

ON A POSSIBLE NONSIMPLICITY CRITERION FOR FINITE FACTORIZED GROUPS

Angel Carocca *

Let G be a finite group. G is factorized if G is written as G = HK with H and K subgroups of G. Numerous papers have been written on various aspects of such a group. There are a number of results which allow to conclude the non-simplicity of G from suitable conditions on H and K (see for instance [1]).

A well known theorem of R. Maier and H. Wielandt (see [9] and [10]), establishes the following:

Theorem. Let G = HK be a group such that H and K are subgroups of G. If $X \leq H \cap K$ is a subnormal subgroup of H and K, then X is subnormal in G.

In [8] O. Kegel proved a very useful criterion for the non-simplicity of a finite group (which he exploited to demonstrate that any product G = HK of finite nilpotent groups H, K is always solvable).

Theorem. (Kegel [8]) (a special formulation) Let G = HK be a group, H and K subgroups of G. Let p be a prime number such that H and K contain non-trivial normal Sylow-p-subgroups. Then G cannot be a nonabelian simple group.

^{*}This research was partially supported by FONDECYT 8970007. Primary 20F17, 20D40; Secondary 20D25, 20E28

14 A. CAROCCA

In view of these results the following is a natural conjecture:

Conjecture. Let G = HK be a finite group such that H and K are subgroups of G and let p be a prime number. If $\mathbf{O}_p(H) \neq 1 \neq \mathbf{O}_p(K)$, then G cannot be a nonabelian simple group. (Here $\mathbf{O}_p(H)$ denotes the largest normal p-subgroup of H).

When $\mathbf{O}_p(H) \cap \mathbf{O}_p(K) \neq 1$ the Conjecture is true by Maier-Wielandt's Theorem and when $\mathbf{O}_p(H) \in Syl_p(H)$ and $\mathbf{O}_p(K) \in Syl_p(K)$ it is true by Kegel's Result.

Using classification theorems of simple groups we prove a particular case of our Conjecture.

Theorem. Let G = HK be a finite group such that H and K are solvable subgroups of G and let p be a prime number. If $\mathbf{O}_p(H) \neq 1 \neq \mathbf{O}_p(K)$, then G cannot be a nonabelian simple group.

2. Preliminary Results

In this section, we collect some of the results that are needed.

If G is the product of two solvable subgroups, it is known that G is not necessarily non-simple. Particular cases of finite groups factorizable by two solvable subgroups were studied by many authors, Kazarin [7] studied the general case and obtained the following result:

Lemma 2.1. (Kazarin [7]) Let G = HK be a group with H and K solvable subgroups of G. If all composition factors of G are known groups, then the nonabelian simple composition factors of G belongs to the following

list of groups:

- (a) PSL(2,q) with q > 3
- (b) M_{11}
- (c) PSL(3,q) with q < 9
- (d) PSp(4,3)
- (e) PSU(3,8)
- (f) PSL(4,2)

Remark 1. Let $G = \mathbf{PSL}(2, q)$ with $q = p^l$ and p a prime number. The following properties of G are well known:

- (a) A Sylow-p-subgroup P of G is elementary abelian of order $q = p^l$ and P is disjoint from its conjugates.
- (b) If r is a prime distinct from p or 2, then a Sylow-r-subgroup of G is cyclic.
- (c) If p is odd, then a Sylow-2-subgroup of G is dihedral.

For a proof see: [5], p. 191, Satz 8.2/8.3/8.4.

Lemma 2.2. Let G be a group, H and K subgroups of G. If H permutes with every conjugate of K in G, then $H^K \cap K^H$ is subnormal in G.

For a proof see: Wielandt [11].

Proposition 2.3. Let G = HK be a group, H and K subgroups of G. Let p be a prime number such that $\mathbf{O}_p(H) \neq 1 \neq \mathbf{O}_p(K)$. If $\mathbf{O}_p(H)\mathbf{O}_p(K) = \mathbf{O}_p(K)\mathbf{O}_p(H)$, then G cannot be a nonabelian simple group.

16 A. CAROCCA

Note that this proposition contains Kegel's result as a particular case, if $\mathbf{O}_p(H) \in Syl_p(H)$ and $\mathbf{O}_p(K) \in Syl_p(K)$.

Proof: Suppose G be a simple group. Put $X = \mathbf{O}_p(H)$ and $Y = \mathbf{O}_p(K)$. Let $g = hk \in G$ with $h \in H$ and $k \in K$. We have:

$$X^{g}Y = X^{hk}Y = X^{k}Y = (XY^{k^{-1}})^{k} = (XY)^{k} = (YX)^{k} = YX^{hk} = YX^{g}$$

So, by Lemma 2.2 we have $X^Y \cap Y^X$ is subnormal in G. Since XY is a p-subgroup, we conclude that $X^Y \cap Y^X = 1$. Hence the commutator subgroup $[X^Y, Y^X] \leq X^Y \cap Y^X = 1$. Let $g = hk \in G$, $x \in X$ and $y \in Y$. Since $X \subseteq H$ we have that $x^g = x^{hk} = x_1^k$, with $x_1 \in X$ and $y^{x^g} = y^{x_1^k} = k^{-1}x_1^{-1}kyk^{-1}x_1k = y$. So $G = X^G \leq \mathbf{C}_G(Y)$, a contradiction.

Proposition 2.4. Let G = HK be a group, H and K subgroups of G. Let p be a prime number such that $\mathbf{O}_p(H) \neq 1 \neq \mathbf{O}_p(K)$. Then each of the following conditions implies the non-simplicity of G:

- (a) $\mathbf{O}_p(H) \cap \mathbf{O}_p(K) \neq 1$
- (b) G has only one conjugacy class of elements of order p.
- (c) $P \in Syl_p(G)$ is disjoint from its conjugates.

Proof: (a) This is a particular case of Maier-Wielandt's theorem [9] and [10]. Also see Lemma 1.4 of Kazarin [6]

- (b) Suppose G be a simple group. Let $x \in \mathbf{O}_p(H)$ and $y \in \mathbf{O}_p(K)$ with |x| = |y| = p and $g = hk \in G$ such that $x^g = x^{hk} = y$. We have $x^h = y^{k^{-1}} \in \mathbf{O}_p(H) \cap \mathbf{O}_p(K)$ in contradiction to (a).
- (c) This item is clear.

3. Proof of our theorem

Suppose that the theorem is false and let G be a counterexample. We will apply the Lemma 2.1 to G:

(I) Assume $G \cong \mathbf{PSL}(2,q)$ as in (a).

If $q = 2^n$, then every Sylow-subgroup of G is abelian, hence by proposition 2.3 we have that a contradiction.

If q is odd, then for every prime $r \neq 2$ a Sylow-r-subgroup is abelian. Let $S \in Syl_2(G)$. By Remark 1, we have that S is a dihedral group. By proposition 2.3, we have that |S| > 4. So by [2], p. 262, Th. 7.3, we have that G has one conjugate class of involutions, in contradiction to proposition 2.4 (b).

Since \mathbf{M}_{11} has one conjugate class of elements of order two and one of elements of order three, we have that G is not isomorphic to \mathbf{M}_{11} .

(II) Assume $G \cong \mathbf{PSL}(3, q)$ as in (c).

In this case G has one conjugate class of involutions. Hence p is odd and by proposition 2.3 the only possibility is $p = q \ (= 3, 5, 7)$. Let r the largest prime divisor of |G| and $R \in Syl_r(G)$ such that $R \leq H$. If $\mathbf{O}_p(H) \neq 1$, we obtain that p divides $|N_G(R)|$ a contradiction.

(III) Assume $G \cong \mathbf{PSp}(4,3) \ (|G| = 2^6 \cdot 3^4 \cdot 5)$

Since G has one conjugate class of involutions, the only case to check is p = 3. Let $P \in Syl_5(G)$ such that $P \leq H$. Since 3 is not a divisor of $|\mathbf{C}_G(P)|$, we obtain the contradiction $\mathbf{O}_3(H) = 1$.

(IV) Assume $G \cong \mathbf{PSL}(4,2) \cong A_8 \ (|G| = 2^6 \cdot 3^2 \cdot 5 \cdot 7)$

In this case, the only possibility is p=2. Let $R \in Syl_7(G)$ such that $R \leq H$ and $L \in Syl_5(G)$. Since $|\mathbf{C}_G(R)| = 21$ by Sylow's theorem we obtain that $|\mathbf{O}_2(H)| = 8$. Since H is solvable by Hall's theorem (see [3] and

18 A. CAROCCA

[4]) we may assume that $L \leq K$. Since $|\mathbf{C}_G(L)| = 7$ so $|\mathbf{O}_2(K)| \geq 8$. Hence $\mathbf{O}_2(H)\mathbf{O}_2(K) = \mathbf{O}_2(K)\mathbf{O}_2(H)$ in contradiction to proposition 2.6.

- (V) Assume $G \cong \mathbf{PSU}(3,8)$ ($|G| = 2^9 \cdot 3^4 \cdot 7 \cdot 19$)
- Let $S \in Syl_2(G)$. Then S is disjoint from its conjugates, so by proposition 2.4 (c) we have that the only possibility is p = 3. Let $P \in Syl_{19}(G)$, such that $P \leq H$. Since 3 is not a divisor of $|\mathbf{C}_G(P)|$ we have the contradiction, $\mathbf{O}_3(H) = 1$.

Acknowledgment. The author would like to thank Professor Rudolf Maier for suggesting this problem.

References

- Amberg, B., Franciosi, S., De Giovanni, F. Products of Groups. Clarendon Press, Oxford, (1992).
- [2] Gorenstein, D. Finite Groups. New York, Harper and Row, (1968).
- [3] Hall, P. A note on soluble groups. J. London Math. Soc. 3, (1928), 98-105.
- [4] Hall, P A characteristic property of soluble groups. J. London Math. Soc. 12, (1938), 188 - 200.
- [5] Huppert, B. Endliche Gruppen I. Springer-Verlag, Berlin / New York, (1967).
- [6] Kazarin, L. On the product of two groups that are close to being nilpotent. Math. USSR Sbornik Vol. 38, (1981), 47 - 59.
- [7] Kazarin, L. Product of two solvable subgroups. Comm. Algebra 14, (1986), 1001 - 1066.
- [8] Kegel, O. Produkte nilpotenter Gruppen. Arch. Math. (Basel), 12, (1961), 90 - 3.

- [9] Maier, R. Um Problema da teoria dos subgrupos Subnormais. Bol. Soc. Brasil Mat., 8, (1977), 127 - 130.
- [10] Wielandt, H. Subnormalität in faktorisierten endlichen Gruppen. J. Algebra, 96, (1981), 305 - 311.
- [11] Wielandt, H. Vertauschbarkeit von Untergruppen und Subnormalität. Math. Z. 133, (1973), 275 - 6.

Facultad de Matemáticas Pontificia Universidad Católica de Chile Casilla 306, Santiago 22 CHILE

E-mail: acarocca@mat.puc.cl