme allows complex topological changes of the inter-
faces and twin splitting.

1. Introduction

This paper, based on a joint work in preparation with T. Hou and P. Rosakis
[17], presents a new numerical method for computing propagating interfaces in
solid materials undergoing phase transformations such as the austenite-martensite
transformation in metallic alloys. Displacive phase boundaries propagate in

crystalline structures at subsonic speeds that can not be determined solely
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from the macroscopic stored-energy function and the time-dependent conser-
vation laws of continuum mechanics. This makes difficult the use of standard

computational techniques which, therefore, need be adapted.

For a material admitting two distinct phases, the energy function is taken
to be a two-well function, each well being a preferred deformation state of
the material. The static and quasi-static problems have been formulated and
extensively studied in the last two decades. As one tries to minimize the en-
ergy functional, the deformation-gradient jumps from one well to the other and
a typical observed behavior is the formation of microstructures, i.e. fine-scale
mixtures of two (or more) phases of the material (Ball-James [5], James [18, 19],
Kohn [21], Luskin [26], Nicolaides-Walkington [27]). Regarding the dynamics, a
large literature on the physical modeling of the processes of phase transforma-
tions, as well as recent experimental work in laboratories on their growth rate,
have become available. The emergence of complex patterns such as dendritic
structures forming from planar interfaces has been observed experimentally.
This research activity motivates the development of computational methods for
phase boundaries propagating in martensitic crystals. Computational studies
may contribute to the development of new technologies that depend on material

properties such as shape-memory, magnetostriction, etc.

We restrict attention here to a continuum model based on the fundamental
conservation laws of continuum mechanics. A macroscopic description of the
phenomena of phase propagation is sought, rather than a detailed understand-
ing of the highly complex processes taking place in the neighborhood of the
interface. A two-well, stored-energy function is used and the system of P.D.E.’s
under study is hyperbolic in the neighborhood of each of the two wells, but is
elliptic away from them, so that the system is of mixed type. A phase boundary,
by definition, connects a state close to one of the wells to a state close to the
other. Due to the existence of the elliptic region, the propagation of the inter-
face is not determined uniquely at this level of the modeling. To fully describe

the dynamics, several strategies have been developed:
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(1) Higher order diffusion effects are added to the equations, in order for the
model to carry an internal structure for the material discontinuities. In
this setting, the important issue of the formation of microstructures as
time increases was addressed (Ball et al. [4] and Swart-Holmes [36]). A
one-dimensional model including viscosity and capillarity effects was stud-
ied by Slemrod in the mathematically equivalent context of the dynamics
of liquid-vapor phase boundaries in a van der Waals fluid. (See, for a

review, Fan-Slemrod [8].)

(2) Phase field models include an internal parameter which explicitly describes
the location of the interface. The internal variable satisfies a Ginzburg-
Landau type equation involving a two-well potential. (See, for instance,

Caginalp [6], Fried-Gurtin [11], and Gurtin [13]).

(3) Finally, in the sharp interface theory, an interface kinetics is explicitly
introduced along the interface, providing its driving traction (i.e. the me-
chanical entropy dissipation) as a function of its propagation speed. (See

Abeyaratne-Knowles [1]-[3] and Truskinovsky [37]-[39]).

The present paper focuses on the third approach which we briefly review in
Section 2 below. The interfaces are assumed to be infinitely thin and have no
internal structure. Using the set of conservation laws, Rankine-Hugoniot jump
relations can be derived along an interface. The Clausius-Duhem inequality
from the thermodynamics yields an inequality for the mechanical dissipation
along each interface. The jump conditions and the entropy inequality do not
determine uniquely the propagation of a phase interface. James [18] has es-
tablished the existence of a one-parameter family of solutions, satisfying all
the natural requirements, for the evolution of an initial discontinuity in a one-
dimensional elastic bar (the so-called Riemann problem).

Phase boundaries behave very differently from classical shock waves arising
in fluid dynamics. Such waves that require additional constitutive information

derived from physics are called undercompressive in the mathematical field of
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systems of conservation laws (Liu-Zumbrun [25] and the references therein).
They are referred to as kink waves by Truskinovsky [37]-[39]) and as nonclas-
sical shocks by Hayes-LeFloch [14]-[16]. They arise in a variety of problems of
continuum mechanics, especially when dissipative and dispersive effects are in
competition.

Following Abeyaratne-Knowles [3], we add an additional jump relation along
the interface, called a kinetic relation. It determines the interfacial speed as a
function of the mechanical dissipation or driving traction. The free param-
eter in James’ one-parameter family of solutions to the Riemann problem is
uniquely determined by the kinetic relation. For one-dimensional elastic bars,
Abeyaratne-Knowles [2] established the well-posedness of the Riemann prob-
lem; more general initial data are treated in LeFloch [23]. In those results,
additional constitutive information —a nucleation criterion— is also required for
the possible occurence of new phase boundaries. For other interesting results
on the one-dimensional problem, see Pence [29]-[30] and Shearer [35].

Developing computational algorithms for propagating phase interfaces is an
important challenge. Standard numerical methods, such as shock capturing
schemes and finite element methods, cannot be applied directly to the sharp
interface model. Undercompressive waves such as phase interfaces turn out to
be very sensitive to numerical dissipation, regularization, mesh refinements, etc,
as is demonstrated in Hayes-LeFloch [16].

For classical fluid dynamics problems, it is known (by Lax-Wendroff’s theo-
rem) that difference schemes that are consistent with the conservation form of
the equations converge to weak (discontinuous) solutions of the PDE’s. This re-
sult is not pertinent for phase transition problems which admit multi-parameter
families of solutions.

The challenge is therefore to design numerical schemes that are consistent
with a given interfacial kinetic relation, so that, when the mesh size diminishes,
there is convergence of the numerical solution to the solution of the sharp inter-
face model. The interface should be driven by the given kinetic relation rather

than by unphysical, numerical dissipation.
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A numerical algorithm sharing the following requirements was proposed in
Zhong-Hou-LeFloch [41]. Therein phase boundaries were tracked and other
discontinuities captured by a high order Godunov-type scheme. This method
is fully satisfactory for one-dimensional problems and in presence of a limited
number of interfaces. Front tracking strategies is one of the few strategies
that apply to phase boundary propagation. For multidimensional problems the
techniques developed for computational fluid dynamics by LeVeque-Shyue [24]
and Glimm et al. [12] could also be adapted. However tracking wave fronts
for multidimensional problems and/or complex interface geometry is delicate.
Some of the difficulties are avoided in the method we propose, which additionally
captures certain aspects of the formation of dendritic structures in crystals.

For definiteness we focus attention on a two-dimensional problem describing
antiplane shear deformations. The model is relevant for twinning processes in
body-centered cubic crystals. For background on the physical modeling, we
refer to Rosakis-Tsal [33] for the statics and to [34, 40] for the dynamics.

The concept of the level set formulation for moving curves or surfaces was
introduced by Osher-Sethian [28] to compute various problems of curvature-
driven interfaces. The principal advantage of this class of numerical methods is
that they easily deal with self-intersection, topological changes, and the forma-
tion of complex interface geometry, with no additional computational cost or
complexity. In particular the merging and, possibly, the nucleation of interfaces
are treated automatically.

Numerical works on interface problems and their level set formulations focus
primarily on curvature-driven interfaces; the evolution of the interface depends
on its curvature which is determined solely from the interface. More recently
the strategy was applied to cases where the flow on each side of the interface
drives the interface in a way or another. For instance, in the generalized Stefan
problem, the interface couples two heat diffusion equations and a nonlinear
interface relation is imposed. For incompressible and immiscible fluid flows, we
refer to Chang-Hou-Merriman-Osher [7]. The problem studied in this paper is

of a different nature; it takes the form of an interface coupling two hyperbolic
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systems of equations. This problem suffers from a higher lack of uniqueness
than the problems treated in previous works.

In Section 3, we reformulate the problem under consideration by introduc-
ing a level set function, ¢, and viewing the interface as the zero-level set of ¢.
This function evolves in time according to an Hamilton-Jacobi equation whose
propagation speed is determined by extending to the whole computational do-
main the interfacial speed provided by the kinetic relation. Observe that the
evolution of the level sets {¢ = k} for k # 0 is irrelevant for the evolution of
the interface itself. The extension of the wave speed is based on an averaged
stored-energy function and a regularization parameter, €. In the level set for-
mulation, the interface has a finite width of order ¢ and the propagation speed
is determined from the averaged stored-energy function.

In Section 4, the algorithm based on the level set formulation and high-order
shock capturing techniques is presented.

Our formulation has some analogy in spirit with the phase field models
described in Fried-Gurtin [11]. The level set function is analogous with an
order parameter. The level set formulation however mimics qualitatively, but
not quantitatively, the behavior of the phase field model nearby the interface.
The sharp interface theory does not include explicitly interfacial and exchange

energies as it is done in [11].

2. Review on the Sharp Interface Model

In this section we recall a general setting suitable to describe propagating phase
boundaries in solids undergoing phase transformations. We adopt a now clas-
sical theory referred to as the sharp interface theory after Abeyaratne-Knowles
(1].

We describe the propagation of phase interfaces in a two-phases material in
a two-dimensional setting. The focus is on antiplane shear deformations of a
two-dimensional plate: the displacement is supposed to be normal to the plate.

In the reference configuration, the solid body under consideration occupies an
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open and bounded domain 2 C R? with smooth boundary 9. The exterior

unit normal along 99 is denoted by n. The domain is decomposed into two

time-dependent subdomains, i.e. @ = Q. (¢) U Q_(¢), with the property that,
at each time ¢ > 0, the material is in its phase 1 in the domain Q. (¢) and in

its phase 2 in Q_(¢). The interface, by definition I'(t) = Q4(1) N Q_(¢), is a

parametrized curve

T(0) = {y(s,1) = (15,0, ma(s,1)) /5 € T(0)}, (2.1)

where y(.,.) is a Lipschitz continuous parametrization by arc length of the
(possibly several) connected components of the interface and I(¢) is a union
of bounded and closed intervals of R. The unit normal along I'(¢), directed
into the interior of Q_(t), is denoted by n(s,t). Since the parameter s is the
arc-length along the interface, n(s,t) = (0sya(s,t), —dsy1(s,1)).

The material is described by a Lipschitz continuous displacement field u(z,t) €
R, the out-of-plane displacement field, defined on the reference configuration .
For every t > 0, the restrictions of the function u(t) to the domains Q4 () is
of class C?. The strain function Vu in general has a jump along the interfaces
[(t). We set v = Vu € R? and v = dsu € R. The material properties are
described by a stored energy function and the basic conservation principles of
continuum mechanics.

The strain energy function provides the material energy W as a function of
Vu. Two-phase transformations can be modeled by a two-well function. We

assume that W is a smooth function satisfying
W(y) >W(0)=W()  forall veR? (2.2)

where 0 and ¢ in R? are two given values of strain. Moreover there exist two

disjoint regions of strain S;, 7 = 1,2, such that for all v € R?

{ Wi(y) for v € 5y,

W =
) Wa(y) for vy €5,

(2.3)

where Wy and W, are globally defined and strictly convex functions achieving

their minimum point at 0 € S; and & € Sy, respectively. Each of the two
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regions S; correspond to different material phases. The stress tensor o(vy) € R?
is classically computed by

ow
Oa (7) = (9’)/

(), a=1,2. (2.4)

We also use the notation o; for the stress tensor associated with W;.
If the linear elasticity theory is applicable to each phase, each W; is a

quadratic function:

Wi =Ehl W) =Sk -e, (2.5)

where p a positive coefficient. Define the sound speed ¢ by the relation ¢ = p/p.
The stress tensors take the form o1(y) = py and o(7y) = p(y —§). We refer to
this case as the quadratic energy model.

The interfaces are supposed be be infinitely thin with no internal structure
and the flow on both sides of the interfaces is described by a linear (or nonlinear)

second-order wave equation. The compatibility relations
Oy =V =0 (2.6)

express the fact that v is a gradient field. The conservation law of total mo-

mentum reads

pow —dive(y) = 0. (2.7)
Differentiation is understood in the sense of distributions. According to the
Clausius-Duhem’s principle of thermodynamics, admissible solutions should sat-
isfy
Oy (W(’y) + pv2/2) —div (a(fy)v) <0. (2.8)
The initial location of the interface,
I'(0) =Ty, (2.9)

and the initial conditions for the unknown fields,

7(0) =7,  v(0) =, (2.10)
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are given, with Iy being a union of parametrized curves and 7 : @ — R? and
vo : 8 = R. Let 092 = 0¥ U I be a partition of the boundary of the body. A
Dirichlet boundary condition for v is imposed on 9} and a Neumann boundary

condition for the stress on 9}":
v=uv, on 0, Vo(y)-n=Vo,-n on dQ". (2.11)

The functions v, and o}, are possibly time-dependent.

The solutions we are seeking are discontinuous along the interface I'(¢),
and the equations must be understood in the sense of distributions. It will be
convenient to use the strain v € R%and the velocity v € R as the main variables.
Those functions are expected to be discontinuous along I'(¢); the traces of v and
v along I' will be denoted by v4 and vy, respectively. When the functions W;
are not quadratic, discontinuities in the regions 1 may also form. Provided
suitable compatibility are imposed on the data 7o, vo, 24(0), etc, the solution
(v,v) to the problem (2.6)-(2.11) will remain smooth, locally in time, in each
domain Q4(¢). In the case of the quadratic energies, the solution will remain
smooth on either side of the interface 4 (t) for all times.

In a way similar to what is done in the theory of shock waves, jump relations
for an interface are now deduced from the conservative form of the equations.
Additionally the entropy inequality (2.8) is imposed as an attempt to select the
physically correct interfaces. A propagating interface is not uniquely determined
by the jump relation and the Clausius-Duhem inequality. The mechanical dissi-
pation must be imposed as well, in order to determine the propagating interface
in a unique way.

This non-uniqueness is explained from several standpoints. It is checked
that the interface is not stable in the sense of the linearized analysis unless
additional relations along the interface are imposed. The information carried
on the interface by the characteristics is incomplete in order to determine the
propagation of the interface. This is in contrast with the classical shock waves
which obey the Lax entropy inequalities. Such underdetermined waves are called

undercompressive shocks in the terminology of systems of conservation laws.
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Assume that (v, v) is smooth on both sides of T'(¢). In Q4(t), the equations
(2.6)-(2.7) are satisfied in a classical sense, and the inequality (2.8) is an equality.
The following jump relations and entropy inequality hold along the interface,

where V' represents the normal speed of propagation,

Viy-n]+ =0, (2.12)
pV [o] 4 [o(7) -n] = 0, (2.13)

and ,
VW) +p %] —[n-a(y)v] < 0. (2.14)

Here we denote by [q] = g+ — g— the jump of a quantity ¢ along the interface
I'(¢) limiting Q4 (¢) and Q_(¢). According to our notation, the speed is V'(s,t) =
Oy (s,t) - n(s,1).

Denote by f the left hand side of the inequality (2.14) divided by the velocity
V. This term depends on the traces of (v,v) on both sides of the interfaces.

Based on the relations (2.12)-(2.13), it is easy to rewrite f as a function of .

only: 4
F==[WH) +p%] - Ltin-o(y)]
) (2.15)
= —[WHl+ 3(o4 +0-)- Il
For the quadratic energy model, the driving traction reads
2 f=prp oy — oy — 8 * - — &) =& =loy +2 ). (2.16)

We write f = f(s,t) to emphasize that f is defined along the interfaces I'(¢).
This function is called the driving traction or entropy dissipation of the interface.
Observe that f can be equivalently defined by the formula
7 U2 = ~
3,;(1/1/ (v)+p ?) —div (U(’y)u) = [ Virw. (2.17)
Here, for every t > 0, dr is the Dirac measure concentrated on the curve I'(t).
By definition, if 8 : @ — R is a smooth function, one has

<@, 0 >= /F(t)‘)(y(s,t))ds. (2.18)
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So (2.17) is an equality between bounded Radon measures, where the left hand
side is defined in the sense of distributions and the right hand side is understood
in the sense of Radon measures on & x Ry.

We can now complete the formulation (2.6)—(2.8) with the so-called kinetic
relation for I'(¢), which provides an explicit relation between the driving traction

and the propagation speed:
V(s,t) =g(f(s,t),n) (2.19)

for all (s,t), where the response kinetic function g(f,n) depends on the prop-

erties of the material under study and satisfies the restriction

fg(f,n) <0. (2.20)

When g is smooth enough, the latter implies

g(0,n) =0 and @(O,n) > 0. (2.21)
of
In particular one may take choice
g(fyn) = My f + My|nil f, (2.22)

where M; > 0 and M, > 0 are material constants. Observe that (2.22) is
anisotropic: for an interface to move, this kinetic relation requires a higher
driving traction for interface moving in the x5 direction than in the z;’s. In
other words, interfaces move more easily in the x; direction.

The linear stability of an interface under small perturbations is studied by
Fried [10] and Pego (unpublished work). Fried establishes that the property
07g(fo,n0) > 0 is a necessary and sufficient condition for an interface with unit
normal ny and driving traction fy to be stable under small perturbations. His
analysis is based on computing the Fourier amplification factor of a linearized
version of the system of PDE’s, the jump relations, and the kinetic relation. In
particular the steady (i.e. V' = 0) interfaces are stable when the kinetic function
is smooth. The nonlinear stability of the interface does not follow from the
theory of shock fronts to nonlinear hyperbolic systems, since the geometric Lax

shock inequalities do not hold here.
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3. Level Set Formulation

In this section, we introduce a new, level set formulation adapted to the sharp
interface model described in Section 2. The level function ¢ determines the
the location of the interfaces. Our formulation uses a regularized version of the
two-well stored energy function.

Let ¢ € (0,1) be a given small parameter, roughly representing a character-
istic width. The interface is searched as the zero set of a function ¢. : Ry — R,
ie.,

I(t) = {x €N/ pe(z,t) = 0}

with the condition
we>0 onQy and . <0 onQ_.

The main difficulty is to write an equation for . that is consistent with the
kinetic relation (2.19). As is classical in moving interface problems, ¢. solves

an Hamilton-Jacobi equation,

Bupe + Vo[ Vo = 0. (3.1)

The normal speed of propagation, V. = V.(z,t) € R, will be determined from the
kinetic relation. First of all, (2.19) can not be used directly since it involves the
traces of the variable (v, v) from both sides of the interface. (See (2.15) or (2.16)
for the definition of f.) The latter would be difficult to evaluate numerically,
especially since we intend to capture the interface rather than track it. For that
reason, a suitable regularization of (2.19) is necessary.

Suppose that we are given a function W(’y, h) for h € [0,1] that “connects”
the two energy functions W;, in the sense that, at the points h = 0 and h = 1

we have

W(y,0)=Wi(y) and  W(y,1) = Wy(y).

Using this energy function with an “internal variable” h, we define a regularized
strain energy function W, in the following fashion. For each ¢ > 0, let H. be a

regularized version of the Heaviside function H defined by H(y) = 0 for y < 0
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and H(y) =1 for y > 0. The functions H. should converge to H in an averaged
sense. It is convenient to assume that

H. is a monotonically increasing function,
H.(y) = 0 if y<-—e (3.2)
=11 if y>e
Observe that the Dirac measure § = dH/dy is correspondingly approximated

by the regularized Dirac function d.:

dH.

d. = —. 3.3
L (33
The regularized energy is defined by

We(1,y) = Wiy, Ho(y)). (34)

The function W should be defined by suitably averaging the energies of the

two phases. Two approaches to defining W will be considered.

Model I: For arbitrary energy functions, one may use a linear combination

(with respect to the parameter k) of the two energies

Wy, k) = Wi(y) + h(Wa(y) — Wa(7)),

so that
W.(7,9) = Wi(y) + He(y)(Wa(y) — Wi(7)). (3.5

Model II: In the special case that the two energies coincide up to a translation,
one may linearly interpolate between the two wells, i.e. assuming that there

exists £ € R? such that
Wa(y) = Wiy = §),
one defines W by
W(v,h) = Wi(y — h§).

The regularized energy function is given by

WE(77 y) = I/Vl(p)/ - Ha(y) 6) (36)
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The regularized problem is determined by the equations (2.6)-(2.7) with the
energy function W(y) replaced by W.(vy,¢). The regularized stress tensor is
0. = OW./0y. The equations (2.6)-(2.7) together with the Hamilton-Jacobi
equation (3.1) form a complete set of equations for the unknowns 7. € R?
ve € R, and ¢. € R, provided the propagation speed V; in (3.1) is known. To
that purpose, based on (2.6)-(2.7) (with o replaced with ¢.) and (3.3)-(3.4), it

is an easy calculation to check that the entropy dissipation balance takes now

the form
2
) . .
O (We(ese) + p ) = div (0u(3e, pe)ve) = Fules 0) Ve [V 8clps), - (3.7)
where .
oW N
Je'= _a—h('ﬁv HE(‘PE)) (3'b)

will be referred to as the regularized driving traction.

The driving traction f was defined along the phase interface only, while f.
is defined at every point of Q. A natural extension, n.(z), of the unit normal
to the interface is defined globally (i.e. for all z € Q) by

V.
ne =
i

. (3.9)

The vector field n. coincides with the unit normal to the interface when re-
stricted to points x = y(s, ).

The formula (3.8) for the regularized driving traction should be compared
to the one we had in the ¢ = 0 case, say (2.15). To this end we rewrite the right
handside of (2.17) in a form similar to the right handside of (3.7). Following
[7], we have

o = [Vee] 8(p), (3.10)

in the sense that

/r(t)O(y(s,t)) ds :/Q|cha(:v,t)‘0(apa($,t))dx (3.11)

for every smooth function 8 : & — R. The function y by definition is the arc-

length parametrization of the interface. The term &(i.) is classically defined
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as a Radon measure on €. Since § and V¢ are continuous (at least), the right
hand side of (3.11) has a classical meaning.
Fix a time ¢, which for simplicity is omitted in the notation. Introduce a

(conformal) change of variables

z = (21,22) = 7 = (a},23) = (e(2), e(2)), (3.12)

where . satisfies

VS% : V’l,[)s = 07 |V’l;,)5 =1.

The Jacobian of the transformation is

Dz*
Dz

=[O0, e Ory e — Oy e Oy U
= (01 e O, ) + (Braiper — 0,02
= |Ve.|[Ve-
= \V%

b

since (8111)[)5,8“1/)5> and (axznps, — 0, 505) are parallel vectors in R% One may
need to change v into —t to get the correct sign in the latter two equalities.
The function ¥ exists in a neighborhood of the interface, at least, which is
sufficient for our purpose.

Using (3.12), we arrive at

/(2(5(5@5(.7:))9(:1;) |V305(:1:)) dx = /Q* o(a7) 0" (2) da*

= 0%(0, x%) d?

{If:O}

(3.13)

with the obvious notation for * and 0*(2*) = 0(x). Note that {LT = O} is
the equation of the interface {y(s) = O}, so the right handside of (3.13) and
the left handside of (3.11) are both an integral of the test function along the
interface. But ¢.(y(s)) = 0 implies V. - dsy = 0, so the vectors V. and 95y

are orthogonal. Since ¥.(y(s)) = 2}, we obtain by differentiation

dat = )vz/)s - O,y ds = ds,

since ‘Vzbg

= |0sy| = 1 and V. and 0,y are both orthogonal to V..
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Comparing (3.7)-(3.10) and (2.17)-(2.19), we propose to define V. by the
kinetic relation (2.19), the driving traction f being replaced with f.. At this
stage, we are implicitly replacing the “exact” Dirac mass in (3.10) by its regu-
larization introduced in (3.3).

In other words, we define V. by

e g(fe, z—i> (3.14)

For future reference, we summarize the level formulation:

Oyve — Vv, = 0, (3.15)
pOw. — divo. (Y., ¢.) = 0, (3.16)
and
V € v
at305+g(f5,—(p>|VLpE =0, (3'1')
Vc,o5|

Besides the initial and boundary conditions (2.10)-(2.11) for 4. and v., we need

an initial and boundary condition for ¢.:
w:(0) = in§, Y =@y on 08, (3.18)

where g and @, are given data.

Several observations should be made. First of all, the jump relations (2.12)-
(2.13) and the kinetic relation (2.19) do not explicitly appear in the level set
formulation. However it is checked [17] that, as expected, the jump relations
and the kinetic relation are recovered as ¢ — 0. Including the kinetic relation in
the formulation comes however at the expense of introducing a small parameter,
e, which must be handled with care in the numerics. Our level set formulation
is formally analogous to a phase field model, introduced by Fried-Gurtin [11]
for the phase dynamics in solids and by Caginalp [6] for the Stefan problem for
fluids.

Restricting now attention to one-dimensional elastic bars. We consider so-

lutions that only depend upon z; and such that v = 0. For simplicity, set
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x =1, 50 now x € R and @ = R. In this setting, the level set model takes the
form :
0ye — Opv. = 0,
Patvs - arals(’}/s’ 995) = 07 (319)
atﬂos + g(fe) aﬁ%) = 0.

For Model 1, the regularized energy function is

W(r,h) =

IR

(A =)y + by — &) = £(4* + he* — 26 ).

The regularized stress is

Oc(Ves ) = (7 — He(pe) £),

and the regularized driving traction is

_ & _ 2 ,
fe=p€ (3 —5) = €oe +€(Haler) = 1/2).
Using a linear kinetic relation

g(f)=Mf

and setting ¢ = (u/p)"/? and N = My &, Model I reads

at’}/a - 61‘1)5 = 07
Model I & atvs - Czaz (75 - Hs(@s) 6) = 07 (320)
Owpe + N (’Ys - %) |0zp| = 0.

For Model II, the regularized energy function is

A

Wiy, h) = £ty - he).
So we get
0c(%e,02) = %(%Hs(%)) = (7 — Hel(p:) €)
and )
f= —%(%, He(pe)) = n€(7e — Hep:) €) = € 0.
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The regularized stress is the same in Models I and II, but the driving tractions
are different. Model II takes the form :
at’)/s - axvs = 0>
Model II H atvs - 6261‘(75 - HE(SOE) E) = 05 (321)
at‘foe + N (’Ye - He(ﬂ‘oe) 5) |8T5‘05| = O

For both models, the corresponding sharp interface model is

Oy — Opv = 0,

875?} — (;28I (,Y _ gH((P)) — D‘/ (322)

Limiting Model : {
where ¢ =1 in the phase 1 and ¢ = 0 in the phase 2.

4. Numerical Algorithm

A numerical algorithm based on the level set formulation introduced in Section 3
is developed in [17], based on modern higher-order, shock-capturing techniques.
Consider a square domain  and a regular cartesian mesh with mesh size Az
and At. Since we use explicit differencing and the problem under study is
hyperbolic, the mesh parameters are restricted by the CFL stability condition.
It is numerically convenient to compute directly the displacement v rather than
the two variables v and v.

The computation was performed with the quadractic model and the averaged
energy of Model II, which has been found to be more effective numerically. The

regularized energy is given by

We(v,y) = (1 —Hs(y))%\vr+Hs(y)g\’v—£\2- (4.1)

We also assume that the well for the phase 2 has the form ¢ = (0,k). The

regularized stress reads:

oe(y) = (v — He(v)€). (4.2)

The kinetic relation is taken to be

g(fin) = My f+ M, |mf, (4.3)



DYNAMICS OF SOLID-SOLID PHASE INTERFACES 205

with suitably chosen values of the parameters M; and M,.

The system to be solved numerically reads
CI—2 Opu — Au = —k 0., H.(),

O — & H(amu —k Hs(go)> (JWI |Ve| + M, IazliPD — . (4.5)

The numerical experiments are performed with an ellipsoidal region made of
a material in the phase 1 surrounded by the phase 2 of the material. In our

calculations, &, = ¢ = p = 1 and we solve the coupled equations for u and ¢,
O = Au — 6:(p) On, 0,

Op = (Ozyu — k He()) (M1 [V | + M3 |0z, 0]) = 0.

The numerical algorithm is as follows:

Initialization: At the initial time ¢ = 0, the level set function is defined to be

the signed distance-function to the interface.

Step 1: Evolution-step.

The displacement and the level set function are evolved according to (4.5),
using finite differences. A higher-order centered scheme is used for the displace-
ment. The Hamilton-Jacobi type equation is discretized by using a second order

ENO (essentially nonoscillatory) upwinding scheme.

Step 2: Re-initialization.
The level set function is re-initialized to be the signed distance-function to

the new interface.

The computation of phase interfaces proves to be very challenging. We
review some of the difficulties that we had to cope with:

The extension of the interface velocity nearby the phase boundary is discon-
tinuous at the interface. This produces a discontinuous level set function in the
time evolution. We overcome this difficulty by introducing a re-initialization

procedure every time step to enforce the level set function to coincide with the
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signed distance function for all times. This also ensures that the thickness of
the smoothed interface layer remains small for all times.

In the numerics, the driving traction and therefore the speed of propagation
in the Hamilton-Jacobi equation admits a large numerical gradient near the
interface. This tends to produce numerical oscillations at the phase boundary
which may give rise to incorrect phase velocity. It is important that the mesh
size h remains much smaller than the regularization parameter: h << e. (In
pratice we used 51 < € < 10 h.) The re-initialization is motivated by the results
in Section 4: this is necessary in order for the function ¢ to remain continuous.

We observed sensitivity of the method with respect to the mesh. This is
to be expected in view of previous numerical experiments on similar problems,
for instance on incompressible fluid dynamics problems. The choice of the
averaged energy function is important to prevent formation of spurious spikes
in the driving traction near the interface. Model II turned out to behave much
better in this respect.

The boundary condition for « is v = 0 on the top and bottom boundaries,
and u, = k at the left and right boundaries. With such boundary conditions,
the steady state solution should be a configuration with volume fraction equal
to k. We used one sided boundary condition for ¢ at the solid wall boundary
condition. For most of the time, this is just the upwinding boundary condition.

Formation of cusp singularities and complex topological changes in the phase
boundary can be captured naturally without explicit tracking of the phase
boundary. We have tested our model for several kinetic relations. These re-
sults give qualitative agreement with the sharp interface theory. The level set
formulation can also compute beyond the time where the sharp interface for-
mulation fails.

See Figure 4.1 and 4.2 for numerical results obtained with a square mesh
having 256 points in each space directions, ¢ = 0.01 and M; = 0, My, = 3
in the formula (4.3). The initial data is a small ellipse with main axis having
length @ = 0.3 and b = 0.15. Figure 4.1 displays the phase boundary at different
times. In Figure 4.1a, the larger phase boundary is reached at time ¢ = 0.2. The
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asymptotic state is reached at time ¢t = 10 in Figure 4.1e. Figure 4.2 shows that
the total energy decays in time, as the solution reaches an asymptotic state.

We refer to [17] for extensive numerical results.
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5. Concluding Remarks

We presented in this paper a numerical algorithm to capture moving phase
boundaries in solid materials. The solutions to the sharp interface model can
be computed accurately and efficiently.

Further investigations of this model and other models including more de-
tailed physics of phase transformations are desirable. A more realistic model
should take into account thermal effects, which are important for phase trans-
formations. A three-dimensional setting including a nonlinear geometry of the
equilibrium wells could also be considered.

In order to make quantitative predictions with the sharp interface model, the
kinetic response function should be determined from laboratory experiments. It
would be also interesting to investigate whether a criterion for the nucleation of
new phase boundaries may be incorporated in the level set formulation. Another
avenue of research is to incorporate in the numerical algorithm an asymptotic

model describing the behavior of the interface near a spike or a cusp.
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