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ON ONE PROBLEM OF TRANSONIC GAS
DYNAMICS

Nikolai Larkin *®

1. Introduction

We study the initial boundary value problem for the nonlinear evolution equa-

tion arising in the asymptotic theory of transonic gas dynamics
Lu = Uyt — UUgea + Uptlyr — Ayu =0 (]-1)

inQ=Dx(0,T), D=Qx(0,L); z€(0,L), t€(0,T), yeQC R?,

where Q is a bounded domain with sufficiently smooth boundary 0€; St =
00 x (0,L) x (0,T); L,T are positive numbers;
Ju
E |ST: 03 u I.r:(): 07 Uy |m=0,L: 07 (12)

u(z,y,0) = up(x). (1.3)

Here v is an outward normal vector on Sp, p is a positive constant, u(z,y,1)
is the disturbance potential.

Equation (1.1) models nonstationary transonic flows around a thin body
with effects of viscosity and heatconductivity when a velocity of a gas is close
to the local speed of a sound. For more information about physical aspects of
(1.1) see Napolitano and Ryzhov [1], Larkin [2]. If © = 0, we have the Lin-
Reissner-Tsiegn equation which is hyperbolic for all values of u,(x,y,t). The
presence of —fitg,, implies some dissipativeness of (1.1) that makes it possible

to prove the global existence theorem. On the other hand, this dissipativeness
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is not very strong since for the variables y we have only the Laplace operator. It
means that the stationary part of (1.1) is anisotropic , has different properties
in @ and y variables. It can be noticed also that due to anisotropic properties
of the stationary part, boundary conditions on D are not uniform: we have
the Neumann condition on 92 and 3 conditions in points = 0,2 = L.

Our approach in proving the existence theorem reflects this fact. First we
consider the linear problem and use the Faedo-Galerkin procedure with the
basis only in y variables. Unknown coefficients, depending on (z,t), we find
resolving the initial boundary value problem for the parabolic equation. Then
we exploit fixed point arguments and prove local solvability of (1.1)-(1.3) for
arbitrary regular initial conditions (1.3). To prove global solvability, we use the
dissipativeness of —pt,,, and assume sufficiently small appropriate norms of
uo. At last, we prove stability theorem.

In the sequel, we use mostly standard notations for the functional spaces, see

[3], otherwise the necessary definitions will be given. Without loss of generality,

we put g = 1.
Assumptions.
uoy
L wuo € HG(D)~ TLo(ZIJ,O) = 07 ﬂ |8D: 0,
v
2. I + Ayuo) |sp = 0
o (Uozzr — UorUozs U =0.
Bp U 0z U0 yUo) oD

2. Linear Problem

To solve (1.1)-(1.3) by fixed point arguments, we start from the linear problem.

Let B be the set of functions g(z,y,t,) with the following properties:
9,9z, 9t € Loo(()’ T1 H2(D)) Gt = LOO(Ov Tv HI(D))'

grtt € LZ(OaTi HI(D))v Grext € LOO(OvT§L2(D))7

0
a—i |ST =0, g |z:0,L: 0,

g |t=0: U0z, a:g |t=0: a;ur la::O (7' = 1:2a )7
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where dfu, |i=o are the formal derivatives at ¢ = 0 calculated from (1.1)-(1.3).

Denote
lgllw = llgllz=orim2py) + I9all 0,020y +
Nlgellzeoo.7:m2(0y) + geellzos 07301 (my) +
Nlgzecllzoeo.1:m1 (D)) + NgwwatllLoo0.1:22(D))-

The ball By is the set of functions g(z,y,t) from B such that ||g||w < M.
Clearly, By is a closed set. For anyg € By, M > 0, consider the following

linear problem

1
Lyu = ugs — Ayu — Uggy + §(gu$)z =0, (2.1)
ou
u |z=0: Uz |x=0: Uy |x:L: 0, 8_1/ |ST: 0, (2‘2)
U |t=0: Ug- (23)

Approximate solutions to (2.1)-(2.3) will be sought in the form

N
¥ (z,y,t :Zz (z,)w;(y), (2.4)

j=1
where
Ayw; + Ajw; =0 in Q,
Ow;
%
(w;, wj) = / ww;dy = §;;.

|aQ= 0, (_] = 17...,1\[), (25)

Unknown functions 2} (z, 1) are solutions to the following initial boundary value

problem

Jxt (it

1
g —ud :—)\jzjv—g(gu]zv,wj) in (0,L)x(0,7),

Zjv Ix:O: 07 Zg\/r Ia::O: Zj\;,c |1:=L: 07

zY |i=o= (uo,w;), j =1,...,N. (2.6)

Observing that (2.6) is a linear parabolic problem for zﬁ, one can prove

Lemma 2.1. Let g € By and wug € HS(0,L). Then there exists a unique
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solution to (2.6), z (x,1):
&z € L=(0,T; H=*(0, L)) N L*(0,T; H=*(0, L)), (i = 0,1,2,3).

To pass to the limit as N — co, we have to prove a priori estimates for u”

which will allow us also to get results on solvability of the nonlinear problem

(1.1)-(1.3).
3. Local solutions

Theorem 3.1 Let uy € H®(D) salisfy assumplions 1,2. Then there exisl a
number Ty and a unique function u(z,t), which is a solution to (1.1)-(1.3); and

the following inequality holds
[t | < M.

We prove this theorem in some steps. First, we obtain a priori estimates for the
approximate solutions that allow us to pass to the limit in (2.6), as N — oo,
and therewith to solve the linear problem (2.1)-(2.3). After that, using fixed

point arguments, we come to the result of Theorem 3.1.

A priori estimates

We prove a priori estimates in some steps. One part of them can be obtained
directly in the whole domain Qo = D x (0,7;). To prove other estimates, we
will use a partition of the interval [0, L] and get at first estimates in subdomains
D' C D then in vicinities of the surfaces x = 0, * = L. Combination of these
estimates permits us to get necessary estimates in the whole domain @. In the

Lemma 3.1 we give estimates which are valid in Qo = D x (0, Tp).

Lemma 3.1. For each M < oo, there exists a number Ty = T5(M) > 0 such
that for all t € (0,T5) the inequality holds

ez Dy + ™ (Ol + I ()l )y + lugu I +

t
/0 (e (DI + N Ay (DI + e (7l p))dr < Chlluollfrspy, — (3.1)
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where the constant Cy does not depend on M, N,t.

Proof. We omit the index N in calculations that will be made for smooth

solutions of (2.1)-(2.3) which, additionally to (2.2),(2.3), possess the property

Ju a
87 |ST: 7‘&2/” |5T =0.

ov

It is posssible because of our way of construction of u™(z,y,1,), see (2.4)-(2.6).

First, we consider the identity

2Ly, )1 = DI + 2t 1)+

2(Vyu, Vyug)(t) + ((9tia)a, uz)(t) = 0. (32)
The last term can be estimated as follows
| (gus)e, ta) | = | (gtte, taa) | Il (8)]* + CL(M)||us(1)]]*.
Substituting this into (3.2), we obtain
d 2 2 / 2
eI + lluse (I < Cr(M)lua (@)
Integration over (0,t) gives
+ t
eI + [ aa(P)IPdr < Juoal® + (M) [ Nua()Par. (33)

From here

9 s f b
lua(®I* < IIUanII“rCl(M)/0 [[ua(r) || dr.

By Gronwall’s lemma
la®lF < luael2eC 00

Choosing T7 > 0 such that 0 < C1(M)T} <1 and taking into account (3.3),
we get for all t € (0,77)

(O + [ Nwel)ldr < Cllucall (3.4)
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where C' does not depend on M, N, 1.

Next, we consider the equality
—2(Lyu, (e "Ayty + tgys)) = 0.

Acting in the same manner as by proving (3.4) and choosing T sufficiently

small, we obtain for all ¢ € (0,73)

3
llua() 17y + /0 Ay + l[uae(T) i p)) dr < Clluollizp),  (3:5)

where the constant C' does not depend on M, N, .
From the identity

d ’ ’
2(Lgues tar) = - [t O 42wt ()1 = (g )es o) ()42 Vttsy Vi) (1) = 0,

taking into account (3.5), we obtain for T3 > 0 sufficiently small

t
e (8] +/0 [[taar(7)I|* dr < Clluollzs(p); (3.6)

and from

—=2((Lgu)e, (€7 Aytigs + tUgget)) = 0
for all ¢t € (0,T5)
[t ()17 ) + /Ot(||umr(7)||%ﬂ(p) A u(O)*) dr < Clluollrapy-  (3.7)
Consider for a.e. ¢ € (0,75) the stationary problem
s+ Byt = e+ 3 (gus)e = F(0),
Ju

v
Due to (3.7), F(t) € H'(D). In this case, as was shown in [2],

|ST: O7 u |1‘=0: 0’ Uy |z‘=0: Ug Iz‘:L: 0.

l[tae ()l (0) + e()lla20) < CNE Oy < Clluollmspy. — (38)
Transforming the identity

2((Lgu)ets uzer)(t) = %Hum(t)ﬂz + 2|[thgara (¢)||* -
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((gue) s wgwr) (8) + 2(V g, Vyugn) (L) = 0,
we obtain for T3 > 0 sufficiently small
t
s + [ Wtrn) dr < Cllunlegoy, Y€ 0.75). (39

Combining (3.7)-(3.9), we prove Lemma 3.1.
O

In the next lemma, we give a priori estimates that are valid in the interior
of Q. Let § be a positive number such that 206 < L. We define in (0,1.) smooth

nonnegative functions & = §;(¢) and domains D; as follows
G(x)=11if x€[(¢e+ 1), L —(i+1)d],
E(x) =0 if 2 €[0,i0)U[L—1i6, L], D; = Qx((i+1)d, L—(i4+1)d); (i =1,...,6).
Lemma 3.2. For each M < oo, there exisls a number Ty(M) > 0 such that for
all t € (0,Ty) the following inequality holds
™ ()00 + IO l200) + 12 )20y + 12 Ol +
”Ayui\f(t)HL?(Dn < Cluoll s oy

where C' does not depend on M, N, t.

Proof. We give here only ideas of the proof.
Considering the identity

_(él(Lgu)ty uzz‘zt)(t) — _(gluxtt7 uz‘z‘z‘t)(t) + (fla I Uzrrt Iz)(t)+
1
(glAyuta uz‘z‘z‘t)(t) - 5(51(“19)1:1?7 uxz:vt) =0
and choosing Ty(M) > 0 sufficiently small, we obtain

(&0, | thazar |2)(t) < Clluollzs - (3.10)

Analogously, from

—(gl(Lgu)tv Ayut)(t) =0
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follows
(&, ] Ayue P)(1) < Clluollfs(py-
And from
—(&(Lyt)s, Aty + Upgzs) = 0
we get
(&0, | tawsz [)(1) + (61,1 Ayug *)(2) < Clluollirs -
Now, from

(€2Lgtt, (Ayaes + Alu))(t) = 0
we come to
(&2 (| Vyttawo [* + | Viu [))(1) < Clluolfrs (-
In order to estimate ||ty (t)||m2(p,), We consider the identity
—(&(Lytt)zs Aytigy + Oou)(t) = 0

and come to the inequality

(&5 (| Aytias [+ | Ou [))(t) < Clluollzrsp)-

N. LARKIN

(3.11)

(3.12)

(3.13)

(3.14)

Combining (3.10)-(3.14) with the estimate of Lemma 3.1, we obtain the asser-

tion of Lemma 3.2.

O

The next lemma improves the results of Lemma 3.1 and gives estimates in

the whole domain Q).

Lemma 3.3. There is a small number To(M) > 0 such that for all t € (0,T5)

the inequality holds

1w (Ol zr=oy + 105u™ (D7) + Ntz o)+

t
1Ay (Ol Z2 () +/0 (1A (I + ltger- ()l (p)) d7 < CllwollFreo).
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The scheme of the proof. We define smooth nonnegative functions s; = s;()

as follows:
0 <si(z) <1; si(x)=1 if z€][0,i0]U[L —1d, L],

sifz)=0 if ¢ €[(t+1)0,L — (e +1)d], (i=1,..,7).

The identity
Q(Sngu,AZUI)(t) =0

for Ty sufficiently small can be reduced, taking into account Lemma 3.2, to the

inequality
+
(s (Ayua)) (1) + [ (56, (Ayte))(r) dr < C ey
Adding (3.11) and (3.8), we get
l[wa(®)ll 20y < Cllwollmen)- (3.15)
Now, from the identity

we obtain
|[azze]| < C|luollms(p); (3.16)
and from
—2((Lgtt)et, (€7 Ayt + Fuge))(t) = 0
follows

© t q © Y © -
||um(t)||§,1(D)—|—/0 1Ayt (7)I* + [tz (T) 1)) dr < Clluollre (). (3.17)
At last, considering the identity
(&s(Lgu)at; Aytiar) = 0,

we obtain

1Ayt ()]22(p) < C.
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This and (3.15)-(3.17) imply the result of Lemma 3.3.

Now we are able to prove

Lemma 3.4. Let ug € H®(D) satisfy assumptions 1,2. Then for each fived
M > 0 there is To > 0 such that for every t € (0,To) the approzimate solutions
to (2.1)-(2.3), u, satisfy the estimate

¥ llws = ™ Oll oy + D)2y + 136N O + oy +

t i ]
oy + 192 O + ([ e W ydr) < Colluollmecoy,— (3.18)

where Co does not depend on M, N, t.

Proof. We start from the estimate |[uz¢(t)||g2(p). Since Lemma 3.2 gives this
estimate in Dy, it is sufficient to prove it in vicinities of © = 0, x = L. The

function z = (1 — &)u satisfies the equation
L2 = 2yt — Zppg — By %(gzr)z = —&eu[us + ]a(gu)z — BUpy]—
1
§(§6xu9)z + 36eatts + Covaat,
z=0 when z €[75,L—T74].
By the usual way, we show that
1852+ [ Uy zaar (PP + 1930 dr <l
Taking into account Lemma 3.2, we have
1930 + ety < Cluallny.

Now, from the identity
(Lyu, Aytgg,) =0

we come to

|vwze ()] mr1(py < Clluol|me(p).-
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Taking into account Lemmas 3.2, 3.3, we get

|t ()]l 52y < Clluol| ze(p)-

Considering
((Lgtt)as, DRu)(t) = 0
and
((Lyu)at, Opue) (1) = 0,
we complete the proof of Lemma 3.4.
[}

Now we are able to prove existence theorems. In fact, Lemma 3.4 allows us

to pass to the limits in (2.6), as N — oo, hence the following assertion is valid.

Theorem 3.1. Let ug € H%(D) satisfy assumptions 1,2. Then for every g €
By oand M < oo there exisls a unique solution to (2.1)-(2.3) salisfying (3.18).
Moreover, for each firted M < oo, there is such Ty = To(M) > 0 that the
constant Co in (3.18) does not depend on M, 1 € (0,Tp).
The proof is obvious, we drop it.
O

It follows from Theorem 3.1 that we can define the operator P : u, = Pg.

Lemma 3.5. Let M be sufficiently large and Ty be sufficiently small. Then P

maps By into By and is the contraction operator.

Proof. Putting M = 200||u0||H6(D), we can see that |juy|lw < M/2. This
proves the first part of Lemma 3.5. Defining p(g1,92) = ||g1 =gzl 0,1;12())> We
obtain

Pz, uzr) < C(M)T"p(g1, 92),

where u;; = P(gi), 1 = 1,2. Choosing for fixed M T* € (0,

1 ot o
20(A) ), we com

plete the proof of Lemma 3.5.

It implies
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Theorem 3.2. Let ug € H®(D) satisfy assumptions 1,2. Then there is such
To > 0 that in Gy = D x (0,T0) there exists a unique solution to (1.1)-(1.3);
and (3.18) holds.

4. Global Solutions

Existence of local in ¢ solutions was proved without restrictions for a size of
up. On the other hand, if the appropriate norm of ug is sufficiently small, it is
possible to prove existence of global solutions. Let B be the set of functions

g(z,y,t) defined in QT = D x Rt with the following properties:

9,95, 9: € L®(R*; H¥(D)) N L*(R*; H*(D));

guw € L¥(R*; H'(D)) N L*(R*; HY(D)), goue € L*(R*; H'(D));

Goot € L¥(R*; (D)) N L(R*; L(D));

Jg
v

|5+= 0, g |z=U,L: 0, S+ = 00 x (OL) X R+,

g |t=0: U0z 5;9 |t=0: afux |t=09 (l = 172)-

Denote

llgllw = llgllzer+m2py)nr2rem20) + 92|l Le (R 02 (D)AL2 (R H2 (D) F
lg:l| oo (R 272 (DY) L2 (RH:E2(D)) + |92t || oo (R 5 E1 (DY) L2 (R 5111 (D)) F

| gwtel| L2 (Rt ;1 (D)) F |Gowat || Lo (RH512(D) L2 (RY22(D)) -

The ball By is a closed set of g(z,y,t) from B such that ||g|lw < M.

As in section 3, we start from the linear problem

1
Lyt = Ugp — Uges — Ayu+ §(gux)x =0, (4.1)
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Ju
ov

Gt = 07 u |z:O: Uy |17:0,L: 07 (42)
u |t=0: Ug, (43)

where g is an arbitrary function from Bjs. To solve (4.1)-(4.3), we use the Faedo-
Galerkin method. Having necessary a-priori estimates of solutions to (4.1)-(4.3),
we can proceed as in section 3 and prove existence of global solutions.

Here we prove only the estimates in the whole domain D x RT in order to

give an idea how to use the small norm ||g||w.

Lemma 4.1. Let g € By, |juo||lgepy < 8 ; and assumptions 1,2 hold. If My >
0 s sufficiently small number and 0 < M < My, then for a.e.t € R
regular solutions to ({.1)-(4.3) satisfy the inequality

() lzr2(pyy + a7 oy + Nzt )+

1
L o) + o () sy + () e+
ltere ()T < Cluollfecoy,

where the constant C' does not depend on t and on the choice of g .

Proof. First, we consider the integral
2Lyt ) (1) = (O] + 2 ()]

g% Yz = (lf z rr

2(Vyu, Vyug ) (1) — (gua, uss)(t) = 0. (4.4)
We estimate the last term in (4.4) as follows

I =] (gus, tzr) |[< mazg | g | ([ael® + ||uzl®)-
Since ||ug]|? < L||uze]|?, then
1< CoM(1+ D)lfusal. (45)

where Cp is the constant of embedding

supg+ | 9 1< Collgllw < CpM.
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Substituting (4.5) into (4.4), we obtain
S0l + 2= o1 + DM P < 0.

Choosing M such that 2 — Cp(1+ L)M = 1 and integrating the result, we have
e + [ Nuen( P < el Ve € R, (4:6)

On the next step, we consider the identity

d

S Ve )0+

2 ML, Aoiln) =
2067 Ay, U ) () + 2(€ ™" Ayus, Ayuz ) (£)+
(e72*Vy(gUz ), Vyuz)(t) = 0, (4.7)

where ) is an arbitrary positive number.

We treat all the terms separately. Taking into account (4.2), we find
I= 27 A, Ayr) = Me™7, | Au ) + [ 2| Ayfy.L) P dy;  (4.8)
Q

I = 2(e7 Ayta, sow) = 2(7, | Vyuzs [) = X(e7,| Vyus [*). (4.9)

If A > 0 is sufficiently small, then direct calculations give

212
-z 2 =z 2
(6 7uz‘) S 2_AL2(6 7ur.7‘) (410)
Substituting (4.10) into (4.9), we have
N2 e y
]2 2 2(] = m)(fﬁ A 7| Vy'u,m |Z) (4]1)

The last term in (4.7) we transform to the form:
Iy = (E_szy(gur)ra Vyus) = )‘(e_kr(uxvyg + gVyus), Vyue)—

(e‘“(uxvyg + gVyus), Vyug,). (4.12)

The first term in (4.12) can be estimated as follows

Iy = M(usVyg + gVyus), €V yuz) |< Amazg | g | (€7, Vyus )+
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Mle™ % Vel 2 I Vgl apylle™ % wallzapy < Amazg | g | (67,] Vyua )+
ACD gl 2oy le™ % uallpy + e F Vool 2ap) < ACDM (7%, | Vyuq [)+
MM ([le™Fup|3an) + lle™ F ttaall 2y + lle™ % Vyusl32()),

where C'p depends only on D.
Using (4.10), we obtain
Iy < ACDM([le™ S wallba o) + le™ % taulFa) + 67 Vytteal Bapy)- (4:13)
Analogously
Isg =| (42 Vyg + gVyuz), e ¥V ugs) |<
CoM(le™ % ual2ao) + €™ Funlioy + le™% Vytaalliapy)-  (4.14)

Substituting (4.13), (4.14) into (4.12) and taking into account (4.8)-(4.11), we
reduce (4.7) to the inequality

d’ =Ar 2
a(c & o| Vyus 7)) + (2

2XZL?

~5 gz CoM) (e, | Vyugs [*)(t)+

M, | Ay P)() < CoMuna (1),
Choosing A > 0, M sufficiently small and using (4.6), we get
¢
IV yta ()][72(0) + CO/O (IVytiaa(T)II* + [ Ayu()*)dr < Calluollfrz(p), (4.15)

where the constants Cp, C'; do not depend on ¢, M and on the choice of g € Byy.

Acting in the same manner, we obtain from the identity
(Lgt, tgey) =0

the estimate
e O + [ Nataea(r) 7 <l (1.16)
and from the identities
((Lgu)t, uzt)(t) = 0,

(e_)\x(l’gu)tv Ayum) =0,



184 N. LARKIN

((Lgu)h uz‘z‘z‘t) =0,

choosing A > 0, M > 0 sufficiently small, we get

s t - b
II'th(i)Ilip(D)+/0(Ilum(T)Ilip(D)+IIAyur(T)Ilz)dT < Cllwollzrapy-  (417)

All the constants in (4.15)-(4.17) do not depend on t, M.

At last, considering for a.e.t € Rt the stationary problem

1
Uger + Ayu = §(gur)x + g,

0
e |s+=0,

v
U |z=0=0, Uz |z=0.= 0,
we obtain
[tz (D71 () + N Fr2py < Mol 7y

This completes the proof of Lemma 4.1.
O

Acting in the same manner as in section 3, we can estimate the derivatives
of a higher order and to prove at first solvability of(4.1)-(4.3) then solvability
of (1.1)-(1.3).

Theorem 4.1. Let ug € H®(D) satisfy assumptions 1,2 and ||uo||gepy < 9.
Then there is & > 0 such that for all § € (0,00) there exists a unique solulion
o (1.1)-(1.3), u(z,y,t):

Uz, Uzey Ust € L°(RT; HX(D)) N L*(RY; H*(D)),
gy € L(R*; H'(D)) N L*(R*; H'(D)), tawne € L*(RT; HY(D)),
Oou, Bu: € L®(RY; L3(D)) n LA(Rt; L*(D)).

The proof is similar to the proof of Theorem 3.1, but here we use the dissipa-

tiveness of u;., and choose M > 0 sufficiently small instead of small 7.
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5. Stability

The presence of the dissipation gy, in (1.1) along with the global existence
theorem also permits us to prove stability of small solutions.
For every T € (0,00), St = 0D x (0,T), let u(x,y,t) be a unique regular

solution to the nonstationary problem

Uzt — Uggr — Ayu + UgpUgpy = f(xa y)7

Ou
% |ST: 07 u |z:0: 07
U |t=0= uo(z,y); (5.1)

and let v(z,y) be a unique solution in D to the stationary problem

—Vgzr — Ayv + VpVpz = f(.’,E’ y)7

v

W lop=10, v |z=0= 0. (5.2)

Theorem 5.1. Let u(z,y,t) and v(x,y) be unique regular solutions to (5.1)
and (5.2) respectively. If ||fllgspy is sufficiently small, then the following
inequality holds

[l(tta = va) ()] < Clluor — velle™,

where « s a positive constant.

Proof. For z=wu — v we have the following problem

1
Lx = 24t — 2ppe — Dyz + 5((235 +2v,)zs)s = 0,

0z
% |ST: O; z |Jr:0: 07
2 |i=0= ug — v.

Considering the identity

2Lz, z)(t) = diltllzas(t)II2 + 2 z2a (1) [I*+
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2(Vyz, Vyze)(t) — ((z2 + 2v5) 24, 225) (1) = 0

and taking into account that ||f||zs(py and, consequently, maxp | vy |, see

2], are sufficiently small, we come to the inequalit
s Yy s q y

d 1
— ||z, — < 0.
Slzall + 57 120 < 0

This implies the assertion of Theorem 5.1.

O

Remark 5.1. We consider homogeneous boundary conditions (1.2) only for
technical reasons. Nonhomogeneous conditions and the right-hand side of (1.1)

also can be treated.
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