

ON ONE PROBLEM OF TRANSONIC GAS DYNAMICS

Nikolai Larkin *

1. Introduction

We study the initial boundary value problem for the nonlinear evolution equation arising in the asymptotic theory of transonic gas dynamics

$$Lu = u_{xt} - \mu u_{xxx} + u_x u_{xx} - \Delta_y u = 0 \tag{1.1}$$

in
$$Q = D \times (0, T), \ D = \Omega \times (0, L); \ x \in (0, L), \ t \in (0, T), \ y \in \Omega \subset \mathbb{R}^2$$

where Ω is a bounded domain with sufficiently smooth boundary $\partial\Omega$; $S_T = \partial\Omega \times (0, L) \times (0, T)$; L, T are positive numbers;

$$\frac{\partial u}{\partial \nu} \mid_{S_T} = 0, \ u \mid_{x=0} = 0, \ u_x \mid_{x=0,L} = 0,$$
 (1.2)

$$u(x, y, 0) = u_0(x). (1.3)$$

Here ν is an outward normal vector on S_T , μ is a positive constant, u(x, y, t) is the disturbance potential.

Equation (1.1) models nonstationary transonic flows around a thin body with effects of viscosity and heatconductivity when a velocity of a gas is close to the local speed of a sound. For more information about physical aspects of (1.1) see Napolitano and Ryzhov [1], Larkin [2]. If $\mu = 0$, we have the Lin-Reissner-Tsiegn equation which is hyperbolic for all values of $u_x(x, y, t)$. The presence of $-\mu u_{xxx}$ implies some dissipativeness of (1.1) that makes it possible to prove the global existence theorem. On the other hand, this dissipativeness

^{*}Supported by CNPq.-Brasil as a visiting professor at the State University of Maringá

is not very strong since for the variables y we have only the Laplace operator. It means that the stationary part of (1.1) is anisotropic, has different properties in x and y variables. It can be noticed also that due to anisotropic properties of the stationary part, boundary conditions on ∂D are not uniform: we have the Neumann condition on $\partial \Omega$ and 3 conditions in points x = 0, x = L.

Our approach in proving the existence theorem reflects this fact. First we consider the linear problem and use the Faedo-Galerkin procedure with the basis only in y variables. Unknown coefficients, depending on (x,t), we find resolving the initial boundary value problem for the parabolic equation. Then we exploit fixed point arguments and prove local solvability of (1.1)-(1.3) for arbitrary regular initial conditions (1.3). To prove global solvability, we use the dissipativeness of $-\mu u_{xxx}$ and assume sufficiently small appropriate norms of u_0 . At last, we prove stability theorem.

In the sequel, we use mostly standard notations for the functional spaces, see [3], otherwise the necessary definitions will be given. Without loss of generality, we put $\mu = 1$.

Assumptions.

1.
$$u_0 \in H^6(D), \ u_0(x,0) = 0, \ \frac{\partial u_{0x}}{\partial \nu} \mid_{\partial D} = 0;$$

2.
$$\frac{\partial}{\partial \nu} (u_{0xxx} - u_{0x}u_{0xx} + \Delta_y u_0) |_{\partial D} = 0.$$

2. Linear Problem

To solve (1.1)-(1.3) by fixed point arguments, we start from the linear problem. Let B be the set of functions g(x, y, t,) with the following properties:

$$g, g_x, g_t \in L^{\infty}(0, T; H^2(D)), \quad g_{tt} \in L^{\infty}(0, T; H^1(D)),$$

$$g_{xtt} \in L^2(0, T; H^1(D)), \quad g_{xxxt} \in L^{\infty}(0, T; L^2(D)),$$

$$\frac{\partial g}{\partial \nu} |_{S_T} = 0, \quad g|_{x=0, L} = 0,$$

$$g|_{t=0} = u_{0x}, \quad \partial_t^i g|_{t=0} = \partial_t^i u_x|_{x=0} \quad (i = 1, 2,),$$

where $\partial_t^i u_x \mid_{t=0}$ are the formal derivatives at t=0 calculated from (1.1)-(1.3). Denote

$$||g||_{W} = ||g||_{L^{\infty}(0,T;H^{2}(D))} + ||g_{x}||_{L^{\infty}(0,T;H^{2}(D))} + ||g_{t}||_{L^{\infty}(0,T;H^{2}(D))} + ||g_{tt}||_{L^{\infty}(0,T;H^{1}(D))} + ||g_{xtt}||_{L^{\infty}(0,T;H^{1}(D))} + ||g_{xxxt}||_{L^{\infty}(0,T;L^{2}(D))}.$$

The ball B_M is the set of functions g(x, y, t) from B such that $||g||_W \leq M$. Clearly, B_M is a closed set. For any $g \in B_M$, M > 0, consider the following linear problem

$$L_g u = u_{xt} - \Delta_y u - u_{xxx} + \frac{1}{2} (g u_x)_x = 0,$$
 (2.1)

$$u \mid_{x=0} = u_x \mid_{x=0} = u_x \mid_{x=L} = 0, \quad \frac{\partial u}{\partial \nu} \mid_{S_T} = 0,$$
 (2.2)

$$u \mid_{t=0} = u_0. (2.3)$$

Approximate solutions to (2.1)-(2.3) will be sought in the form

$$u^{N}(x,y,t) = \sum_{j=1}^{N} z_{j}^{N}(x,t)w_{j}(y), \qquad (2.4)$$

where

$$\Delta_{y}w_{j} + \lambda_{j}w_{j} = 0 \text{ in } \Omega,$$

$$\frac{\partial w_{j}}{\partial \nu} |_{\partial\Omega} = 0, \quad (j = 1, ..., N),$$

$$(w_{i}, w_{j}) = \int_{\Omega} w_{i}w_{j}dy = \delta_{ij}.$$

$$(2.5)$$

Unknown functions $z_j^N(x,t)$ are solutions to the following initial boundary value problem

$$z_{jxt}^{N} - z_{jxxx}^{N} = -\lambda_{j} z_{j}^{N} - \frac{1}{2} (g u_{x}^{N}, w_{j}) \text{ in } (0, L) \times (0, T),$$

$$z_{j}^{N} \mid_{x=0} = 0, \ z_{jx}^{N} \mid_{x=0} = z_{jx}^{N} \mid_{x=L} = 0,$$

$$z_{j}^{N} \mid_{t=0} = (u_{0}, w_{j}), \ j = 1, ..., N.$$

$$(2.6)$$

Observing that (2.6) is a linear parabolic problem for z_{jx}^N , one can prove Lemma 2.1. Let $g \in B_M$ and $u_0 \in H^6(0, L)$. Then there exists a unique

solution to (2.6), $z_i^N(x,t)$:

$$\partial_t^i z_j^N \in L^\infty(0,T;H^{6-2i}(0,L)) \cap L^2(0,T;H^{7-2i}(0,L)), \, (i=0,1,2,3).$$

To pass to the limit as $N \to \infty$, we have to prove a priori estimates for u^N which will allow us also to get results on solvability of the nonlinear problem (1.1)-(1.3).

3. Local solutions

Theorem 3.1 Let $u_0 \in H^6(D)$ satisfy assumptions 1,2. Then there exist a number T_0 and a unique function u(x,t), which is a solution to (1.1)-(1.3); and the following inequality holds

$$||u_x||_W < M.$$

We prove this theorem in some steps. First, we obtain a priori estimates for the approximate solutions that allow us to pass to the limit in (2.6), as $N \to \infty$, and therewith to solve the linear problem (2.1)-(2.3). After that, using fixed point arguments, we come to the result of Theorem 3.1.

A priori estimates

We prove a priori estimates in some steps. One part of them can be obtained directly in the whole domain $Q_0 = D \times (0, T_0)$. To prove other estimates, we will use a partition of the interval [0, L] and get at first estimates in subdomains $D' \subset D$ then in vicinities of the surfaces x = 0, x = L. Combination of these estimates permits us to get necessary estimates in the whole domain Q. In the Lemma 3.1 we give estimates which are valid in $Q_0 = D \times (0, T_0)$.

Lemma 3.1. For each $M < \infty$, there exists a number $T_3 = T_3(M) > 0$ such that for all $t \in (0, T_3)$ the inequality holds

$$\|u_{xx}^{N}(t)\|_{H^{1}(D)}^{2} + \|u^{N}(t)\|_{H^{2}(D)}^{2} + \|u_{xt}^{N}(t)\|_{H^{1}(D)}^{2} + \|u_{xtt}^{N}(t)\|^{2} + \int_{0}^{t} (\|u_{xx\tau\tau}^{N}(\tau)\|^{2} + \|\Delta_{y}u_{\tau}^{N}(\tau)\|^{2} + \|u_{xxx}^{N}(\tau)\|_{H^{1}(D)}^{2})d\tau \le C_{1}\|u_{0}\|_{H^{5}(D)}^{2},$$
 (3.1)

where the constant C_1 does not depend on M, N, t.

Proof. We omit the index N in calculations that will be made for smooth solutions of (2.1)-(2.3) which, additionally to (2.2),(2.3), possess the property

$$\frac{\partial u}{\partial \nu} \mid_{S_T} = \frac{\partial}{\partial \nu} \Delta_y u \mid_{S_T} = 0.$$

It is posssible because of our way of construction of $u^N(x, y, t,)$, see (2.4)-(2.6). First, we consider the identity

$$2(L_g u, u_x)(t) = \frac{d}{dt} ||u_x(t)||^2 + 2||u_{xx}(t)||^2 + 2(\nabla_y u, \nabla_y u_x)(t) + ((gu_x)_x, u_x)(t) = 0.$$
(3.2)

The last term can be estimated as follows

$$|(gu_x)_x, u_x)| = |(gu_x, u_{xx})| \le ||u_{xx}(t)||^2 + C_1(M)||u_x(t)||^2.$$

Substituting this into (3.2), we obtain

$$\frac{d}{dt}||u_x(t)||^2 + ||u_{xx}(t)||^2 \le C_1(M)||u_x(t)||^2.$$

Integration over (0,t) gives

$$||u_x(t)||^2 + \int_0^t ||u_{xx}(\tau)||^2 d\tau \le ||u_{0x}||^2 + C_1(M) \int_0^t ||u_x(\tau)||^2 d\tau.$$
 (3.3)

From here

$$||u_x(t)||^2 \le ||u_{0x}||^2 + C_1(M) \int_0^t ||u_x(\tau)||^2 d\tau.$$

By Gronwall's lemma

$$||u_x(t)||^2 \le ||u_{0x}||^2 e^{C_1(M)t}$$
.

Choosing $T_1 > 0$ such that $0 < C_1(M)T_1 \le 1$ and taking into account (3.3), we get for all $t \in (0, T_1)$

$$||u_x(t)||^2 + \int_0^t ||u_{xx}(\tau)||^2 d\tau \le C||u_{0x}||^2, \tag{3.4}$$

where C does not depend on M, N, t.

Next, we consider the equality

$$-2(L_g u, (e^{-x} \Delta_y u_x + u_{xxx})) = 0.$$

Acting in the same manner as by proving (3.4) and choosing T_2 sufficiently small, we obtain for all $t \in (0, T_2)$

$$||u_x(t)||_{H^1(D)}^2 + \int_0^t (||\Delta_y u(\tau)||^2 + ||u_{xx}(\tau)||_{H^1(D)}^2) d\tau \le C ||u_0||_{H^2(D)}^2, \tag{3.5}$$

where the constant C does not depend on M, N, t.

From the identity

$$2((L_g u)_t, u_{xt}) = \frac{d}{dt} ||u_{xt}(t)||^2 + 2||u_{xxt}(t)||^2 - ((g u_x)_t, u_{xxt})(t) + 2(\nabla_y u_t, \nabla_y u_{xt})(t) = 0,$$

taking into account (3.5), we obtain for $T_3 > 0$ sufficiently small

$$||u_{xt}(t)||^2 + \int_0^t ||u_{xx\tau}(\tau)||^2 d\tau \le C||u_0||_{H^3(D)}^2;$$
(3.6)

and from

$$-2((L_g u)_t, (e^{-x} \Delta_y u_{xt} + u_{xxxt})) = 0$$

for all $t \in (0, T_3)$

$$||u_{xt}(t)||_{H^1(D)}^2 + \int_0^t (||u_{xx\tau}(\tau)||_{H^1(D)}^2 + ||\Delta_y u_{\tau}(t)||^2) d\tau \le C||u_0||_{H^4(D)}^2.$$
 (3.7)

Consider for a.e. $t \in (0, T_3)$ the stationary problem

$$u_{xxx} + \Delta_y u = u_{xt} + \frac{1}{2}(gu_x)_x = F(t),$$

$$\frac{\partial u}{\partial \nu}|_{S_T} = 0$$
, $u|_{x=0} = 0$, $u_x|_{x=0} = u_x|_{x=L} = 0$.

Due to (3.7), $F(t) \in H^1(D)$. In this case, as was shown in [2],

$$||u_{xx}(t)||_{H^1(D)} + ||u(t)||_{H^2(D)} \le C||F(t)||_{H^1(D)} \le C||u_0||_{H^4(D)}.$$
 (3.8)

Transforming the identity

$$2((L_g u)_{tt}, u_{xtt})(t) = \frac{d}{dt} ||u_{xtt}(t)||^2 + 2||u_{xxtt}(t)||^2 -$$

$$((gu_t)_{tt}, u_{xxtt})(t) + 2(\nabla_y u_{tt}, \nabla_y u_{xtt})(t) = 0,$$

we obtain for $T_3 > 0$ sufficiently small

$$||u_{xtt}(t)||^2 + \int_0^t ||u_{xx\tau\tau}(\tau)||^2 d\tau \le C||u_0||_{H^5(D)}^2, \ \forall t \in (0, T_3).$$
 (3.9)

Combining (3.7)-(3.9), we prove Lemma 3.1.

In the next lemma, we give a priori estimates that are valid in the interior of Q. Let δ be a positive number such that $20\delta < L$. We define in (0,L) smooth nonnegative functions $\xi_i = \xi_i(x)$ and domains D_i as follows

$$\xi_i(x) = 1 \text{ if } x \in [(i+1)\delta, L - (i+1)\delta],$$

$$\xi_i(x) = 0 \text{ if } x \in [0, i\delta] \cup [L - i\delta, L], \quad D_i = \Omega \times ((i+1)\delta, L - (i+1)\delta); \quad (i = 1, ..., 6).$$

Lemma 3.2. For each $M < \infty$, there exists a number $T_4(M) > 0$ such that for all $t \in (0, T_4)$ the following inequality holds

$$||u^{N}(t)||_{H^{3}(D_{4})} + ||u^{N}_{xx}(t)||_{H^{2}(D_{4})} + ||\partial_{x}^{5}u^{N}(t)||_{L^{2}(D_{4})} + ||\partial_{x}^{3}u^{N}_{t}(t)||_{L^{2}(D_{4})} + ||\partial_{x}^{3}u^{N}_{t}(t)||_{L^{2}(D_{4})} \leq C||u_{0}||_{H^{5}(D)},$$

where C does not depend on M, N, t.

Proof. We give here only ideas of the proof.

Considering the identity

$$-(\xi_1(L_g u)_t, u_{xxxt})(t) = -(\xi_1 u_{xtt}, u_{xxxt})(t) + (\xi_1, |u_{xxxt}|^2)(t) +$$

$$(\xi_1 \Delta_y u_t, u_{xxxt})(t) - \frac{1}{2}(\xi_1(u_x g)_{xt}, u_{xxxt}) = 0$$

and choosing $T_4(M) > 0$ sufficiently small, we obtain

$$(\xi_1, |u_{xxxt}|^2)(t) \le C ||u_0||_{H^5(D)}^2.$$
 (3.10)

Analogously, from

$$-(\xi_1(L_g u)_t, \Delta_y u_t)(t) = 0$$

follows

$$(\xi_1, |\Delta_y u_t|^2)(t) \le C ||u_0||_{H^5(D)}^2.$$
 (3.11)

And from

$$-(\xi_1(L_q u)_x, \Delta u_x + u_{xxxx}) = 0$$

we get

$$(\xi_1, |u_{xxxx}|^2)(t) + (\xi_1, |\Delta_y u_x|^2)(t) \le C||u_0||_{H^5(d)}^2.$$
 (3.12)

Now, from

$$(\xi_2 L_g u, (\Delta_y u_{xxx} + \Delta_y^2 u))(t) = 0$$

we come to

$$(\xi_2, (|\nabla_y u_{xxx}|^2 + |\nabla_y^3 u|^2))(t) \le C ||u_0||_{H^5(D)}^2.$$
 (3.13)

In order to estimate $||u_{xx}(t)||_{H^2(D_4)}$, we consider the identity

$$-(\xi_3(L_g u)_{xx}, \Delta_y u_{xx} + \partial_x^5 u)(t) = 0$$

and come to the inequality

$$(\xi_3, (|\Delta_y u_{xx}|^2 + |\partial_x^5 u|^2))(t) \le C||u_0||_{H^5(D)}^2.$$
 (3.14)

Combining (3.10)-(3.14) with the estimate of Lemma 3.1, we obtain the assertion of Lemma 3.2.

The next lemma improves the results of Lemma 3.1 and gives estimates in the whole domain Q.

Lemma 3.3. There is a small number $T_0(M) > 0$ such that for all $t \in (0, T_6)$ the inequality holds

$$\|u^N_x(t)\|^2_{H^2(D)} + \|\partial^4_x u^N(t)\|^2_{L^2(D)} + \|u^N_{xtt}(t)\|^2_{H^1(D)} +$$

$$\|\Delta_y u_{xt}^N(t)\|_{L^2(D)}^2 + \int_0^t (\|\Delta_y u_{\tau\tau}^N(\tau)\|^2 + \|u_{xx\tau\tau}^N(\tau)\|_{H^1(D)}^2) d\tau \le C \|u_0\|_{H^6(D)}^2.$$

The scheme of the proof. We define smooth nonnegative functions $s_i = s_i(x)$ as follows:

$$0 \le s_i(x) \le 1$$
; $s_i(x) = 1$ if $x \in [0, i\delta] \cup [L - i\delta, L]$,

$$s_i(x) = 0$$
 if $x \in [(i+1)\delta, L - (i+1)\delta], (i = 1, ..., 7).$

The identity

$$2(s_6L_gu, \Delta_y^2u_x)(t) = 0$$

for T_6 sufficiently small can be reduced, taking into account Lemma 3.2, to the inequality

$$(s_6, (\Delta_y u_x)^2)(t) + \int_0^t (s_6, (\Delta_y u_{xx})^2)(\tau) d\tau \le C \|u_0\|_{H^6(d)}^2.$$

Adding (3.11) and (3.8), we get

$$||u_x(t)||_{H^2(D)} \le C||u_0||_{H^6(D)}. (3.15)$$

Now, from the identity

$$-((L_g u)_x, u_{xxxx})(t) = 0,$$

we obtain

$$||u_{xxxx}|| \le C||u_0||_{H^6(D)};$$
 (3.16)

and from

$$-2((L_g u)_{tt}, (e^{-x}\Delta_y u_{xtt} + \partial_x^3 u_{tt}))(t) = 0$$

follows

$$||u_{xtt}(t)||_{H^1(D)}^2 + \int_0^t (||\Delta_y u_{\tau\tau}(\tau)||^2 + ||u_{xx\tau\tau}(\tau)||_{H^1(D)}^2) d\tau \le C ||u_0||_{H^6(D)}^2.$$
 (3.17)

At last, considering the identity

$$(\xi_5(L_g u)_{xt}, \Delta_y u_{xt}) = 0,$$

we obtain

$$\|\Delta_y u_{xt}(t)\|_{L^2(D)} \le C.$$

This and (3.15)-(3.17) imply the result of Lemma 3.3.

Now we are able to prove

Lemma 3.4. Let $u_0 \in H^6(D)$ satisfy assumptions 1,2. Then for each fixed M > 0 there is $T_0 > 0$ such that for every $t \in (0, T_0)$ the approximate solutions to (2.1)-(2.3), u^N , satisfy the estimate

$$||u^{N}||_{W^{3}} = ||u^{N}(t)||_{H^{3}(D)} + ||u_{xx}^{N}(t)||_{H^{2}(D)} + ||\partial_{x}^{5}u^{N}(t)|| + ||u_{xt}^{N}||_{H^{2}(D)} + ||u_{xtt}^{N}(t)||_{H^{1}(D)} + ||\partial_{x}^{4}u_{t}^{N}(t)|| + (\int_{0}^{t} ||u_{xx\tau\tau}^{N}||_{H^{1}(D)}^{2} d\tau)^{\frac{1}{2}} \leq C_{0}||u_{0}||_{H^{6}(D)},$$

$$(3.18)$$
where C_{0} does not depend on M, N, t .

Proof. We start from the estimate $||u_{xt}(t)||_{H^2(D)}$. Since Lemma 3.2 gives this estimate in D_4 , it is sufficient to prove it in vicinities of x = 0, x = L. The function $z = (1 - \xi_6)u$ satisfies the equation

$$L_{g}z = z_{xt} - z_{xxx} - \Delta_{y}z + \frac{1}{2}(gz_{x})_{x} = -\xi_{6x}[u_{t} + \frac{1}{2}(gu)_{x} - 3u_{xx}] - \frac{1}{2}(\xi_{6x}ug)_{x} + 3\xi_{6xx}u_{x} + \xi_{6xxx}u,$$

$$z = 0 \quad \text{when} \quad x \in [7\delta, L - 7\delta].$$

By the usual way, we show that

$$\|\Delta_y z_{xt}(t)\|^2 + \int_0^t (\|\Delta_y z_{xx\tau}(\tau)\|^2 + \|\nabla_y^3 z_{\tau}(\tau)\|^2) d\tau \le C \|u_0\|_{H^6(D)}^2.$$

Taking into account Lemma 3.2, we have

$$\|\nabla_y^3 u(t)\| + \|u_{xt}(t)\|_{H^2(D)} \le C \|u_0\|_{H^6(D)}.$$

Now, from the identity

$$(L_g u, \Delta_y u_{xxx}) = 0$$

we come to

$$||u_{xxx}(t)||_{H^1(D)} \le C||u_0||_{H^6(D)}.$$

Taking into account Lemmas 3.2, 3.3, we get

$$||u_{xx}(t)||_{H^2(D)} \le C||u_0||_{H^6(D)}.$$

Considering

$$((L_g u)_{xx}, \partial_x^5 u)(t) = 0$$

and

$$((L_g u)_{xt}, \partial_x^4 u_t)(t) = 0,$$

we complete the proof of Lemma 3.4.

Now we are able to prove existence theorems. In fact, Lemma 3.4 allows us to pass to the limits in (2.6), as $N \to \infty$, hence the following assertion is valid.

Theorem 3.1. Let $u_0 \in H^6(D)$ satisfy assumptions 1,2. Then for every $g \in B_M$ and $M < \infty$ there exists a unique solution to (2.1)-(2.3) satisfying (3.18). Moreover, for each fixed $M < \infty$, there is such $T_0 = T_0(M) > 0$ that the constant C_0 in (3.18) does not depend on M, $t \in (0, T_0)$.

The proof is obvious, we drop it.

It follows from Theorem 3.1 that we can define the operator $P: u_x = Pg$.

Lemma 3.5. Let M be sufficiently large and T_0 be sufficiently small. Then P maps B_M into B_M and is the contraction operator.

Proof. Putting $M = 2C_0||u_0||_{H^6(D)}$, we can see that $||u_x||_W \leq M/2$. This proves the first part of Lemma 3.5. Defining $\rho(g_1, g_2) = ||g_1 - g_2||_{L^{\infty}(0,T;L^2(D))}$, we obtain

$$\rho(u_{1x}, u_{2x}) \le C(M)T^*\rho(g_1, g_2),$$

where $u_{ix} = P(g_i)$, i = 1, 2. Choosing for fixed M $T^* \in (0, \frac{1}{2C(M)})$, we complete the proof of Lemma 3.5.

It implies

Theorem 3.2. Let $u_0 \in H^6(D)$ satisfy assumptions 1,2. Then there is such $T_0 > 0$ that in $G_0 = D \times (0, T_0)$ there exists a unique solution to (1.1)-(1.3); and (3.18) holds.

4. Global Solutions

Existence of local in t solutions was proved without restrictions for a size of u_0 . On the other hand, if the appropriate norm of u_0 is sufficiently small, it is possible to prove existence of global solutions. Let B be the set of functions g(x, y, t) defined in $Q^+ = D \times R^+$ with the following properties:

$$g, g_x, g_t \in L^{\infty}(R^+; H^2(D)) \cap L^2(R^+; H^2(D));$$

$$g_{tt} \in L^{\infty}(R^+; H^1(D)) \cap L^2(R^+; H^1(D)), g_{xtt} \in L^2(R^+; H^1(D));$$

$$g_{xxxt} \in L^{\infty}(R^+; L^2(D)) \cap L^2(R^+; L^2(D));$$

$$\frac{\partial g}{\partial \nu} |_{S^+} = 0, g |_{x=0,L} = 0, S^+ = \partial \Omega \times (0, L) \times R^+,$$

$$g |_{t=0} = u_{0x}, \partial_t^i g |_{t=0} = \partial_t^i u_x |_{t=0}, (i = 1, 2).$$

Denote

$$||g||_{W} = ||g||_{L^{\infty}(R^{+};H^{2}(D))\cap L^{2}(R^{+};H^{2}(D))} + ||g_{x}||_{L^{\infty}(R^{+};H^{2}(D))\cap L^{2}(R^{+};H^{2}(D))} +$$

$$||g_{t}||_{L^{\infty}(R^{+};H^{2}(D))\cap L^{2}(R^{+};H^{2}(D))} + ||g_{tt}||_{L^{\infty}(R^{+};H^{1}(D))\cap L^{2}(R^{+};H^{1}(D))} +$$

$$||g_{xtt}||_{L^{2}(R^{+};H^{1}(D))} + ||g_{xxxt}||_{L^{\infty}(R^{+};L^{2}(D))\cap L^{2}(R^{+};L^{2}(D))}.$$

The ball B_M is a closed set of g(x, y, t) from B such that $||g||_W \leq M$. As in section 3, we start from the linear problem

$$L_g u = u_{xx} - u_{xxx} - \Delta_y u + \frac{1}{2} (g u_x)_x = 0, \tag{4.1}$$

$$\frac{\partial u}{\partial \nu}|_{S^+} = 0, \ u|_{x=0} = u_x|_{x=0,L} = 0,$$
 (4.2)

$$u \mid_{t=0} = u_0, \tag{4.3}$$

where g is an arbitrary function from B_M . To solve (4.1)-(4.3), we use the Faedo-Galerkin method. Having necessary a-priori estimates of solutions to (4.1)-(4.3), we can proceed as in section 3 and prove existence of global solutions.

Here we prove only the estimates in the whole domain $D \times R^+$ in order to give an idea how to use the small norm $||g||_W$.

Lemma 4.1. Let $g \in B_M$, $||u_0||_{H^6(D)} \le \delta$; and assumptions 1,2 hold. If $M_0 > 0$ is sufficiently small number and $0 < M \le M_0$, then for a.e. $t \in R^+$ regular solutions to (4.1)-(4.3) satisfy the inequality

$$||u(t)||_{H^{2}(D)}^{2} + ||u_{xx}(t)||_{H^{1}(D)}^{2} + ||u_{xt}(t)||_{H^{1}(D)}^{2} +$$

$$\int_{0}^{t} (||u(\tau)||_{H^{2}(D)}^{2} + ||u_{xx}(\tau)||_{H^{1}(D)}^{2} + ||u_{x}(\tau)||_{H^{2}(D)}^{2} +$$

$$||u_{x\tau\tau}(\tau)||^{2})d\tau \leq C||u_{0}||_{H^{4}(D)}^{2},$$

where the constant C does not depend on t and on the choice of g.

Proof. First, we consider the integral

$$2(L_g u, u_x)(t) = \frac{d}{dt} ||u_x(t)||^2 + 2||u_{xx}(t)||^2 + 2(\nabla_y u, \nabla_y u_x)(t) - (gu_x, u_{xx})(t) = 0.$$

$$(4.4)$$

We estimate the last term in (4.4) as follows

$$I = |(gu_x, u_{xx})| \le max_{\overline{D}} |g| (||u_{xx}||^2 + ||u_x||^2).$$

Since $||u_x||^2 \le L||u_{xx}||^2$, then

$$I \le C_D M(1+L) \|u_{xx}\|^2, \tag{4.5}$$

where C_D is the constant of embedding

$$sup_{Q^+} \mid g \mid \leq C_D ||g||_W \leq C_D M.$$

Substituting (4.5) into (4.4), we obtain

$$\frac{d}{dt}||u_x(t)||^2 + (2 - C_D(1+L)M)||u_{xx}(t)||^2 \le 0.$$

Choosing M such that $2 - C_D(1 + L)M = 1$ and integrating the result, we have

$$||u_x(t)||^2 + \int_0^t ||u_{xx}(\tau)||^2 d\tau \le ||u_{0x}||^2, \ \forall t \in \mathbb{R}^+.$$
 (4.6)

On the next step, we consider the identity

$$-2(e^{-\lambda x}L_g u, \Delta_y u_x) = \frac{d}{dt}(e^{-\lambda x}, |\nabla_y u_x|^2)(t) +$$

$$2(e^{-\lambda x}\Delta_y u_x, u_{xxx})(t) + 2(e^{-\lambda x}\Delta_y u, \Delta_y u_x)(t) +$$

$$(e^{-\lambda x}\nabla_y (g u_x)_x, \nabla_y u_x)(t) = 0,$$

$$(4.7)$$

where λ is an arbitrary positive number.

We treat all the terms separately. Taking into account (4.2), we find

$$I_{1} = 2(e^{-\lambda x}\Delta_{y}u, \Delta_{y}u_{x}) = \lambda(e^{-\lambda x}, |\Delta_{y}u|^{2}) + \int_{\Omega}e^{-\lambda x} |\Delta_{y}(y.L)|^{2} dy; \quad (4.8)$$

$$I_2 = 2(e^{-\lambda x} \Delta_y u_x, u_{xxx}) = 2(e^{-\lambda x}, |\nabla_y u_{xx}|^2) - \lambda^2 (e^{-\lambda x}, |\nabla_y u_x|^2). \tag{4.9}$$

If $\lambda > 0$ is sufficiently small, then direct calculations give

$$(e^{-\lambda x}, u_x^2) \le \frac{2L^2}{2 - \lambda L^2} (e^{-\lambda x}, u_{xx}^2).$$
 (4.10)

Substituting (4.10) into (4.9), we have

$$I_2 \ge 2(1 - \frac{\lambda^2 L^2}{2 - \lambda L^2})(e^{-\lambda x}, |\nabla_y u_{xx}|^2).$$
 (4.11)

The last term in (4.7) we transform to the form:

$$I_{3} = (e^{-\lambda x} \nabla_{y} (gu_{x})_{x}, \nabla_{y} u_{x}) = \lambda (e^{-\lambda x} (u_{x} \nabla_{y} g + g \nabla_{y} u_{x}), \nabla_{y} u_{x}) - (e^{-\lambda x} (u_{x} \nabla_{y} g + g \nabla_{y} u_{x}), \nabla_{y} u_{xx}).$$

$$(4.12)$$

The first term in (4.12) can be estimated as follows

$$I_{31} = |\lambda((u_x \nabla_y g + g \nabla_y u_x), e^{-\lambda x} \nabla_y u_x)| \le \lambda \max_{\overline{D}} |g| (e^{-\lambda x}, |\nabla_y u_x|^2) +$$

$$\lambda \|e^{-\frac{\lambda x}{2}} \nabla_y u_x\|_{L^2(D)} \|\nabla_y g\|_{L^4(D)} \|e^{-\frac{\lambda x}{2}} u_x\|_{L^4(D)} \leq \lambda \max_{\overline{D}} |g| (e^{-\lambda x}, |\nabla_y u_x|^2) + \lambda C_D \|g\|_{H^2(D)} (\|e^{-\frac{\lambda x}{2}} u_x\|_{H^1(D)}^2 + \|e^{-\frac{\lambda x}{2}} \nabla_y u_x\|_{L^2(D)}^2) \leq \lambda C_D M(e^{-\lambda x}, |\nabla_y u_x|^2) + \lambda C_D M(\|e^{-\frac{\lambda x}{2}} u_x\|_{L^2(D)}^2 + \|e^{-\frac{\lambda x}{2}} u_x\|_{L^2(D)}^2 + \|e^{-\frac{\lambda x}{2}} \nabla_y u_x\|_{L^2(D)}^2),$$

where C_D depends only on D.

Using (4.10), we obtain

$$I_{31} \le \lambda C_D M(\|e^{-\frac{\lambda x}{2}} u_x\|_{L^2(D)}^2 + \|e^{-\frac{\lambda x}{2}} u_{xx}\|_{L^2(D)}^2 + \|e^{-\frac{\lambda x}{2}} \nabla_y u_{xx}\|_{L^2(D)}^2). \tag{4.13}$$

Analogously

$$I_{32} = \left| \left((u_x \nabla_y g + g \nabla_y u_x), e^{-\lambda x} \nabla_y u_{xx} \right) \right| \le C_D M(\|e^{-\frac{\lambda x}{2}} u_x\|_{L^2(D)}^2 + \|e^{-\frac{\lambda x}{2}} u_{xx}\|_{L^2(D)}^2 + \|e^{-\frac{\lambda x}{2}} \nabla_y u_{xx}\|_{L^2(D)}^2). \tag{4.14}$$

Substituting (4.13), (4.14) into (4.12) and taking into account (4.8)-(4.11), we reduce (4.7) to the inequality

$$\frac{d}{dt}(e^{-\lambda x}, |\nabla_y u_x|^2)(t) + (2 - \frac{2\lambda^2 L^2}{2 - \lambda L^2} - C_D M)(e^{-\lambda x}, |\nabla_y u_{xx}|^2)(t) + \lambda(e^{-\lambda x}, |\Delta_y u|^2)(t) \le C_D M ||u_{xx}||^2(t).$$

Choosing $\lambda > 0$, M sufficiently small and using (4.6), we get

$$\|\nabla_y u_x(t)\|_{L^2(D)}^2 + C_0 \int_0^t (\|\nabla_y u_{xx}(\tau)\|^2 + \|\Delta_y u(\tau)\|^2) d\tau \le C_2 \|u_0\|_{H^2(D)}^2, \quad (4.15)$$

where the constants C_0, C_2 do not depend on t, M and on the choice of $g \in B_M$. Acting in the same manner, we obtain from the identity

$$(L_g u, u_{xxx}) = 0$$

the estimate

$$||u_{xx}(t)||^2 + \int_0^t ||u_{xxx}(\tau)||^2 d\tau \le C ||u_0||_{H^2(D)}^2, \tag{4.16}$$

and from the identities

$$((L_g u)_t, u_{xt})(t) = 0,$$

$$(e^{-\lambda x}(L_g u)_t, \Delta_y u_{xt}) = 0,$$

$$((L_g u)_t, u_{xxxt}) = 0,$$

choosing $\lambda > 0, M > 0$ sufficiently small, we get

$$||u_{xt}(t)||_{H^1(D)}^2 + \int_0^t (||u_{xx\tau}(\tau)||_{H^1(D)}^2 + ||\Delta_y u_{\tau}(\tau)||^2) d\tau \le C||u_0||_{H^4(D)}^2.$$
 (4.17)

All the constants in (4.15)-(4.17) do not depend on t, M.

At last, considering for $a.e. t \in \mathbb{R}^+$ the stationary problem

$$u_{xxx} + \Delta_y u = \frac{1}{2} (gu_x)_x + u_{xt},$$
$$\frac{\partial u}{\partial \nu} \mid_{S^+} = 0,$$
$$u \mid_{x=0} = 0, u_x \mid_{x=0} L = 0.$$

we obtain

$$||u_{xx}(t)||_{H^1(D)}^2 + ||u(t)||_{H^2(D)}^2 \le ||u_0||_{H^4(D)}^2.$$

This completes the proof of Lemma 4.1.

Acting in the same manner as in section 3, we can estimate the derivatives of a higher order and to prove at first solvability of (4.1)-(4.3) then solvability of (1.1)-(1.3).

Theorem 4.1. Let $u_0 \in H^6(D)$ satisfy assumptions 1,2 and $||u_0||_{H^6(D)} \leq \delta$. Then there is $\delta_0 > 0$ such that for all $\delta \in (0, \delta_0)$ there exists a unique solution to (1.1)-(1.3), u(x, y, t):

$$u_x, u_{xx}, u_{xt} \in L^{\infty}(R^+; H^2(D)) \cap L^2(R^+; H^2(D)),$$

$$u_{xtt} \in L^{\infty}(R^+; H^1(D)) \cap L^2(R^+; H^1(D)), \quad u_{xxtt} \in L^2(R^+; H^1(D)),$$

$$\partial_x^5 u, \partial_x^4 u_t \in L^{\infty}(R^+; L^2(D)) \cap L^2(R^+; L^2(D)).$$

The proof is similar to the proof of Theorem 3.1, but here we use the dissipativeness of u_{xxx} and choose M > 0 sufficiently small instead of small T.

5. Stability

The presence of the dissipation u_{xxx} in (1.1) along with the global existence theorem also permits us to prove stability of small solutions.

For every $T \in (0, \infty)$, $S_T = \partial D \times (0, T)$, let u(x, y, t) be a unique regular solution to the nonstationary problem

$$u_{xt} - u_{xxx} - \Delta_y u + u_x u_{xx} = f(x, y),$$

$$\frac{\partial u}{\partial \nu} |_{S_T} = 0, \ u |_{x=0} = 0,$$

$$u |_{t=0} = u_0(x, y);$$
(5.1)

and let v(x,y) be a unique solution in D to the stationary problem

$$-v_{xxx} - \Delta_y v + v_x v_{xx} = f(x, y),$$

$$\frac{\partial v}{\partial u} \mid_{\partial D} = 0, \quad v \mid_{x=0} = 0.$$
(5.2)

Theorem 5.1. Let u(x, y, t) and v(x, y) be unique regular solutions to (5.1) and (5.2) respectively. If $||f||_{H^3(D)}$ is sufficiently small, then the following inequality holds

$$||(u_x - v_x)(t)|| \le C||u_{0x} - v_x||e^{-\alpha t},$$

where α is a positive constant.

Proof. For z = u - v we have the following problem

$$Lx = z_{xt} - z_{xxx} - \Delta_y z + \frac{1}{2} ((z_x + 2v_x)z_x)_x = 0,$$

$$\frac{\partial z}{\partial \nu} |_{S_T} = 0, \ z |_{x=0} = 0,$$

$$z |_{t=0} = u_0 - v.$$

Considering the identity

$$2(Lz, z_x)(t) = \frac{d}{dt} ||z_x(t)||^2 + 2||z_{xx}(t)||^2 +$$

$$2(\nabla_{y}z, \nabla_{y}z_{x})(t) - ((z_{x} + 2v_{x})z_{x}, z_{xx})(t) = 0$$

and taking into account that $||f||_{H^3(D)}$ and, consequently, $\max_{\bar{D}} |v_{xx}|$, see [2], are sufficiently small, we come to the inequality

$$\frac{d}{dt}||z_x(t)|| + \frac{1}{2L}||z_x(t)|| \le 0.$$

This implies the assertion of Theorem 5.1.

Remark 5.1. We consider homogeneous boundary conditions (1.2) only for technical reasons. Nonhomogeneous conditions and the right-hand side of (1.1) also can be treated.

References

- [1] Napolitano, D.; Ryzhov, O., On analogy between nonequilibrium and viscous inertial flows with transonic velocities, J. Comput. Math. Math. Phys. 1, (1971), 1229-1261.
- [2] Larkin, N.A., Smooth Solutions for the Equations of Transonic Gas Dynamics, Novosibirsk: Nauka, (1991).
- [3] Lions, J.-L.; Magenes E., Problemes aux Limites non Homogenes, Aplications, Dunod: Paris, (1969).

The Institute of Theoretical and Applied Mechanics

Novosibirsk-90, 630090, Russia.

mail address:

Depart. de Matemática, UEM,

Ag. Postal UEM

87020-900, Maringá, Pr., Brasil

e-mail: nalarkin@gauss.dma.uem.br