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DIRECT DECOMPOSITIONS IN ARTINIAN
MODULES OVER FC-HYPERCENTRAL GROUPS
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I. Ya. Subbotin*®

Abstract

In this article the existence of X- decomposition in artinian ZG-
modules is established for some kinds of formations X', where G is a
locally soluble I’C-hypercentral group.

1. Introduction.

As in Finite Group Theory a class X’ of groups is called a formation if it satisfies
the following conditions:

if G € X, H is a normal subgroup of GG, then G/H € X;

if Hy, Hy are normal subgroups of GG such that G/H,,G/H, € X, then
G/H,NHy € X.

Let R be a ring, G a group, A an RG-module, By, By RG-submodules of A,
By < By, and let X be a class of groups. The factor By /By is called X-central
(respectively X-eccentric) if G/Cq(By/B1) € X (respectively G/Cq(Bsy/B) ¢
X).

Let a € A. We say that a is an X C-element if G/Cs(aRG) € X.

Put
XCra(A) = {a € Ala is an XC-element of A}.

It is easy to see that XYCre(A) is a RG-submodule of A in the case when X

is a formation. The submodule XCgrg(A) is called the X' C-center of A (more
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precisely: the XC-RG-center). Starting from the X'C-center, we can construct

the upper X'C-central series of the module A. Tt is the following series
(0) =A< A <... A< Ap1 <. A,
where A1 = XCra(A), Aat1/Aa = XCra(A[AL),a < v, XCra(A/A,) = (0).

The last term A, of this series is called the upper XC-hypercenter of the
module A (more precisely, the X C-RG-hypercenter), and is denoted by X C g (A);
the terms A, of this series are called the upper X'C-hypercenters.

If A= A, then the module A is called XC-hypercentral; if v is finite, then
A is called XC-nilpotent.

If X = G is the class of all identity groups then we come to the concept of

RG-hypercentral ( or hypertrivial) module.

If X = F is the class of all finite groups then we will obtain the concept of
FC-hypercentral module.

Let R be a ring, G a group, A an RG-module, and let X be a forma-
tion of groups. We say that A has the X-decomposition (more precisely, X'-
RG-decomposition) if A = XYCr&(A) @& XCig(A) where XCji(A) is an RG-

submodule of A such that every of its non-zero RG-factor is X'-eccentric.

If X = G then we obtain the Z-decomposition. This themes began from the
famous Fitting lemma which is very useful in Group Theory. In the Infinite

Group Theory first results on the existence of Z-decomposition were obtained

by B. Hartley and M.J.Tomkinson [3].

Artinian modules are very good extensions of finite modules. In his paper
[9] D.I. Zaitsev proved that every artinian ZG-module has the Z-decomposition

for every hypercentral group G.

The next natural formation is the class F of all finite groups. The first result
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about the F-decomposition was obtained by D.I.Zaitsev [10], who proved that
every artinian ZG-module over locally soluble hyperfinite group G has the F-
decomposition. The condition of local solubility is not necessary (Z.Duan [2]).
But for non-torsion F'C-hypercentral groups we have only some initial results

(D.1.Zaitsev [11], Z.Duan [1]).

In this paper we consider the question about the existence of X-decomposition

not only for the formation F but for some extension of F.

We say that the formation & is overfinite if X" satisfies the following condi-

tions:
(1) F< A,
(2) if G € X, H is a normal subgroup of finite index, then H € X;

(3) if G is a group, H is a normal subgroup of G such that |G : H| is finite
and H € X, then G € X.

Our main result is the following theorem.

Theorem. Let G be a locally soluble F'C-hypercentral group, and let A be an
artinian ZG-module. If X is an overfinite formation of groups then A has the

X -decomposition.

Corollary. Let G be a locally soluble F'C-hypercentral group, A be an artinian

ZG-module. Then A has the X -decomposition for the following formations X :
(1) X = F, the formation of all finite groups;

(2) X = LF, the formation of all polycyclic-by-finite groups;
(3) X =C, the formation of all Chernikov groups;

(4
(

)
)
) X = 8 F, the formation of all soluble-by-finite minimaxz groups;

5) X = 3.7:, the formation of all soluble-by-finite groups of finite special
(Mal’cev-Prufer) rank;

(6) X = So.F, the formation of all soluble-by-finite groups of finite section

rank.
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2. Some preliminary results.

The first two lemmas and their corollaries are almost obvious and we omit their

proofs.

Lemma 1. Let R be a ring, G a group, A an RG-module, B an RG-submodule
of A, and let X be a formation of groups. Then X ga(B) < Xga(A).

Lemma 2. Let R be a ring, G a group, A an RG-module, By and By RG-
submodules of A, By < By, and let X be a formation of groups. If every non-zero
RG-factor of By and of By/ By is X-eccentric, then every non-zero RG-factor

of By is X -eccentric.

Corollary 1. Let {B.|a < v} be an ascending chain of RG-submodules of A
satisfying the following condition:

if £,C are RG-submodules such that B, < C < E < Bay1,C # F,a < 7,
then E/C is X-eccentric.

Then every non-zero RG-factor of the submodule B, is X -eccentric.

Corollary 2. Let { By|X € A} be a family of RG-submodules of A such that ev-
ery non-zero RG-factor of By is X-eccentric for any X € A, and B = 37,¢cp B).

Then every non-zero RG-factor of B is X -eccentric.

Corollary 3. Let {B\|X € A} be a family of RG-submodules of A such By has
the X-RG-decomposition for any A € A, and B = 3 \cp By, Then B has the
X-RG-decomposition.

Corollary 4. The module A has the largest RG-submodule having the X -RG-

decomposition.

Lemma 3. Let R be a ring, G a group, A a RG-module, H a normal subgroup
of G such that G/H is finite, and let B be a RH-submodule of A such that
A = BRG. If X is an overfinite formation of groups and B has the X-RH -
decomposition then A has the X -RG-decomposition.
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Proof. Let {g1,...,g.} be a transversal for H in G. Then A = Bg1+. ..+ Bg,.
If C, D are RH-submodules, C' > D, L = Cy(C/D),g € G, then Cy(Cg/Dg) =
g 'Lg. Therefore H/Cy(Cg/Dg) = H/g™'Lg = H/L. Tt follows that if the
RH-factor C/D is X-central (respectively, X-eccentric) then the RH-factor
Cy/Dy is X-central (respectively, X-eccentric) too. This means that the RH-
submodule Bg has the X-RH-decomposition.

Let a € XCru(A), Ao =aRH, A1 = aRG. Then A = Aggi+...+ Aogn. Put
U = Cu(Ap), then H/U € X. Tt follows that H/Cr(Aog) € X for each g € G,
so that ag € XCru(A). In particular, X Crp(A) is an RG-submodule of A.
Further, Ci(A1) = g7'UgiN...Ng; Ug,, hence H/Cy(A;) € X. From the def-
inition of overfinite formation we obtain that G/Cg(A1) € X, i.e. XCru(A) <
XCra(A). The converse inclusion is also valid, so that XCry(A) = XCra(A).
It follows from transfinite induction that XCgi(A) = XCra(A).

Let B = By @ B, where B; = XCgy(B), B, = XCgry *(B). Then Byg; +
...+ B2g, is an RG-submodule of A. Corollary 2 of Lemma 2 implies that
Bagi + ...+ Bagn, < XCgry *(A). Lemma 1 yields that Bigy + ...+ Big, <
XCgru(A), hence XCry *(A) = Bagi + ... + Bagn, in particular, Y Cry *(A) is
an RG-submodule of A. Let U and V be RG-submodules of XYCry *(A) such
that U > V and U # V. Then U/V is a non-zero RH-factor of XCry *(A), so
that H/Cy(U/V) ¢ X. From the definition of overfinite formation we obtain
that G/Cq(U/V) ¢ X. This proves the equation XCrpy *(A) = XCre *(A).

The following lemma is well-known.

Lemma 4. Let G be a FC-hypercentral group, L be a finitely generated subgroup
of G. Then L is nilpotent-by-finite. In particular, G is a locally (polycyclic-by-
finite) group.

Lemma 5. Let G be a polycyclic-by-finite group, 1 # g € ((G), and let A be
a finitely generated ZG-module. If A is a monolithic module with the monolith
M and M(g — 1) = (0), then A(g—1)™ = (0) for some m € N.
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Proof. Since M is a simple ZG-submodule then pM = (0) for some prime p
([6], theorem 9.55). Let T' be the torsion part of A. Since A is a monolithic
module then 7" is a p-subgroup. Since Z( is a noetherian ring and A is a finitely
generated module then A is a noetherian ZG-module. In particular, T is finitely
generated. It follows that there exists a number n € N such that p*T = (0).
Then p" A is torsion-[ree, therefore, M Np™ A = (0). This means that p"A = (0),
i.e. A=T. In other words A is a p-group and p"A = (0).

We can consider the submodule A; = Q;(A) as F,G-module. Let R = F,(z)
be the group algebra of an infinite cyclic group (z) over F,. Put az = ag for
each a € A;. Then A is an RG-module and R is a principal ideal domain. Since
M(g—1) = M(z—1) = (0) then the (z —1)-component of A; is non-zero. Using
the same arguments we obtain that A; coincides with its (z — 1)-component.
Since A is a noetherian RG-module then this implies that A;(z — 1)™ = (0)

for some m; € N.

The mapping ¢ : Q(A) — Q4(A) defining by the rule ap = pa,a € Qy(A),
is a ZG-homomorphism, so Imep and Kerp = 4 (A) are ZG-submodules. Since
Imp < Ay then I'mp(z —1)™ = (0). Similarly Kerg(z —1)™ = (0). Therefore
D(A)(z —1)*™ = (0).

Using a simple induction and the equality A = Q,,(A), we obtain that A(z —
1)™ = (0) where m = nm;. Thus A(g — 1)™ = (0).

Corollary. Let G be a polycyclic-by-finite group, 1 # g € ((G), A be a finitely
generated ZG-module. If C4(g) # (0) then A# A(g —1).

Proof. Let 0 # a € C4(g). Since g € ((G) then C4(g) is a ZG-submodule. Let
Ba be a maximal ZG-submodule of A with the property ¢ ¢ Ba. Then A/Ba
is a monolithic ZG-module with the monolith «ZG + Ba/Ba = M/Ba. Then
(M/Ba)(g — 1) = (0), so we can apply lemma 5 to the module A/Ba.

Lemma 6. Let G be a locally (polycyclic-by-finite) group, 1 # g € ((G), A a
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finitely generated ZG-module. If Ca(g) # (0) then A# A(g —1).

Proof. Let A = ¢1ZG + ... + a,ZG. Assume that A = A(g — 1). Then
there are elements by,... ,b, € A such that a; = bi(g —1),1 < i < n. Let
0 # ¢ € C4(g). Choose in G a finitely generated subgroup H with the properties
ge Heby,... ,bpb eay ZH+ ...+ a,ZH = B. Let b € B then b = a1z +
cootapz, =bi(g— Do+ ...+ b (g — Doy = (hhxy + ... + bpzy) (g — 1).

It follows that B = B(g —1). On the other hand, ¢ € C4(g9)N = Cp(g), in
particular, C'g(g) # (0). Corollary to lemma 5 implies that B # B(g—1). This

is a contradiction.

3. Proof of the main theorem.
If G € X then A = XC7¢(A). Therefore we can assume that G ¢ X'.

Suppose that A does not have the X'-ZG-decomposition. Put M = {B|B is
a ZG-submodule such that B does not have the X-ZG-decomposition}. Then
A € M, in particular, M # (). Since A is an artinian ZG-module, then M
has a minimal element C'. Corollary 4 of lemma 2 implies that C includes the
largest Z(G-submodule M having the X-ZG-decomposition . From the choice of
C' we obtain that M includes every proper ZG-submodule of C', in particular,

M is a maximal ZG-submodule of C.

Let M = My & M, where My = XCz6(M), My = XC* z6(M). Assume first
that G/Cg(C/M) ¢ X, and consider the factor-module C'/M,. In other words,
we can assume that M = XYCza(M). We can assume also that Cq(C) = (1).

Put S = Soc z6(C'). Since S has the X-ZG-decomposition then S < M.
It follows that G/Cg(S) € X, in particular, Cg(S) # (1). Since G is a FC-
hypercentral group then C¢(S) N FC(G) # (1) [4, lemma 3]. Let 1 # « €
Ce(S) N FC(@), then (z)% is central-by-finite and the index |G : Co({z)%)] is

finite. Therefore either (x)“ includes a finite minimal G-invariant subgroup X
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or a G-invariant torsion-free finitely generated subgroup X. If X is finite then
X is also abelian, because & is locally soluble. Put H = Cg(X). In these both
cases |7 : H| is finite and X < ((H).

Since C/M is a simple ZG-module then C/M = @1<i<n(B/M)g; where
B/M is a simple Z H-module, g1,...,9, € G [8, lemma]. If we assume that
H/Cg(B/M) € X then from the equation H/Cy((B/M)g) = H/g7'Cu(B/M)g
& H/Cy(B/M) we obtain that H/Cy((B/M)g;) € X for any 1,1 <i <mn. It
follows that H/Cy(C/M) € X. This contradiction shows that H/Cy(B/M) ¢
X. Since B £ M€ then B ZG = C. If we assume that B has the X-ZG-
decomposition then C' = B ZG has the X-ZG-decomposition by lemma 3, a

contradiction. Hence B does not have the X-ZG-decomposition.

Put C = {Q|Q is a ZG-submodule of B such that @ does not have the X-
ZG-decomposition}. Since B € C then C # (). By theorem A of paper [7] C' is
an artinian ZG-module. Thus C has a minimal element . Lemma 3 yields that
E £ M, so that B= E+ M. Corollary 4 of lemma 2 shows that £ includes the
largest Z H-submodule F; having the X-ZG-decomposition. Lemma 3 shows
that FhZG < M, ie. E; < M. Since B/M is a simple ZH-module then
Ey = EnN M. Moreover, E/E, = E/ENM Zpg E+ M/M = B/M, so that
H/Cu(E/E) ¢ X.

Let S; = Soc za(C). Since C is an artinian Z H-module then S; = L; &

.. @ Lg for some simple Z H-submodules L;, 1 < i < s. Since X < ((H) then

Li(wZX)is a ZH-submodule of L;,1 <14 < s, here wZX is the augmentation
ideal of ZX. This means that either L;(wZX) = L; or L;(wZX) = (0) because
L; is a simple ZG-module of C,1 < ¢ < s. Consequently, 51 = Cs(X) &
S1(WZX). Since Sy is a ZG-submodule of C and X is a normal subgroup then
S1(wZX) is a ZG-submodule of C. If we assume that S;(wZX) # (0) then
SHWZX) N Soc 76(C) # (0). On the other hand, X < Cg(Socz6(C)), so that
S1HWZX)N Soc z6(C) < S1(WZX)N Cs1(X) = (0). This contradiction shows
that S < Cg(X). Hence ENCu(X) # (0). If e € E\E; then eZH £ Ey, so
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eZH = FE. In particular, I is a finitely generated Z H-module. It follows from
lemmas 4 and 6 that F(g—1) < F for each ¢ € X. Asin lemma 3 we can prove
that £y = XCzy(E). Consider the mapping 0 : a+FE1 — a(g—1)+Fi(g9—1),a €
E.If E(g—1) # Ei(g — 1) then from E(g — 1) < By = XCzi(F) we obtain
that H/Cy(E(g—1)/Ei(g—1)) € X. However E(g—1)/E1(g—1) Zzn E/E4,
in particular, Cy(E/E,) = Cy(E(g — 1)/ Ei(g — 1)). But H/Cy(E/E;) ¢ X.
This contradiction shows that E(g — 1) = E;(g — 1)). This means that £ =
Cr(g) + Ey. It follows from the choice of E that £ = Cg(g) because Cg(g)
is a Z H-submodule of E. Since this is true for each g € X then £ < C¢(X),
in particular, Co(X) € M. Since X is a normal subgroup of G then Cp(X)
is a ZG-submodule. Hence C = C¢(X), i.e. X < Cg(C) = (1). This is a

contradiction.

Now consider the case when G/Cq(C'/M) € X. We will consider the factor-
module C'//M;. In other words, we can assume that M = XC5,(M). Again we
can assume that Ce(C) = (1).

Since G/Cq(C/M) € X then Cq(C/M) # (1). Therefore Co(C/M) N
FC(G) # (1).

Let 1 # y € Cq(C/M) N FC(G) then Y = (y)“ is central-by-finite and
|G : R| is finite where R = Cg(Y). Again we can assume that Y is abelian, i.e.
Y < ¢(R).

Let C; = {Q|® is a Z R-submodule of €' such that @ € M}. Since C € Cy
then C; # (). By theorem A of paper [7] C is an artinian Z R-module. Hence
the set C; has a minimal element U. Since ¥ < ((R) then U(g — 1) and
Cu(g) are ZR-submodules for any ¢ € Y. Moreover, U(g — 1) = U/Cy(g).
As in lemma 3 we can prove that M = XC5x(M). Since g € Cg(C/M) then
U(g —1) < M. If we assume that Cy(g) < M then U/Cy(g) has one non-zero
X-central ZR-factor. On the other hand, from U(g — 1) =z U/Cy(g) and
U(g — 1) < XCzp(M) we obtain that every non-zero Z R-factor of U/Cy(g)
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is X-eccentric. This means that Cy(g) £ M. It follows from the choice of
U that Cy(g) = U. Tt is valid for every ¢ € Y. Therefore U < Cq(Y).
In particular, Co(Y) € M. Since Y is normal in G then Ce(Y) is a ZG-
submodule. Then C = C¢(Y) because M includes every proper Z(G-submodule
of C. Consequently, Y < Cg(C) = (1), so that in this case we also obtain a

contradiction. This final contradiction completes the proof.

References

[1] Duan, Z. J., Eztension of abelian-by-hyper (cyclic or finite) groups, Com-
mun. Algebra 20 # 8 (1992), 2305-2321.

[2] Duan, Z. J., The F-decomposition of artinian modules over hyperfinite

groups, Proc. Edinburg Math. Soc. 38 (1995), 117-120.

[3] Hartley, B., Tomkinson, M. J., Splitting over nilpotent and hypercentral
residuals, Math. Proc. Cambridge. Phil. Soc. 78 (1975), 215-226.

[4] Kurdachenko, L. A., Some classes of groups with the weak minimal and

mazimal condilions on normal subgroups, Ukrain. Math. J. 42 # 8

(1990), 937-942.

[5] Kurdachenko, L. A., Subbotin, I. Ya, Modules over Dedekind domains (Na-
tional University, Los Angeles, 1996).

[6] Robinson, D. J. S., Finiteness conditions and generalized soluble groups,

Part 1, (Springer, Berlin, 1972).

[7] Wilson, J. S., Some properties of groups inherited by normal subgroups of
finite index, Math. Z. 114 (1970), 19-21.

[8] Zaitsev, D. 1., The existence of direct complements in groups with operators,

Studies in the Group Theory (Inst. of Math., Kiev, 1976), 26-44.

[9] Zaitsev, D. 1., Hypercyclic extensions of abelian groups, Groups defined by
the properties of systems of subgroups (Inst. of Math., Kiev, 1979), 16-37.



DIRECT DECOMPOSITIONS IN ARTINIAN MODULES OVER 99

[10] Zaitsev, D. 1., Splitting extensions of abelian groups, The structure of
groups and the properties of systems of subgroups (Inst. of Math., Kiev,

1986), 22-31.

[11] Zaitsev, D. L., Direct sums of infinite abelian groups with operators, Ukrain.

Math. J. 40 # 3 (1988) 257-263.

Algebra Department Mathematics Department
Duepropetrovsk University National University

Pr. Gagarina 72, 320625 9920 S.La Cienega Blvd
Ukraine Inglewood , CA 90301, USA

isubboti nunic.nu.edu



