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UNIQUENESS THEOREM AND EXACT BOUNDARY
CONTROLLABILITY FOR A CLASS OF
DISTRIBUTED SYSTEMS

Boris V. Kapitonov* Joel S. Souza'®

Abstract

Este paper apresenta resultados de unicidade e controlabilidade ex-
ata na fronteira para uma classe geral de sistemas lineares do tipo de
Schrédinger. Demonstra-se, primeiramente, um resultado de observabil-
idade (Desigualdade Inversa via o método HUM) para o sistema ho-
mogéneo associado, para um tempo (cxplfcito) suficientemente grande.
Estabelece-se também a desigualdade direta para este sistema. Estas
desigualdades sio obtidas pelo método dos multiplicadores de Lagrange.
Utilizando-se estas duas desigualdades e aplicando-se o método HUM,
demonstra-se a controlabilidade exata no espago natural associado ao
sistema.

1. Introduction and Problem Formulation

Throughout this paper € is an open bounded domain in R® with sufficiently
smooth boundary T' = 9Q. We denote by Ty = T'g(2°) the part of T' for which
the following inequality is satisfied:

(v — 2% v(z)) > 0,

where v(z) is the unit outer normal, 2° is a point in R™, and (-,-) is the inner
product in R™ We assign I'y =T\ T.
In the cylinder Qx]0,T[, T > 0, we consider the following initial boundary

value problem that generalizes the Schrodinger equation:
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where u = (u!,... u™), u®

= u"(z,1), AP = (A?)* and Q(z) = Q*(z) are
square matrices of order m with real entries, and the summation goes over all
possible collections p = (p1,...,p¢) and ¢ = (q1,---, %), Px, ¢ € {1,...,n}. We

assume that Q(z) > 0, Q(z) € [Cl(ﬁ)]mz, and
Z qugq : Zp Z OOZ |§p|27 OO > 0.
P P

Here ¢, = (Q s+« +>G") is an arbitrary, complex-valued vector whose components
depend on the collections p = (p1,...,pe), |G]? = & 244 |§;”|2, and the

dot is the inner product of vectors:

Gy =Gl ++ 4L
Our main purpose is to study the following exact controllability problem:
Given the initial state ¢(z), time T' > 0, and a desired terminal state ¥ (z),
with ¢(z) and ¢ (z) in appropriate function spaces, find a vector-valued func-
tion p(z,t) in a suitable function space such that the solution of (1);—(1), with

the boundary condition

i —1 -1
gz =0, &=0L, .f-2, % =0, % = p(z,1),
’ Z v 21 v 20 (2)
satisfies:
u(z, T, p) = ¥(z). (3)

Since the system is linear, it is equivalent to seeking controls which cause

the system to rest.
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Several approaches are known to solving the problem of exact boundary
controllability. One of them is based on Russell’s controllability via stabiliz-
ability principle (cf. [13]). Another method (the Hilbert uniqueness method),
introduced by J. L. Lions (cf. [7] and [8]), is based on the construction of ap-
propriate Hilbert space structures on the space of initial data. These Hilbert
structures are connected with uniqueness properties.

In this paper, the controllability problem (1);—(1)2, (2)—(3) is solved using
the HUM.

For some results of the general theory of exact boundary control, we can cite
the works of J. Lagnese, in that he studies the exact boundary controllability
of Maxwell’s equations in a general region (cf. [5]), and the works of B. V.
Kapitonov (cf. [3] and [4]). For specific results of the exact controllability theory
applied to the Schrodinger equation, we can cite the work of E. Machtyngier,
where she studies the exact controllability and the boundary stabilization for
the Schrodinger equation (cf. [9]); the work of C. Fabre, where she studies the
exact internal controllability for the Schrédinger equation (cf. [2]); the works of
M. Milla Miranda and L. A. Medeiros (cf. [11] and [10], and finally the work of
G. Lebeau (cf. [6]).

2. Well-Posedness of (1)

Let H be the Hilbert space consisting of u(z) € [H{(2)]™, with the inner product:

(u,v)o = / > AP Diw - Divda +/ Q(z)u - vd,
Qi Q
where

Div=—-—"——— p=(p1,...,] p. €{1,...,n}.
p“ axpl “axma P ([’17 apl)v P { ’ 7”}

In addition, below we use the notation:
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Oty

Oy - 0y,

(1 < 1),

and

Au = (=1)">" DL(AP Diw).
P
In H, we define the unbounded operator B:

D(B) ={u e H; AN € H},
Bu=1iAu+iQ(z)u, foru € D(B).

We remark that H = [H!(Q)].

The following lemma is demonstrated in a standard way.
Lemma 2.1. The operator B is skew-self-adjoint.

From Stone’s theorem, it follows that the operator B generates a one-
parameter group of unitary operators U(¢) in H. Moreover, U(t) is strongly con-
tinuous in ¢ and U(t)y is strongly differentiable with respect to ¢t for ¢ € D(B).

Furthermore,

d
EU(t)Lp = BU(t)p, and
and U(t) takes D(B) over D(B) and commutes with B.

It then follows that u(z,t) = U(t)e is the unique solution of the mixed

[Ut)ello = llels, VteR,

problem (1) for ¢ € D(B), and has the following regularity:

u € C°([0,T]; D(B)) N CY([0, T); H).

3. Uniqueness Theorem

The proof of uniqueness is based on the invariance of the system (1);, without

potential (Q(z) = 0) relative to the one-parameter group of dilations in all
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variables. This property leads to the identity

2Re { (m 4+ o8, Pyt ga) - [ius + (~1) DE(AP Dlu) + Q(x)u]} (4)

= % [2& (Z AP? Dg'u, . Df;ﬁ + Q(x)u - ﬂ) +Imu- (z — 20, V)ujl
Pia

= 9 {—(xﬂ - z0) (Z quDgu . Df,ﬂ +Q(z)u-u+Imu, - u)}

ax"‘” g

) T X5

P4 o=1

o—1 0\— T,
{QRe (Dp (Tx — T )Us, + 206 D; "Wy

o

—I—gD;_lﬁ) . Df;_”(quDgu)] - [(z,i —29Qp v T+ 20Q(2)u - H] .

Let u(x,1) be a solution of (1). It is easy to verify that

u(x,t 2L::/ x)|%dx, t>0, 5
|t 0fde = [ le(@)tde, =0 (5)
and
¢ . -
/ﬂ(};q quun-Dpu—l—Qu-u) dz (6)

= /ﬂ (Z Ap’qu;ga . D:;@—I— Qe - Q) dx, t>0.
P

The integration of (4) over 2 x (0,T) gives us

r[ [% (; APD' - Dl + Q(x)u~ﬂ>]

i _ 0
—{—/ﬂlmu (z—2°,V)u

dz (7)

=T

dx—/ Ime - (z — 2°, V)pdzr
- Q

[ tr0e w4 20 ]

T
~ [ [ =" > A" Dta - Dywdr dt
0 JI P

-
= / / (z—2%v)) A"Diu - Diudr di.
0 Jro

pyq
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Denote by C; the least positive constant for which
/(|u|2 + |V'u,|2)d:L' & 01/ Z |Df;'u,|2d.r, for u € [Hg(Q)]m.
Q Q5
Then we obtain the estimate

'/ Im@ - (z — 2% V)udz
Q

~ RF (ZAWD% D4 + Qa)u- ) di

t—0 0 \pyq

where R = max |z — 2°|.
T€EQ

Thus, (7) implies the inequality

(267 - Rgl)/Q(ZAMDgu-D;;mQu-a) da (8)

0 Pyq
</ / NQupu - T+ 20Qu - u] dz

+/ [ (e =) X 4Dl Diwdr .
0 JIg P

Let us assume that Q(x) satisfies the following assumption:

(i) (%:*ﬂﬁg)QxKC'Z-I-,uQC-ZSO,C: (Gry.--,¢™) € C™, for some 0 < p < 1,

In view of this assumption, the inequality (8) gives us the estimate:

( Rg;) /Q (Z quDgu . Df;ﬁ + Q(z)u- ﬂ) dx (9)

p.q

<R/ [ > AmDLu- Dimar dt.
8

0 pya

We arrive at the following assertion:

Theorem 3.1. Suppose thal the matrices AP? and Q satisfy the assumption

made earlier. Let a vector function u(x,t) satisfying the following conditions:
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z% + Au+ Q(z)u=0, in Qx]0,T7Y,
du 0y ‘
u,a’...’m_o, on I'x]0, T,

0t
w = O, on FO X]O’T[

IfT>T, = R%, then u(z,t) =0, for (z,t) € 2x]0,T7.

Proof. It suffices to observe that

' o'

Dty - D = Pe, L. . i

> A D a B =3 Ay Vo e Vo Vo g
P,q

P9

since u(z,t) vanishes on Ty together with the normal derivatives up to order £.

O

Another consequence of (9) or Theorem 3.1 is the following assertion: for

T > To, the expression

T 3
(/0 ™ AP Dby - DEg dT dt) (10)

Topyg

determines a norm on the set p(z) of the initial data (in (10), u(z,t) is the
solution of (1) with initial data ¢(z)).

Denote by F the Hilbert space resulting from completion of the set of the
functions ¢(x) € D(B) in norm (10). By virtue of the inequality (9), we have
F C [H(Q)].

The following inequality for the solutions of (1) can be obtained by analogy
with the inference of (9) by replacing the operator (z — 2%, V) by (Ve, V) in
the identity (4). We choose the function ¢ = () as follows: p € C*1(Q) and
g—f >0 >0, for € I'. From the corresponding integral identity, we obtain the

inequality

T
/ /FZquDﬁu-Dﬁﬂdthg/ﬂ(;A”qu;wa;ﬂ—l- Q(x)u-ﬂ) da dt.

0 pyg
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Thus, F = [H{(Q)]® and the following scalar product is defined over the space
[Ho(Q)]™:
(¢, )7 / /'E:AWDﬁlzﬂvdrm

To pg
where T' > T, u is the solution of (1), and v is the solution of (1) with the
initial data ¥ (z).

4. Exact Controllability

We consider the homogeneous mixed problem:

ive + Av + Q(z)v =0, in 2x]0, 77,

o 5, k=0,....,0—1, in ¥ =Tx]0,¢[, (11)
ov*

v(z,0) = ¥(x), in Q.

From this problem, we resolve the following non-homogeneous retrograde prob-

lem:

iwy + Aw + Q(z)w =0, in Ox]0, T,

5 a0-1,

drl: =0, k=0,...,0—2 % =0

v S =I'x]o,T[ » 2 s (12)
-1 i 1

a_w = Q , w(z,T)=0, inQ,

ot 32, =To x10,7] on* 2

and, with the solution w = w(z,t) of (12), we define the application:

At = iw(0).

The following identity can be verified by direct computations:

(—1
/1/) -tw(x de—/ /1_ ZquDEU Vp, . l/mg = 1ail"alt.

0 pyg
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Taking % = %, on Y, = I'ox]0,T], we get:
(A, )m 7 = [[P]F = ||1/)||[2Hg(n)]mv for T > T.

Consequently, the operator A is an isomorphism of the space [H§(2)]™ onto the
dual space [H™4(Q)]™.
Consider the following control problem: Let o(z) € [H™*(0)]™ be an arbi-

trary initial data of the problem

iug + Au+ Q(z)u =0, in Qx]0,T7,

K -1
P 4 el -2 T2 _p
(91/"’” Z al/é_1 Z
aé—lu (13)
o1 = p(z,1)
u(z,0) = p(x), in Q.

Find p(z,t) € L*(Tox]0, T[) such that
uw(z,T,p)=0, inQ (14)

for a sufficiently large T > 0.
The control p(z,t) is constructed as follows: Determine the unique solution

¥ € [H5(Q)]™ for the equation:
A = ip.

Let v(z,1) be the solution of (11) with 1» = A=!(i¢). Then we put p(x,t) = %.
It is obvious that, by choosing p(x,t), u(z,t), the solution of (13) satisfies (14).
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