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SECANT VARIETIES OF ADJOINT VARIETIES

Hajime Kaji®

Introduction

The purpose of this work is to show how the graded decomposition of complex
simple Lie algebras g can be applied to studying the secant varieties of adjoint
varieties, which is part of a joint work [KOY] with M. Ohno and O. Yasukura.

Here an adjoint variely associated with g is defined as follows: Consider a
connected simple algebraic group G with Lie algebra g and the adjoint rep-
resentation of G on g. Then G naturally acts on the projective space P.(g).
The adjoint variety X is defined to be the unique closed orbit of this action
(see [Btl], [Bt2], [W]), which is a non-degenerate, smooth projective variety in
P.(g) and does not depend on the choice of G. The secant variety of a projective
variety X C P, denoted by Sec X, is defined to be the closure of the union of
lines in P passing through at least two points of X (see [LV], [Z]).

The key invariant here is the secant deficiency of a projective variety X C P,
which is defined by

6 :=2dim X 4+ 1 — dim Sec X,

and a non-degenerate X C P is considered to have degenerate secants if § > 0
and Sec X # P. F. L. Zak proved that § < 1 dim X for non-degenerate smooth
projective varieties X C P with degenerate secants, and gave a classification of
X attaining the upper bound of d§, which are called Severi varieties (see [LV],
7).

Our first result is

Theorem A. If X C P.(g) is an adjoint variety, then dimSec X = 2dim X,
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that is, 6 = 1. Moreover if tk g > 2, then Sec X # P.(g).

The main part is the former (see Theorem 4.1; for the latter see Proposition
4.4), to which we give two proofs: One is based on Terracini’s Lemma, and the
other is on a description of the secants of the adjoint variety as the closure of
an orbit, which is given below (see Proposition 4.3). Thus this result tells us
that the adjoint varieties for rtk g > 2 yield an example of projective varieties
with degenerate secants (see Example 4.5): note that the adjoint variety in the
remaining case is of type A;, which turns out to be a conic in P? (see Propo-
sition 3.1). This result is used in [K] to obtain a classification of homogeneous
projective varieties with degenerate secants. Zak [Z] also listed such varieties.
However, adjoint varieties of rk g > 2 do not appear in his list because a certain
dimensional condition is assumed there.

Now for a projective variety X C P and for a general point v € X, we
denote by C, the contact locus of the embedded tangent space T,Sec X to
Sec X, that is, the closure of the set of smooth points v € Sec X such that
T,Sec X = T,Sec X. Recently it has been recognized that the dimension of
Cy is a significant invariant in classifying X C P with degenerate secants. It
is easily shown that dimC, > 6 4+ 1 for a general u € Sec X (see [FR], [Fj],
[O]). Moreover for all Severi varieties and Scorza varieties (see [Z], [LV]) and
for all 3-dimensional X with degenerate secants (see [Fj]), it was shown in their
classifications that dim C, = § 4+ 1 for a general u € Sec X.

The second result is

Theorem B. If X C P.(g) is an adjoint variety, then dimC, = 2 for general
u € Sec X.
In fact, we explicitly describe C,, in terms of 3-dimensional Lie subalgebras

of g (see Theorem 5.1).

1. Graded Decomposition of Simple Lie Algebras

Let g be a complex simple Lie algebra with the Killing form B, § a Cartan
subalgebra, and R the set of roots with respect to . For any o € R, there exist
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T, € hand Y, € g such that B(T,,H) = a(H) and [H,Y,] = o(H)Y, for all
H €h. Then B(T,,T,) # 0 and set

2
H,:=——-T.,.
= BT
Fix a system of simple roots, {a1,..., .}, and define an ordering on R. Let

A be the highest root with respect to the ordering, and let RT be the set of

positive roots. For each a € R, choose X, € C-Y, such that
[Xa, X_o] = H,.

Then {Ha,, Xo|l <@ <r a € R} forms a Chevalley basis of g. From a standard

fact (see, for example, [Hm1; 25.2]) one obtains

Proposition 1.1. Let g be a complex simple Lie algebra, and consider eigenspaces
of ad Hy:
g; :={Y €g|(ad H\)Y = jY}.

Then we have a decomposition,

9=92991 D0 De O
with the following properties:

(1)
g =hHe P ([C-X.0C-X_,),

a€RT\(RAU{\})

g1 Z@C'X(,, g_lz@(C-X_a,

a€Ry a€Ry
9:=C-X,, g2=C-X_,,
where we sel Ry := {a € RT|A —a € R}.

(2) [gk;gl] g oy with g; = 0 fOT |]| 0
(3) g41 # 0 if and only if tk g > 2.

The decomposition above is called the graded decomposition of complex con-

tact type for g in case of rk g > 2 (see [Al], [A2], [W; §2, Theorem 4.2]).
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2. Adjoint Varieties

Let G be a complex, connected, simple algebraic group with the Lie algebra g,
V' a finite-dimensional complex vector space, and G — GL(V) an irreducible
representation of G (see, for example, [Hm2; 31.3 and 33.6]). Then G naturally
acts on the complex projective space P.(V) of one-dimensional subspaces of V/

through the canonical projection,
7:V\{0} =2 P(V);0— C-o.

From any non-zero v € V one obtains a smooth, quasi-projective variety,
X:=n(G-v)=G -z CP(V),

where we set z := m(v) (see, for example, [Hm2; 8.3]). Since the action is irre-
ducible, X C P.(V') is non-degenerate, that is, not contained in any hyperplanes
of P.(V)). Moreover if v is a highest weight vector of the representation, then the
orbit X is closed, hence projective (see, for example, [Hm2; 31.3, Theorem and
21.3, Corollary B]). Conversely a closed orbit in P.(V) is unique and obtained
from a highest weight vector (see, for example, [FH; Claim 23.52]).

In general for a variety X in a projective space P or in an affine space A,
we denote by T, X the embedded tangent space to X at = in P or in A: On
the other hand, we denote by ¢, X the Zariski tangent space to X at x (see, for
example, [Hr, Lecture 14], where our embedded tangent spaces in P and in A

are respectively called the projective and affine tangent spaces).

Lemma 2.1. For X =n(G-v) =G -2 CP(V) with n(v) = x, we have

_ | Pudg-v), (veg-v)
TIX_{ P(g-v& C-v), (veg-v),

where note that g naturally acts on V' by the differential of the representation
G — GL(V).

Proof. It suffices to show that in either case T, X = 7((g-v+v) \ {0}), where

g- v+ v is an affine subspace of g which is a translation of the vector subspace
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g-v by v. We see that g-v = {,(G - v) as vector subspaces via the natural
isomorphism of vector spaces, V'~ t,V. Therefore we have T,(G-v) =g-v+v
as affine subspaces in V, and the result follows since T, X = n(T,(G - v) \ {0}).

O

Assume that the representation is adjoint. Then the orbit of the highest

root vector X € g yields a non-degenerate, smooth projective variety,
X:W(G'X,\) = G-IEA QP*(Q),

where we set z, := m(X,). The varieties X C P,(g) obtained in this way are
called adjoint varieties. Note that adjoint varieties X C P.(g) are determined
by the Lie algebra g and independent of the choice of algebraic groups G with
Lie algebra g: Indeed for any such G, the image of the adjoint representation

G — GL(g) is equal to Int (g).

Proposition 2.2. If X CP.(g) is an adjoint variely, then we have
T, X =P(C-H\& g1 B 92) = (ha, Pulgn), 22,

where x) = m(X)\),hy = 7(H,) and (x) denotes the linear span of * in P.(g).
In particular, we have dim X =dimg, + 1 = #R) + 1.

Proof. By virtue of Proposition 1.1 we describe (ad g)X), as follows:
(ad @) Xx = [g-2, Xa] & [9-1, Xo] © [g0, Xa] © [g1, X2] © [g2, X1\]
=C- [X_5, X1\] @ [g-1, X1] © [90, X2 ] © 00 0.
Since ad X, : C- X_, — C- X,_, is an isomorphism for o € R, ad X, :

g_1 — g1 is an isomorphism, and we have [g_1, X)] = g1. Moreover we have

[go, X2] = g2. Thus we find
(ad )X\ =C- H) & g1 & ga.

Obviously we have X, € (ad g)X,. Therefore the result follows from Lemma
2.1.
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3. In case of A4,
Let g be the Lie algebra,
shC=C- X, 6C-HaC-X_,

where [ Xy, X_| = H,[H, X;] =2X, and [H, X_] = —2X_. We concretely set

. 01 1 0 00
A+:=[O O},H::{O _1],X_:=[1 O]'

We indentify P.(sl,C) with P2 by m(¢X, +nH+(X_) = (€ :1: (), and consider

a conic in P%
Q = {n(Y) € Pi(sLO)|det Y = 0} = {(¢£ : 9 : () € P*éC + n* = 0}.

Set vy = w(X4), h := w(H) and z_ := 7(X_), where 7 : sl,C\ {0} —

P.(sl,C) = P? is the canonical projection.

Proposition 3.1. (a) The adjoint action on sl,C has two orbits as follows:
G-z, =0Q, and G-h=P?\Q.

(b) In particular, Q) is an adjoint variety, and we have Sec @ = P2

Proof. (a) This is an easy exercise of linear algebra since the action is conjugate
and one may assume G = SLyC. It follows from the definition of @ that
G-z CQand G-h CP?\Q since det X, = 0 and det H = —1 # 0.
Conversely, let Y be a non-zero element in slC. Since tr Y = 0, the set of
eigenvalues of YV is {a, —a} for some a € C. If @ = 0, then the Jordan canonical
form of YV is equal to X, which means that 7(Y) € G- z4. Thus Q C G- xy.
If a # 0, then Y is diagonalizable, hence m(Y) € G - h. Thus P*\ Q C G - h.

(b) The conic @ must be an adjoint variety since it is a unique closed orbit of

adjoint action, so that Sec Q = P? clearly follows.
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There is another proof for the orbit of A without diagonalization, that is,
tangent lines to @ are available for a proof of P2\ Q C G-k, which geometrically
illustrates relationship among x4, z_ and h.

For an arbitrary point z € P?\Q, consider tangent lines to @ passing through
z, and let z,y € @ be the points of contact, with x # y. It is easy to obtain a
parametric representaion for the orbit of (X4, X_) in sl[,C®2. Eliminating the

parameters from this, we find that
G- (zq,2_)=Q xQ\A

in P2 x P?, where A is the diagonal set of Q x Q: this part amounts to the
digonalization and a weaker statement still holds for a general case (see Lemma
4.2). This implies that there exists g € GG such that ¢ - (z4,2_) = (z,y). Since
the action on P?is linear, it follows that g-7,,@Q = T,Q and g-T,,_Q = T,Q. On
the other hand, we have T, Q@ N T,_Q = {h}, which follows from the defining
equation of Q. Therefore g - h = z since T,Q N T,Q = {z}.

Remark 3.2. It turns out that the geometric illustration of relationship among
24, x_ and h extends to the case of general adjoint varieties (see the forthcoming

paper [KY]).
4. Secant Varieties

In this section we prove

Theorem 4.1. [f X C P.(g) is an adjoint variety, then dimSec X = 2dim X.
We give two proofs: One is based on Terracini’s Lemma (see, for example,
[FR; §2]), and the other is based on a realization of Sec X, which is given below.

In either case, the following observation is essential:
Lemma4.2. The orbit G-(xy,x_)) in X X X is a dense open subset of X x X .

Proof. According to [Hm2; 8.3, Proposition], each orbit is locally closed. On
the other hand, it follows from [Z; p. 51] that G - (z),2_\) = X x X. Thus the
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claim follows.

Proof 1 of Theorem 4.1. According to Terracini’s Lemma, we have T,Sec X =
(T X, T,X) for a general point z € Sec X such as z € (z,y) for general points
z,y € X. So we have dimSec X = dim(T, X,T,X) for general 2,y € X. It
follows from Lemma 4.2 that dim(7,X,T,X) = dim(T,,, X, T,,_, X) for general
z,y € X. It follows from Proposition 2.2 that

<Tr>\1¥: Tx_)\X> —. P*(g—‘) 'EB | O} @ (C : H)\ @ g @ 92),

whose dimension is equal to 2(dimg; + 1) = 2dim X. This completes the proof.

[}

For another proof of the claim, we describe Sec X as the closure of an orbit

under the adjoint action. For a root « of g, let s, be a Lie subalgebra of type
Ay in g as follows:

5 =C- X, 0C - H,0C- X_,.

Proposition 4.3. If X C P.(g) is an adjoint variety, then the orbit G - hy is
a dense open subsel of Sec X, where X is the highest root of g and hy = w(H)).
In particular, we have Sec X = G - P.(s)).

Proof. For the former part, it is enough to show that Sec X = G - hy, (see the
proof of Lemma 4.2). In case of A; this follows from Proposition 3.1.

For a general case, let GG\ be the algebraic subgroup of G corresponding
to the Lie subalgebra s, and let @ be the orbit G - x5 of x) by the action
restricted to G)\. It follows from Proposition 3.1 that @) is a conic in P.(s))
passing through z) and z_,. We first show that G- hy C Sec X. It is sufficient
to show that h) € Sec X since X is homogeneous, and this follows from h) €
Sec Q) C Sec X.

Next we show the converse. It suffices to show that a general point z of
Sec X lies in the orbit of k) under the adjoint action. By virtue of Lemma 4.2,

we may assume that z € (z,y) and (z,y) = g - (za,z_)) for some g € G. It
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follows that ¢g=' - 2 € {xy,7_,) C P.(s)). Then we may assume g~' -z & Q\
since z is general. Thus it follows from Proposition 3.1 that ¢g=' -z = ¢’ - hy, for
some g’ € G). Then we have that z = g¢' - hy € G - h,.

For the latter part, since it follows from Proposition 3.1 that G' - hy =
G-Gy-hy=G-(Pds))\ @), we have G- hy, = G - P.(s)).

Proof 2 of Theorem 4.1. It follows from Proposition 4.3 that dimSec X
dim G - hy. On the other hand, by virtue of Proposition 1.1 we have
(ad g)Hy = [g-2, H\] D [9-1, HA] © [go, HA] © [g1, HA] © [g2, H)\]
=g 209100 D g @ go.

Since Hy ¢ (ad g)H,, it follows from Lemma 2.1 that
Th,(G-hy)) =P g_2E9.10C-H, S g1 S92),

whose dimension is equal to 2dim X (see Proposition 2.2). This completes the

proof.

Proposition 4.4. If X C P.(g) is an adjoint variely, then
codim (Sec X,P.(g)) = dimgo — 1.
In particular, if tk g > 2, then Sec X # P.(g).

Proof. From Propositions 1.1, 2.1 and Theorem 4.1 we see that dimP.(g) —
dimSec X = (dimg—1) —2(dimg; + 1) = dimgy— 1 > dimh—-1=rk g— 1.

O
Example 4.5. We give a table of adjoint varieties. It follows from Theorem
4.1 and Proposition 4.4 that those varieties in case of rk > 2 yield an example
of projective varieties X C P with degenerate secants, that is, dimSec X <

2dim X + 1 and Sec X # P.
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TABLE OF ADJOINT VARIETIES

type highest root XCP dimP+ 1
A1 w1 + w; P(Tw) = P! x PN (1) (I+1)* -1
Bi>2 - F, (Q2-1)4-5 202 4 |
Ciss 2wy vy (P21) 2% + 1
Di4 - F, (Q¥-2)4-7 212 _ |
Eq Wy X0+ 78

E; wy X321 133

Fg wg X56+L 248

Fy wy X4l 52

Gy Wy XAl 14

In the table, w; denotes the i-th fundamental weight as in [Br], vy the
Veronese embedding, ™ a quadric hypersurface of dimension n, F,, (Q") the
Fano variety of m-planes in Q", and N(1) cutting by a general hyperplane (see
[FH], [Hr] for the definitions).

5. Contact Loci

In this section we prove

Theorem 5.1. If X C P.(g) is an adjoint variety, then dimC, = 2 for a
general point u € Sec X .
By virtue of the Proposition 4.3 it suffices to consider the case u = hy, so

that the claim follows from
Proposition 5.2. If X C P.(g) is an adjoint variely, then Cy, = P.(s)).

Proof. Take a general z € P.(s)). Then (hy,z) N Q, # @), and we may assume
that (hy,z) N Q\ = {z,y} with @ # y, where @, is a conic in the projective
plane P.(s,) obtained as the orbit G, - z), as before. According to Terracini’s
Lemma, we have T,Sec X = (T, X,T,X) = Tj,Sec X, which implies z € C},.
Thus we have P.(s)) C C,.
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Conversely, let z be a general point in C},. Then it follows from Proposition
4.3 that there exists an element g € G such that z = g - hy € P.(g - s)).
It follows from Terracini’s Lemma that Tj,Sec X = (T, X, T,_, X). On the
other hand, (75, X, T,_, X) = P.([g, (X, X_»)]) since T;, X = P.([g, X+.]).
Therefore, denoting by L, the subspace g_» & g2 = (X, X_)) of g, we have
Ty, Sec X = P.([g, L,]), so that T.Sec X = P.([g,g- L,]). Since z € Cy,, these
linear spaces coincide in P.(g) and we have [g, L.] = [g,9 - L.].

Let Z = Zo 4+ Y acr ¢aXa be a vector in g - Ly, where Zy € h and ¢, € C.
The h-component of the vector [X_,, Z] is —co Hy. Since [X_,, Z] € [g,g9- L,] =
lg, L] and [g, L\] = g_1 & 55 D g1, we have ¢, = 0 unless a = £\, where one
should note that C- H, # C- Hp if a« # £3. Thus we have g- Ly C L\ @ b.
This implies that [g - Lx,g - L\] € sx. On the other hand, since it follows that
sy = [[La, La], Ln] & [L, L], we have

g-sx=|[lg-Lrg-Lx,g- L\ ®[g-Lxg- L]

Combining these formulas, we see that g - s, C s,, so that z € P.(s,). Hence
Ch; g P*(5A)-
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