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MULTIPLICITY ONE RESULTS FOR UNITARY
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1. Introduction

Among the many modern techniques employed in the study of diophantine
equations, the use of (-functions and L-functions, especially those associated to
automorphic forms, seems to be crucial.

On the other hand, there is a standard way of passing from classical cusp
forms to cusp forms defined on G'Ly(A) = G(A), where A denotes the adele
ring of Q. We denote by Ao(G(Q)\G(A)) (or simply Ay for short) the space of
cusp forms on G(A).

It is well-known that G(A) can be written as the restricted direct product
of the groups G, = G'Ly(Q,) with respect to the compact groups K,, where K,
equals O(2) for the archimedean prime, and K, = GLy(Z,) for finite p.

It is also known that any irreducible admissible representation 7 of G(A) is
Jactorizable, i.e. it can be written as a (restricted) tensor product ™ = ®, m,
where m, is an irreducible admissible representation of G, unramified for almost
all p.

There are two important results in the theory of cuspidal representations of
GLy(A):

(1) Multiplicity One: Let (m, V), (7', V') be two irreducible admissible subrep-
resentations of Ag. If # & 7/, then V = V.
(2) Strong Multiplicity One: Let m and 7’ be as in (1), and assume that m =

®p Tp, ™ = @, 7', and that m, = 7', for almost all p. Then V = V".
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We point out that the results described above are actually valid for GL,(A),
for any positive integer n and Q replaced by any number field.

The main goal of this work is to establish multiplicity one results for a global
unitary group G of arbitrary dimension n associated to a quadratic extension
of global fields E/F. If v is a place of F' then G, is known to be isomorphic to
either GL,(F,), in case v splits in £, or to the group U(®, E,) (to be defined
below), if v remains prime in £. Thus locally we always have to consider these
two cases although in what follows we concentrate on U(®, E,).

There are three main ingredients in the proofs of the theorems above. The
first is the existence and uniqueness of the Whittaker Model, the second is
the so-called “small lemma” and the third is the Jacquet-Langlands formula
which makes possible the recovery of an automorphic form from its Fourier
coefficients and a good portion of this work is understanding and recovering
these ingredients in the unitary case.

The two central results of this paper are: multiplicity one for special au-
tomorphic representations of R(A) (to be defined below), and a strong multi-
plicity one type of result for automorphic representations of G(A), namely, if
an irreducible discrete representation m = ®m, is locally isomorphic to a Weil
representation at all but a finite number of finite places of F then 7 in fact

equals a global Weil representation.

2. Local set up

Let F be a local, non-archimedean field, and F a quadratic extension of F.
Conjugation with respect to £/F will be denoted by a bar. Let Op (resp. Og)
be the ring of integers in F' (resp. F) and p # 2 a prime in F. Let wg/p be the
character of ™ of order two associated to E/F by class field theory. Let £ be
an element of £* such that Trg r(€) = 0.

For n = 2m + 1 we define
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-1
(with £ in the center) and for n = 2m, we define ®,, similarly by deleting &.
Let U(®,,) be the unitary group associated to the skew-Hermitian form &, i.e.,
U(®,) ={g € GLn(E) : 'gPpg = P, }.

Throughout this section, G denotes either U(®,,) or GL,(F), Z denotes the
center of G and P denotes the maximal parabolic subgroup of G defined by
P={g=(9:;) €G:6i1=¢n;=0,i=2,...,n, j=1,..,n—1}. I[ (W, A) is
a symplectic space over F', A non-degenerate, then the Heisenberg group H(W)
associated to (W, A) is the central extension of W consisting of pairs [w, 1], w €
W, t € F, with group law defined by [w, t][w’,t'] = [w + w',t + 1 + T A(w, w')].
The center of H(W) is {[0,1], ¢t € F'} and is isomorphic to F'.

Let N be the unipotent radical of G. If G = U(®,,), N consists of matrices

1 'o®,_y d(w,t)
[w,t] = ( y w )

of the form

1
where w € E"2, t € F, d(w,t) = 'w®,_yw + ¢, and I,_; denotes, as usual,
the (n—2) x (n —2) identity matrix. In this case N is isomorphic to H (W) with
W = E"? (as a vector space over F) and A(v,w) = Trg/p("o®,_sw) (we may
also denote (W, A) by (W,_3, A,,—2) if we need to be explicit). If G = GL,(F),

then N consists of matrices of the form

1 tUQ d(u1 ) U,z’t)
[ur & ug, t] = I, 251

1

where uy,uy € F*"2 t € F, d(ur D ug,t) = %tu2u1 +1¢,and N is now isomorphic
to H(W) with W = F*=2 3 F"=2 and A(u,v) = 'ou — "uv.
In both cases, let U denote the center of N, and let R be the centralizer of

Uin P. Let d(ay,...,a,) denote a diagonal matrix with entries ai, ..., ay.
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Let T denote the torus of elements of the form d(a,1,...,1,a™"), with a € E*
for the U(®,) case, and d(a,1,...,1,b), with a,b € F* for the GL,(F) case.
Let S” be the subgroup of matrices of the form d(1,u,1) = diag(1,u,1) with
uw € U(®,_3) or GL,_5(F), in each case. Let S = Z5" and note that R = SN =
ZS'N.

Fix a non-trivial additive character ¢» of F. Given a Heisenberg group
H(W) by the Stone-von Neumann theorem ([MVW], p.28), there is a unique
isomorphism class of irreducible admissible representations of H(W) on which
the center acts by . This representation is called the t¢-representation of
H(W) and we will denote by 7, either the isomorphism class or any particular
realization of it.

It is well known (see for instance [GR1]) that the choice of a polarization, i.e.,
a direct sum decomposition W = X & X* where X and X™* are maximal isotropic
subspaces of W, yields a realization of 7, which is called the Sehrodinger model.
The space of 7 is the Schwartz space S(X*), of smooth, compactly supported

functions on X*, and for € X, 2*,y* € X*, 1 € F and [ € S(X*) we have
* * 1 * * * *
(ru([z @ 2 N = (GA( 2) + Aly™ @) + ) f(2" +y7).

Let S,(W) be the symplectic group of (W, A). An element g € S,(W) acts
on H(W) by the rule g.[w,t] = [g(w),t], which clearly preserves the center
{[0,¢] : t € F'} pointwise. By the Stone-von Neumann theorem, this action
fixes the isomorphism class of 7, and hence gives rise to a projective repre-
sentation of S,(W) on the space V of 7. We define the metaplectic group
M,(W) as the group of pairs (g, M,) where M, is an operator on V, such that
M,y (RYM,™" = 14(g(h)) for h € H(W). By definition, M,(W) is a central
extension of S,(W) by C* and the projective representation of S,(W) lifts to an
ordinary representation wy of M,(W) on Vj, defined by (g, M,) — M,. called
the metapleclic representation associated lo 1.

There is a standard way of imbedding an unitary group into the symplectic
group S,(W) for an appropriate W, called the Howe pairing for unitary groups.
Furthermore, if we consider the Howe pairing for (U(®,),U(1)) (where U(1)
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denotes the unitary group in one variable, which is isomorphic to E!, the ele-
ments of £ of norm 1) then the covering M,(W) — S,(W) is known to split
over the image of U(®,) in S,(W). The choice of lifting U(®,) — M,(W) is
unique up to a character of U(®,). The choice of such character can actually
be shown (Cf. [GR2], p. 457) to be equivalent to a choice of a character v of £*
whose restriction to /™ equals wg/r, the character of /™ of order two associated
to E/F by class field theory. The restriction of a metaplectic representation of
M,(W) to U(®,,), for some choice of lifting, will be called an oscillator repre-
sentalion of U(®,,) denoted by w(v, ), ¢ the fixed additive character of F', v
the character of E* associated to the choice of lifting U(®,,) — Mp(W). Any
two oscillator representations of U(®,) differ by a twist by a character of this
group.

Finally, for x a character of Z, let w(v,%,x) be the subrepresentation of
w(7,v¥) on which Z acts by x. As a special case of Howe’s conjecture (CL.
“Theoreme principal”, p. 69 of [MVW]) we get that w(v,?, x) is a non-zero,
irreducible representation of U(®,,). It is called a Weil representation of U(®,,).

The construction of Weil representations for the case G = GL,(F') is more
standard (Cf. for instance [GR1], p. 12), and we again parametrize these repre-
sentations in the form w(y,®, x), where v and x are now characters of F*. By

Theorem(4.2) on [Z] (p. 184) we have that these are irreducible representations

of GL,(F).

3. Models

Suppose that W = W; @& Wy, A = A; © A,, where A; is symplectic on W; and
Wi = Xi @ X is a polarization for W;. Then the Schrodinger model for T&
(the w-representation of H(W;)) is realized on the Schwartz space S(X7), of
smooth, compactly supported functions on X7.

If F is any model for 7'3) (the t¢-representation of H(Ws)) then the ¢-

representation of H(W) can be realized on the space S(X7) @ F, which we

can identifly with S(X7,F), the space of Schwartz functions on X7 with values
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in F. This realization is called a mized model ((MVW], p.40-42).

3.1. Mixed model

Let (W, A) be the F-vector space underlying £”, and let A be the alternating
form defined by A(v,w) = Trg/p(*o®,w). We consider the following decomposi-
tion of W: let Wy, be the F-vector space underlying V; ,, = {(21,0,...,0,2,) :
z1, T, € E}. On Wy, we put the symplectic form A, ,, the restriction of A to
Wi, Ley, Ay p(H(21,0,...,0,2,),(11,0,...,0,u5)) = Trgyp(—Z,41 + Z1yn)-

Let now V5 = {*(0,22,...,2,-1,0) : z; € E}. and let Wy be the F-vector
space underlying V5. Let Ag denote the restriction of the form A to Wy. Denote
the i-representation of H(W;,) by Tz}}’n and the y-representation of H (W) by
T

For a polarization of W ,, we take Wy ,, = Wi &W,, where Wi and W, are the
F-vector spaces underlying V; = {(2,0,...,0) : € E} and V,, = {/(0,...,0,2) :
z € E'}, respectively.

This is a complete polarization of W, and we can realize a Schrodinger
model for TQ})’” on S(W,,) = S(E). Therefore, if F is any model for 7, we get a

realization of 7, on S(E) @ F & S(E,F) by defining
([ (2,5, 2), 1)(f ®v) = " (["(2,0,2), 1)) f @ 7)(["(0,¥,0), 0] v
for all f € S(E), for all v € F.
Since 7" was realized on the Schrodinger model S(E), we have that
(" (['(2,0,2), 11).f)(€) = $(1/2Trgr(—22) + Trer(—ex) + 1) f(z +¢)

(note the identification S(W,,) = S(F)).
Finally, identifying S(£) @ F with S(E, F) for any ¢ € S(F,F) we get that
(ro(['(z,y,2), N)p)(e) = (1/2Trgp(—2z) + Trgp(—ex) + 1)
m)([(0,,0),0])(¢(z + €)) -
It is easy to check that if g € U(®,), then A(gv,gw) = A(v,w), for all
v,w € W (where gv denotes usual matrix multiplication) i.e., U(®,) C Sp(W).
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Hence, if w"(, ) denotes a realization of an oscillator representation of U(®,,)

on S(E,F), we have the following formulas for the action of the operators

w"('y,z/;)(g), fOI‘ g = U(q)n)

Proposition 3.1.1. For d(1,u,1) € 5" one has
(1) (@ (1 8)(d(1 1 Dp)(e) = w2(3,8)(w)((e)) for all ¢ € S(E, F). The

Jfollowing formulas also hold:

(2) (W(v,¥)(d(a,1,....,1,a7"))p)(e) = ’y(a)|NE/F(a)|1/250((16) Jor all a € E*,
where v is the character of E* showing up in w™(7, ) (associated to the choice
of lifting used to realize W™(~y,1));

(3) (@ (1, $)([0, 1)0)(e) = $(ENmr(e))ple) for all L € F;

(4) (@ (.90, 0D)(e) = 7L 5= ), 0D (p(e)) for alt e € B2

Proof. It is necessary to check the commutation relation

W™ (7, ) (g)my ()™ (7, %) (9) ™" = Ty(g.h)

for all h € H(W), for each of the formulas above, but this is accomplished
with some simple computations. Observe that this already establishes formulas
(3) and (4), since the restriction of an oscillator representation to N is unique.
Formula(1) in fact shows the inductive way that the mixed model is constructed,

passing from dimension n — 2 to dimension n. We have:
@3, 8)(d(1 Dl 1), D)e)e) = (@ )l 3 ), De)le) =
o D) GTr(—ze) + Tr(=e) + (3 )0z + )] =

B3 Tr(=ze) + Tr(—ex) + 00, )()rfl1( 3 ), 0Dl + €))

On the other hand,

() (7)), 081, 0, 1)) ) =

(ol % )" )L, 1)) ) =
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w5 Tr(=ze) + Tr(=er) + O( % )00, )w)(olz+ €))

But (for n — 2) we have that

Wy, ) (w)mp( [y, 1w 2 (v, 90) (u) ™ = 7([uy, 1))

for all u € U(®,_2), for all [y,t] € H(E"™?) = H(Wj), hence we get equality of
the two sides of the commutation relation. So we may define w”(vy,v)(d(1,u,1))
by formula(1) above. Any other oscillator representation & (v, ¢)(d(1,u, 1)) of
U(®,,) would differ from w™(v,v)(d(1,u,1)) by a character of U(®,), and such
a character has to factor through the determinant, hence it is determined by its
restriction to S". Therefore formula(1) defines a unique oscillator representation

of U(®,). We establish formula(2) with the same type of calculations.
]

Remark. Note that ¢(e) above belongs to the space F of the representation
my of H(Wy). But (Wp, Ag) is naturally identifyed with the F-vector space
underlying (E"~%, A,_,) and hence we can realize the oscillator representation
w"2(v,v¢) of U(®,—5) on F, and formula (1) makes sense.

Similarly we can also get a mixed model realization for an oscillator repre-

sentation of G'L,(F).

3.2. Heisenberg Models, special representations, exceptionality

Even for the U(®3) case it can be shown (Cf. [GR1], p. 22) that Weil representa-
tions do not have Whittaker models. The substitute for those are the Heisenberg
models (to be defined below) whose notion is due to Piatetski-Shapiro.

For each non-trivial additive character ¢/ of I, let fi’(@b') be the set of all
infinite-dimensional, irreducible, unitary representations of R on which U acts
by ¢'. Let R denote the union of all the :{2('1[1'), with ¢ varying among all the
non-trivial additive characters of F.

If (m, V') is an irreducible representation of ¢ (GG here denotes either U(®,,)
or GL,(F)) and (7, X) € R, we say that 7 has a non-trivial - Heisenberg model
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if there is a non-zero map L : V' — X such that L(n(r)v) = 7(r)L(v) for all
r € R, v € V. The map L is then called a 7-Heisenberg functional. The
existence and uniqueness of Heisenberg models is not known in general. In
chapter (5), we establish this result for Weil representations.

There are some elements of I?(:/)) that are obtained in a very special way.
First identify N with a Heisenberg group H(W). Let (74, X) be a model for
the t-representation of N. The adjoint action of S on N fixes U pointwise,
and this defines an embedding of S" into the symplectic group Sp(W). We
identify S" with its image. Now let w(7,1) denote an oscillator representation
of §" 2 G,_5 on X. Extend 7, to a representation 7, of S'N by letting 5" act on
X by w(v,v). Let now x be a character of Z, and extend 7, to a representation
of R by letting Z act on X by x. We denote the resulting representation by
7(7,%, x), and we call it a special representation of R. We will use the following

notation:
R, = ({1, $:) : 4 29 above}
R(y,x) = B, x) -
Notice that, just like Weil representations, the special elements of }%(L/)) are also

parametrized by the characters 7, ¥ and y. We have the following important

result about special representations of R:

Proposition 3.2.1. Let (p,V,) be an irreducible admissible representation of R
on which the center ZU acts by x @ . Fiz 7 € R(zﬁ,x)o. Then there exists an
irreducible admissible representalion o of R/N = S such thal p is isomorphic

tooc@T.

Proof. Set
‘H = Homp (7, p)

By Lemma(1.8), p. 33 of [MVW], every smooth representation of N on which
U acts by ¢ is isomorphic to a direct sum of copies of 7. It follows that H

is non-zero. The group S acts on H through its action (that we will denote
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by @) on 7 and p (i.e., for ¢ € H, o(s)p = p(s)p7(s)™"). We now show that
o is a smooth representation of S. Let ¢ € H and let V' C V|, be the image
of ¢. Fix any non-zero element v € V' and let B be the stabilizer of v in R.
Then v € p(b)V NV for all b € B. The spaces p(b)V and V' are irreducible
as N-modules, and hence p(b)V = V for all b € B. Let F be the space of 7.
Since ¢ : F — V intertwines the N action, it must also intertwine the B action
up to twisting by a character. In other words, p(b)ér(b)™" = u(b)é for some
character g of B. Thus ¢ is fixed by ker(p), which is open in S. This shows
that o is smooth. Evaluation defines a natural map o @ 7 — p. It is injective
since 7 is irreducible and hence must be an isomorphism. It follows that o is
irreducible and hence also admissible.
[}
Now, the group P acts by conjugation on R and also on R. For (m, V) a
representation of G, let Ag(m) be the set of all 7 € R such that = has a 7-
Heisenberg model. Observe that Ag() is stable under the adjoint action of P.

The following notion is also due to Piatetski-Shapiro:

Definition 3.2.2. We say that (7, V) is exceplional if Ao(7) conlains a special

element of R, and consists of a single P-orbil.

4. The representations o,

4.1. The unitary case.

A '

In this section (@ denotes U(®,). For each (r,X) € R = U{d)/#l}R(zﬁ ), let
S(T, X) be the space of smooth, compactly supported, X-valued functions ¢ of
T such that ¢(rt) = 7(r)e(t) for all r € RNT = E', for all ¢ € T. Define the

following representation a, of P on S(7,X):
(a) (a-(1)@)(to) = @(lot) for all t € T}

(b) (a-(r)e)(to) = T(torto™")(¢(t0)), for all r € R .
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Observe that «, is a realization of the representation of P on the space

indb(7) of compactly supported functions in Ind5(7).

Proposition 4.1.1. (a) For any 7 € R, o, is an irreducible representation of
P. (b) Let 7,1y € R. If a,, = a,, then there exists t € T such that 75 = 7'
(where 7' (r) = m(trt™"), for allt € T, r € R).

Proof. With alittle abuse of notation, we identify a € E* with d(a,1,...,1,a™") €
T.

(a) Without loss of generality, we may assume that 7 € I:?(g[)) (the calculations
that follow work for any non-trivial character ¢’ of F, and we may assume that
the conductor of ¥ is OF).

Let ¢ be a non-zero element of S(7', X) and let S(¢) be the space generated
by ¢ under the action of P. Translating il necessary, we may assume that

(1) # 0. Let C be an open subgroup of U and for z € T = E* set

polz) = [meas(C) ™ [ @u)ar (wp dul(z) = meas(C)7'[ [ (u(w-1) dul(z).

Note that pc € S(p) and, for N > 0, if Cy = p™NOp, and Qy = {z € E*:
zz—1 € pYOr}, we see that pc, = ¢(z) for z € Qy, and ¢, = 0 for = ¢ Qu,
ie., poy = &g, where for any set  we denote by €q the characteristic
function of . Take any non-zero f € S(T, X), and let us show that [ € S(y).
Let t; € T be such that f(t;) # 0. Since 7 is irreducible and (1) # 0, we
know that we can find r; € R, j = 1,...,J, such that ¥7_; 7(r;)(¢(1)) = f(t1),
ie., (Y7o ar(rj)e)(1) = f(t). Writing @1 = Y7, a.(r;), and using the fact
that 7(3)é(t) = ¢(Bt), for all B € E* = RN T, and for any ¢ € S(T,X) (in
particular for ¢; and f), we get that ¢(8) = f(t13) for all 3 € E'. By the
local constancy of ¢; and f and the fact that E! is compact, we can get a small
neighborhood A of E* such that the restriction of ¢ to N equals the restriction
of fto t4N. We can assume that A is of the form {z + p*Op, = € F'}, and
it is not hard to prove that we can find N > 0 such that Qy C N, and hence
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we get that the restriction of ¢ to Qy equals the restriction of f to ¢;Qn, i.e.,
aT(Ll_l)cplngN = f€;q, (and recall that p1&q, € S(p)). It is easy to check that
for any t,t' € T, N > N' > 0, we either have tQy Nt'Qy =0 or 1Qx C ' Q.

The proof now follows using the compactness of the support of f.

(b) Let us assume that 7 € f?(l/)), Ty € f?(¢2)7 where 1, is a non-trivial character
of F. For any additive character ¢" of F, define Y(¢b') = span{a,(u)p —
P'(u)p :u € U, ¢ € S(T,X)} and Y, = S(T,X)/Y(¢'). For each t =
d(a,1,...,1,a=") € T, denote by " the character ¢'(u) = ¢ (tut™") = P (aau).
The proof of (b) is based on the following two steps: for any 7 € 1%(1/)),

(i) If o' = o' for some 1y € T, then Y, = 7o,
(i) If ' # ¢ for all 1 € T, then Y,y = {0}.

To prove (i), we consider the map evy, : (e, S(T, X)) — (7%, X) defined
by ¢ — ©(lo). It is easy to check that evy is an R-map and that Y (%) C

ker(evy,). To prove the other inclusion, we use the following simple lemma

Lemma 4.1.2. Let n be any non-trivial additive character of F'. For each
xo € F*, we can find a small compact subsel C' of F* contatining o, and an

element L € F* such that n(tz) # 1 for all 2 € C.

To complete the proof of (i), take any ¢ € ker(evs,). The idea is to write
supp() = Q as a disjoint union of neighbourhoods C; = ({;E* 4+ p1Og) N Q
such that C; = {tf — toto, t € C;} is “small enough”. Then we use lemma
(4.1.2) to find u; € F™* such that ¢; = ¢€¢, can be written as @; = o (u;)¢; —
P (u;)¢;, for some ¢; € S(T,X). This can be accomplished with ¢;(t) =
[t (Lolou;)(((L — tolo)uj) — 1)]_199]([,). The proof of (ii) is similar.

Finally, to conclude the proof of (b), note that (i) and (ii) show that the
T-orbit of 7 € R can be recovered from the family of spaces Y, with ¢’ varying

among all the non-trivial additive characters of F. If a;, = a,, the two families
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of spaces Y, must be the same, hence 71 and 7, must have the same T-orbit,

and (b) follows.

4.2. The GL,(F) case.

In this section G denotes GL, (F'). For each (1,X) € R, let now S(T,X) be
the space of smooth, X-valued functions on T" which are compactly supported
modulo SN T = F*, and such that ¢(rt) = 7(r)e(t) for all r € SN T, for
all t € T. We define a representation a, of P on S(T,X) just as before, i.e.,
T acts on S(T,X) by the right regular representation, and r € R acts by
(ar(r)p)(t) = 7(trt=")(e(t)). As in the previous case, a, is a realization of
the representation of P on ind5(7). Let D be the subgroup of G of diagonal
matrices of the form d(a,1,...,1,1), with @ € F*. Of course we can identify
D with %) and let (D, X) = S(F*, X) be the space of smooth, compactly
supported, X-valued functions on D. Define the following representation 3, of

Pon S(D,X):
(a%) (B:(do)e)(d) = @(ddy), for all dy € D;

(b”) (B-(r)e)(d) = T(drd=")(¢(d)), for all r € R.

Note that every ¢ € T can be uniquely written as { = ds with d € D
and s € SNT. Also, one can easily check that restriction to D defines a P-
isomorphism between (e, S(T, X)) and (3,,S(D, X)). Similarly to the unitary

case (including its proof), we have:

Proposition 4.2.1. (a) For each 7 € R, o, is an irreducible representation of

P. (b) Let i, 7 € R. If oy = a,, then there exists L € T such thal o = 7.

5. Local results

We now establish the exceptionality of the Weil representations of U(®,,) and

GL,(F), for n > 3. Although the proof of this result is not the same for
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the unitary and GL,(F) cases, both proofs follow a general pattern that we
now describe. Denote by (m, V) the Weil representation (w(v,v,x),V) of G
(either equal to U(®,) or GL,(F)) and let (7, X) = (7(v,¢, x), X). Let Vy =
span{m(u)v —v : u € U, v € V}. The exceptionality in both cases is obtained

once we establish the steps:
M (7lp, Vo) = (e, S(T, X)), and
(II) Tls T2 = Ao(ﬂ') — (7% [ Q.

Next we give the proof of the exceptionality of Weil representations for the

unitary case.

5.1. Exceptionality of Weil representations of U(®,), n > 3.

In this subsection G denotes U(®,). Let (m,V) and (7, X) be as above. We
may assume that V' is a mixed model realization of w(v,) on S(F, X), as in
section (3). Let us denote by S(E, X), the subspace of S(¥,X) on which Z
acts by x (so that S(E, X)), is the space of m = w(7,, x)). The following result

comes directly from proposition (3.1.1):

Lemma 5.1.1. L:S(E,X), — X given by o — p(—1) is a non-zero Heisen-
berg functional for m.

Now we want to prove step(I) above, namely

Lemma 5.1.2. Let Vo = {r(v)v —v : v € U, v € S(E,X),}. The map
L:(m|p, Vo) = (o, S(T, X)) defined by v — ¢, where ¢,(1) = L(n(L)v), is a

P-isomorphism.

Proof. Let us first show that £ is well-defined, i.e., ¢, € S(T,X) for all
v € V. Let us denote the matrix d(a,1,...,1,a™") € T simply by d(a). For any
d(B) € RNT = BY, we have $,(d(B)t) = L(r(d(B))n(t)v) = 7(d(B))6(t) s0
that ¢, satisfies the transformation law reqired to the elements in S(7, X). It

remains to show that ¢, is compactly supported. Without loss of generality,
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we may assume that v = 7(u)w — w, for some u € U, w € V. Then one can
easily check that ¢,(d(a)) = (¢ (aau) — 1)L(m(d(a))w) from where we see that
du(d(a)) = 0 if val,(a)

find a large integer M > 0 such that 7([0,¢])v = v for all t € pM OF, and hence
éu(d(a)) = (aat)p,(d(a)) If val(a) < 0, we can find ¢t € pMOp such that

¢(aat) # 1, and consequently ¢,(d(a)) = 0. We conclude that ¢, is compactly

> 0. On the other hand, by smoothness of = we can

supported and hence belongs to S(T, X). To prove that £ is injective, we use
proposition (3.1.1). If p € V = S(E, X), is sucht that L(p) = 0, then ¢,(¢) =0
forallt € T, i.e., L(n(t)e) = 0forallt € T, or equivalently, (7(d(a))e)(—1) =0
for all @ € E*, and formula(2) in proposition (3.1.1) shows that we then must
have ¢ = 0. Finally, £ is clearly a P-map (£ is the map associated to L by
Frobenius reciprocity) and since from proposition (4.1.1) we know that «, is

irreducible, £ must be surjective, and this completes the proof of lemma (5.1.2).

[m|

Hence we have shown that 7 = 7(v, v, x) belongs to Ag(), for m = w(y, ¥, x).
Lemma 5.1.3. If 7’ is an elemenl of Ao(), then o, = a;.

Proof. Let 7' = (7, X’), and assume that 7’ € ]%(1//), for some non-trivial addi-
tive character ¢’ of F. Let L' : V' — X' be a non-zero 7'-Heisenberg functional
for m = (m,S(E,X),). If L’(vg) = 0 for all vy € Vp, then for any v € V', choose
w € U such that ¢'(u) # 1, and we get 0 = L'(7(u)v —v) = (¢'(u) — 1)L (v)
from where we conclude that L'(v) = 0 for all v € V, which is impossible.
Define L' : (7|p, Vo) = (e, S(T, X)) by v — ¢, where ¢ (1) = L'(7(t)v) (as
before). Note that clearly ¢/, (d(8)t) = 7/(d(3))¢', (1) for all d(8) € RNT, and
the same calculations done for ¢, (with ¢ replaced by ') show that ¢’, is com-
pactly supported, hence L' is well-defined and is a P-map. Also £’ = 0 implies
¢, =0 for all vy € Vp, and thus ¢', (1) = L'(vg) = 0 for all vy € V4, which can
not happen (as we have seen before). Hence £ # 0 and by irreducibility we get

(m|p, Vo) = (e, S(T, X")) (note (7|p, Vo) is irreducible because it is isomorphic
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to (a;,S(T, X)), and both a, and a,: are irreducible by proposition (4.1.1)).
By the previous lemma we get (a,, S(T, X)) = (a, S(T, X")).
O

Using the lemmas in this section and proposition (4.1.1) (part (b)) we obtain:

Theorem 5.1.4. The representation m = w(7y, ¢, x) is an exceplional represen-

tation of U(®,,).

5.2. Existence and uniqueness of Heisenberg models for Weil repre-
sentations.

In this subsection G denotes either U(®,,) or GL,(F). We have already shown
the existence of Heisenberg models for Weil representations of G, and the next

result establishes the uniqueness of these models.

Theorem 5.2.1. Let (m,V) = (w(7y,v¥,x),S(T, X)) be a Weil representation
of G. For any 7' € R we have dim(Hompg(m, 7)) < 1.

Proof. We know that for 7 = (7(v,, x), X) we have dim(Hompg(r,7)) > 1
(by the existence part already proved). From the exceptionality of 7, we also
know that dim(Hompg(m,7")) = 0 if 7’ does not belong to the T-orbit of 7. On
the other hand, if 7 = 7* for some ¢ € T, given L € Homp(m, 7) one can easily
check that L; = L o n(t) belongs to Hompg(m,7"), hence dim(Hompg(w, 7)) =
dim(Homp(m, 7)) forallt € T', and all we have to show is that dim(Homp(m, 7)) =
1. For that we use (I) once again. First, by Schur’s lemma, we have that
dim(Homp((7|p, Vo), (er, S(T, X)) = 1 (note this dimension is at least 1 by (I)).
Now, if Ly, Ly : (m, V') = (7, X) are non-zero elements of Homp(m, 7) then, as we
have seen before, the maps £; : Vo — S(T, X) given by v — ¢! (where ¢ (1) =
Li(m(t)v)) are non-zero elements of Homp((7|p, Vo), (a-, S(T, X)), hence there
exists A € C* such that £, = ALy. This easily implies Ly |y, = AL,|y, . But then
the element L = L; — ALy of Homp(w, 7) is such that L|VD = 0, and this forces
L =0, which gives L1 = AL,. Therefore dim(Hompg(m, 7)) = 1, as we wanted.

]
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6. Global set up

Let now F' be a number field, and £ a quadratic extension of F' (with conjuga-
tion again denoted by a bar). Let A denote the adele ring of F. For each place
vol Flet £, = EQpF, (note that E, is a quadratic extension of F), if v remains
prime in K, and £, &£ F,, & F,,, with £, & E, = F,, if v splits into w and
w’ in F). Roughly speaking (see [GR2] for more details on the constructions of
this section), we now “adelize” section (2). Let @, be as in section (2), let V/
ve an n-dimensional vector space over F, and let G = (7, be the unitary group
attached to (V,®,). For all v, let K, be the group of integral matrices in G,.
For almost all v, K, is a maximal compact subgroup of GG,. We will indicate by
N(A), R(A), P(A), etc, the global counterparts of the groups locally denoted
by the letters N, R, P, etc. Taking the necessary precautions, essentially all the
notions we defined locally are carryed out for the global setting, and global Weil
representations as well as global special representations are still parametrized
in the form w(v,¢, x) and 7(7, ¢, x) (respectively) where v and y are Hecke
characters and % is a non-trivial additive character of F\A.

To fix the notation, let
Ly (R(F)\R(A))

be the Hilbert space of square-integrable functions ¢ on R(F)\R(A) such that
&(2[0,1]r) = x(2)¢(1)P(r) for all z € Z, for all L € A. Let Z(3, x) be the set
of irreducible subrepresentations of R(A) with central character y ® ¢, and let

]%('zb,)()o be the subset of Z(4, x) consisting of the special elements.

7. Global results

In this section we establish the two central results of the global part of this
paper: multiplicity one for special automorphic representations of R(A), and a
strong multiplicity one type of result for automorphic representations of G(A),

namely, if an irreducible discrete representation m = @m, is locally isomorphic
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to a Weil representation at all but a finite number of finite places of F' then w

in fact equals a global Weil representation.

7.1. Multiplicity one for special representations of R(A).

We start with the following consequence of strong approximation (Cf. [K]):

Proposition 7.1.1. Lel 0 = ®a, be an irreducible automorphic representation
of G(A). Suppose thal there exisls a finile place v of F such thal o, equals the

trivial character on GG,. Then o is one dimensional.

Proof. Tt suffices to prove that o is trivial on H = SG(A) = {g € G(A) :
det(g) = 1} (since H\G is compact Abelian). For v finite H, is non-compact
and for the v in the statement of the proposition we have that o, |y =1. By
strong approximation (Cf. [K]), H(F).H, is dense in H. Let [ be any element
of o. Then for any v € H(F), h, € H, we get that

J(vhy) = J (ko) = (o(ho) ))(1) = (1)

hence f is constant on H(F) x H,, so f is constant on H. Thus, for any h € H
and any [ € o,

(a(h)F)(g) = f(gh) = f(ghg™'g) = (a(9)f)(ghg™") = (o(9)F)(1) = f(g)

so, o(h)f = flor any h € H and any [ € o, i.e., 0|z = 1.
[}

Lemma 7.1.2. Let 7 € Z(¢,x), 7 = @7,. Suppose thal 7,, € f?(@bvo,xw)o for
some finile place vo of F'. Then T € I’?(’l/?,X)o.

Proof. It is not hard to prove that we can write 7 = c®7! with o an irreducible
automorphic representation of S'(A) & G,_5(A) and 7' € I%(IL)()O For all v
we have that 7, = 0, @7, , in particular for v = vg. Since both 7,, and 7} belong

to R(Z/JUO,XUO)O (note that since o,, is a representation of S'(F,,), 7, and T
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have the same central character y,, @1, ) there exists a character v, of S'(F,,)
such that 7 = vy, @ 7, and hence 7, = (04, @ 14,) @ Ty This forces oy, to be
one-dimensional (otherwise the restriction of (o, @ v, ) @ 70y to N would not be
irreducible, and could not be isomorphic to 7, restricted to N) and by the same
argument given in the proof of theorem (7.1.3) below, we get that o,, @ v, = 1.
By proposition (7.1.1) we get that o is one dimensional, i.e., a character of
5'(A). Hence o @ 7' still belongs to R(e,y)  (if 7'(zsn) = X(z)w;jjl(s)n/,(n),
then o @ 7'(zsn) = x(2)(0 ® W )(s)74(n)).

We now come to the main result of this paragraph.

Theorem 7.1.3. Lel LI(R(F)\R(A)) = {¢ € L*(R(F)\R(A)) : p(u)p =
Y(u)p, Yu € U(A)} (where p denoles right translation). Each special aulomor-
phic representation of R(A) occurs as an irreducible constituent of LL(R(F)\
R(A)) with multiplicily one.

Proof. Let 7° = @70 and 7' = @7 be special automorphic representations of
R(A). We need to show that 7° = 7! implies 7° = 7'. The proof is divided in

two steps:
(1): If v is a character of R(F)N(A)\R(A) and 7° = 7° @ v, then v = 1.

Proof. Indeed, realizing both 7° and 7° ® v on the same space F (they both

can be realized on the Schrodinger model for instance), let
¢:(%F) > (" @ v, F)

be an isomorphism. Since both 70 and 7° @ v equal 7 (the t-representation
of N(A)) when restricted to N(A), and 7y is irreducible, by Schur’s lemma ¢
must be of the form Mz (17 the identity map of F) for some A € C*. It is now

easy to conclude that v = 1.

(2): If (7% Fy) and (7', F;) are special automorphic representations of R(A),
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then there exists a character v of R(F)N(A)\R(A) such that F; = {vp : ¢ €
Fo}

Proof. For ro € R(A) consider the maps (5 = 0,1):

Ti(ro) : Fj — Ly(N(F)\N(A))
e = (T(ro)#)lna

Clearly Tj(ro) is a non-zero map for all ro € R(A). Furthermore, one eas-
ily checks that Tj(ro) is an intertwining map between 77|y and 7,° (where
7‘120(11,) = 7y(ronro™")). Since Tj|N = 7y and 7‘120 are both irreducible, T};(ro) is
an N(A)-isomorphism for all 7o € R(A). Hence Ty(ro) ™' To(ro) : Fo — Fi is
an N(A)-isomorphism, and by Schur’s lemma (once again!) applyed to the
representation 7, of N(A) we get that Tj(ro) ' To(ro) = p(ro)Ti(1)™"To(1)
for a non-zero scalar u(ro). Noticing that Tj(riry) = Tj(r)7(rs), it is sim-
ple to check that w(riry) = p(ri)p(rs). If for each rg € R(A) we write
T(ro) = Tl(ro)_lTo(ro) : Fo — F1 then for each ¢ € F; there exists a unique
wo € Fo such that @13 = T'(1)pg, and in this case we see that (noticing that
Ti(Mei = ¢iln) w1y = Polyay and wo(r) = p(r)ei(r) for all r € R(A).
From this we conclude that p is a smooth function on R(F)N(A)\R(A) (and
since g is also multiplicative, it is a character of R(F)N(A)\R(A)). For
v = p7', the equation p1(r) = v(r)pe(r) for any ¢ € Fi (and @y € Fo

such that 1 = T'(1)pg) says that F1 = {veo : o € Fo}.

To conclude the proof of theorem (7.1.3), given (7%, Fy) and (7', ;) as
above, consider the map T, : Fy — F; defined by ¢ — ve (for v as in (2)). It
is easy to check that T,(7%(r)p) = (v™' @ 7')(r)T,(¢) and since both 7° and
71 are irreducible we get that 7° = vt @ 7. If we had that 7° = 7!, then we

would have v™' @ 7! = 71, and by step(1) we would conclude that v = 1, which

in turn would imply Fo = F;. The proof is then complete.
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7.2. Strong multiplicity one for a. e. Weil representations.

The proof of this result follows the same pattern of the G L, case (CI. [PS]). The
central idea is to construct “two” non-zero automorphic forms f! € 7 and f° €
w and use uniqueness of Heisenberg models (proved for Weil representations),
formula (2)(below), some archimedean calculations and a “small lemma” - type
of argument to see that f' = f° and thus to conclude by irreducibility (of both

m and w) that m = w. We present the details in what follows.

Let us begin with the following important lemma ([GR2], p.453):

Lemma 7.2.1. Let (m,V), m = ®m, be an infinite dimensional irreducible

discrete representation of G(A) and let ¢ be a non-zero element of V.. Then

there exisls a non-lrivial character ¢ of F\A such thal ¢, # 0.

Proof. Let H be the closed subgroup of G(A) generated by U(A) and SG(F) =
{g € G(F) : det(g) = 1}. If vy = 0 for all non-trivial ¢, then ¢ = @y and
therefore ¢ is left-invariant under H.

We will get a contradiction (to the infinite dimensionality of ) if we show
that H = SG(A) = {g € G(A) : del(g) = 1}. Indeed, if that is the case, then
the left-invariance of ¢ under H implies m(h)p = ¢ for all h € H. Since 7 is
irreducible, this equation has to hold for any element of 7, and hence m may
be viewed as a representation on H\G, which is compact abelian, thus 7 would
have to be finite dimensional.

Now, to see that H = SG(A), notice first that for all v, H contains the
closed subgroup H, generated by {yuy=' :~y € SG(F), u € U,}. Since SG(F)
is dense in SG(F,), H, is a closed normal non-central subgroup of SG(F,).
Hence H, = SG(F,) and H = SG(A).

0

Lemma 7.2.2. Lel m be as in the previous lemma. Assume thal m, = w) =

w2, 2 X2) (for some local Weil representation w°) for almost all v. Then
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there exists a global Weil representation w = Qu, such that m, = w, for almost

all finile v.

Proof. By lemma (7.2.1), there exists a non-trivial character ¢ of F'\A such
that fy # 0 for some f € m. Hence there exists 7 = &7, € I%('g/)) such that
fr # 0 (recall from the end of chapter (6) that f, = (fy,r)-). For a finite

place v where 7, = W% = w(72,%2, x%) we get that 7, = 7(72, (¥9)¥*) x9) =
7(72, (¢9)*% x%) for some a, € E and hence, by lemma(??) we get that
7 is special, so there is global data (v,¢,x) such that 7 = 7(y,¢,x). Let

w = w(v,%,x). For all finite v for which m, = w® we then get that w? and

v

0

Y 2 w,, so for the global Weil

w, have a 7,-Heisenberg model. This forces w
representation w = w(v, v, x) we have that m, = w, for almost all finite v.

O

We now come to the main result of this work, and for that we need to

make the technical assumption that the extension E,/F, equals C/R for all

the archimedean places v’ of F.

Theorem 7.2.3. Let m = (m, V) be as in lemma (7.2.1). Assume that there
exists a finite set Sy of places of I, containing only finite places, such that
0

m, 2w = w(y2, 92 x2) (for some local Weil representation w?) for all v ¢ Sy.

Then, there exists a global Weil representation w = (w, W) such that 7 = w.

Proof. Let x be the central character of m. Recall (from the end of chapter
(6)) that by Fourier analysis on the group U(A) we have that any f € V can
be written as
f=fv+ Z Ty
{w'#1}

where {tp" # 1} is the set of all non-trivial additive characters of F'\A. Writting
simply d(a) for the matrix d(a,1,...,1,a™") with @ € E*, by direct calculation,
for any ¢ € {¢" # 1}, we get that

Juea(g) = fu(d(a)g)
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for all g € G(A), and thus we get the formula

@) =lule)+ 2 X [fy(da)yg) (1)
{y'} a€E*/E!
where {¢)'} denotes a set of representatives for the equivalence relation: ¢, 1, €
{¢" # 1} then ¢y ~ 1ty if, and only if, 1y = ¢,** for some a € E* (or equiv-
alently, ¥y(u) = ¢ @ (u) = y(d(a)ud(a)™), for any u € U(A), identifying
U(A) with A).

Now, by lemma (7.2.1), it is possible to find a non-zero f € V such that
fu # 0 for some non-trivial ¢». Replacing f by a translate, if necessary, we may
assume that fy p # 0, and hence we can find 7 = @7, belonging to Z(¢, x) such
that (fy,r); # 0. This means that we have a non-zero R(A)-map L : 7 — 7.
For any finite place v ¢ S; we then get a non-zero map w? = 7, — 7,, hence
7, must be P(F,)-conjugate to 7(7°,%?, x?) and therefore 7, must be special.
By lemma (7.1.2) 7 must be special, and then we can find global data (v, ¥, x)
such that 7 = 7(v,¢,x). Let w = w(v,%,x), and by lemma (7.2.2) we get
that m, = w, = w(7y, Yy, X)) for all finite v such that v ¢ S;. We fix the data
(v, ¢, x) from now on.

We also have the following important fact:

Claim 7.2.4. For any f € V, and for each character o' in the set {¢b'} (of

characters modulo norms from E*) there is at most one v € Z(3', x) such that

(quv',R)T' ?é 0.

Proof. Let 7', 72 € Z(¢', x) be such that f,1, f,2 # 0 for some f € V. Then
both 71 and 72 have to be special by the argument above. Any two elements of
R(y', x)° differ by a twist by a character v of R(F)N(A)\R(A) (since any two

oscillator representations of S’(A) have this property) and hence we get that

722y @ 7! for such v. For almost all v, by exceptionality of w?, we have that
72 2 (1)) for some a, € E* (and d(a,) = d(a,, 1, ...,1,a;")), but since both

= R('t/)l,x)o, we have that 7!, 72 € ]%(1/);,)(@)0 so U(F,) acts by ¢, on

both 7! and 72, and this forces a,a, = 1. Thus 7! = 72 for almost all v.

v
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2 ~v

Since we also have 72 & v, ® 7, for all v, we conclude that 7} & v, @ 7}

for almost all v. By Schur’s lemma, we get that v, = 1 for almost all v and

1~

therefore v = 1, since v is a Hecke character. Hence 7 72, and by theorem

(7.1.3) we get that 7! = 72.

Then, by (1), for any f € V, we can write

flg) = fulg)+ Z{w } ZaeE*/El f¢ /(d(a)g)
fu(g) + Z{w } Zach* s (m(d(a)g) ) )

= fulg) + {w } aeE*/El(W(d(a)(])f)d/

= fulg)+ Z{q/, 1 ZaeE*/El(ﬂ'(d(a)g)f)f(w (1)

where 7(¢4') is the unique element of £(15', ) (given by claim (7.2.4)) for which
(fy' r), 18 not (necessarily) identically zero. By Frobenius reciprocity, we get

that Homp(|s,7') = Homg(m,Ind§(7")) and the formula above becomes
flo=ful@+> X I d(a)g))(1) (2)
{v' }aeF*/F1

where £, is the map associated to (f = (f,/ g).(y)) by Frobenius reciprocity.

Another important thing to be noticed is that
Claim 7.2.5. For any f € V, [, # 0 only for a finite subsel {5}/, of {y'}.

Proof. Indeed, since the map
F*/N(E*) — @(F;/N(E))

is injective and any ¢ € {#'} is of the form ¢" = ¢/* (where recall that ¢*(t) =
¢(at), t € A) for some & € F™* and for the non-trivial character ¢ of F'\ A fixed
above, we see that " ~ ¢ if, and only if, = is a local norm everywhere.

Now suppose that for some finite vy € S; we have that 7 o <, but
fu= # 0 for some f € m. Then fy«(go) # 0 for some gy € G(A), and since
(m(g0) )= (1) = (fy=)(go), replacing f by m(go)[, if necessary, we may assume
that fy=(1) # 0. Hence fy= r # 0 and we must have 7(¢") € I;’,(p{)z,x)o such

that (f¢I7R)T(¢I) 7& 0.
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Thus we get a non-zero Heisenberg functional from 7 to 7(¢") = @7(¢"),.

In particular, we get a non-zero map
Ty > T = Qm, — 7(Y7)

from which we derive a non-zero map 7(¢)*) — 7(1)%),,, and since m,, = w,, =
W(Vug s Pugs Xuo) We get (by exceptionality of w,,) that 7(¢7),, is a P(F,,) con-
jugate of T(Yyy,Puys Xuo ), Which gives th? ~ 1y, a contradiction.

Therefore, for any [ € m, fya = 0 if ¥F & 1, for some finite v ¢ S;. For
each place v € Sy or v archimedean, there are at most two orbits of non-trivial

additive characters of F' modulo norms from E*, and the claim follows.

Then, for any f € 7, formulas (1) and (2) become

fg)=Julg)+ > > fu(da)g) (3)

{0;} ac B/ B

f(9) 9+ 2 X LyHda)g)) (4)

{;} a€E*/E!

where {1/)]} —; 18 a set of representatives for characters modulo norms from E*,

1 = v, ; = ¥% where §; is not a norm from [ef (hence ©; £ ).

Remark. For each ¢; € {1}/, let 7; = 7(¢;) = ®7]. Note that for vy finite,
vo & S1, we have that Tj is a P(Fv0 )-conjugate to 7,, = 7(70, %0, Xo) and since
U(F,,) acts by 1, on both 7,, and 7/ (after the representatives in {1;} have
been fixed) we get that Tj 2 7,,, and we may assume that they coincide.

For the global Weil representation w = w(v, v, x) there is only one orbit of
non-zero Fourier coefficients (namely the orbit of 1) and for any f° € w we have

Pl =fola)+ X L()da)g)(1) (5)

(J.EE*/E1

where L° is the map associated to (f© — (f}) g)-) (with 7 = 7(y,%, x) = 7(¢1))

by Frobenius reciprocity.
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Our goal is to construct “two” non-zero automorphic forms f! € 7 and
f° € wand to use formulas (4) and (5) to prove that f' = f© (so by irreducibility
of both 7 and w we conclude that @ = w). Since the restriction to P(A)
determines an automorphic form (Cf. [PS]), it is enough to construct such f*
and f© such that ['|pay = [®|peay- By (4) and (5), for p = tr € P(A), we get
that:

frer)y=foltry+ 32 32 | a)trt™ d(a) ™)Ly, (S (d(a)))(1)  (6)

{1;} aeF*/Fl
o)y = foltr)+ 30 [r(d(a)trt™ d(a))L(f)d(a))](1).  (7)
aEE*/El
Let us consider the following finite sets of places: first we add to 57 (and
denote the new set again by S7) all the finite places v of F' such that 7, (and

@?) is not unramified. Now let us write

Sin = A{vi,...,v. 1 v; is non-split}

S1 = {Uh - Um Lr+1 Lm}

Bos = 0y by vy s arch1medean}
S() = S] U S

If S, is any of the sets above, we use the following notation (writing 7; for

7(¢;) in (6)):

S.
ms, = @ves*ﬂ'u, T = @vQS*TF'U
e = ® oS — ® J
S vESKTys 15 - UQS*TU

Gs, = HueS*GU’ G5 = Hves* G,, etc.

There are possibly 2" elements in {¢;} in formula (6). For each such v; let
us denote the map (f — (fy;,Rr)-(y;)) by L; and let us also write simply £; for
the map Ly, (associated to L; by Frobenius reciprocity).

Let us also fix the choices of unramified vectors used to realize the various
representations above as tensor products. Let us write {€0},gsy, {y2}ugs, and
{ch}vgzso for the choices of unramified vectors used to realize 7 = @7, w ¥ Quw,
and 7; & @77 respectively (recall that we are assuming that all the 77 coincide

for v € Sy, since they are all isomorphic and thus we avoid several choices of
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unramified vectors and simplify the notation). We should point out here that,
for v & Sp, w, unramified forces 7, to be also unramified.

We need to change directions for a little while, and make some archimedean
calculations before proceeding with the proof of theorem (7.2.3).

Just for the moment, let £ = C, F = R and consider all the groups defined
in section (2) for this new situation (in the definition of U(®2,41) we take for
instance { =i € C). Let G =G, = U(®,,). Fix ¢ as usual.

Let F be a model for the Stone-von Neumann representation 7, of N with
central character ¢». We extend 7, to a representation of S'N by letting s € S’
act on F by an oscillator representation w"~2(v,v) of G,_, (as before). For
each character v of the center Z' of S" (which is isomorphic to C', the norm
one elements in C), let F(v) C F be the subspace on which Z" acts by v. Then
F = &F(v) (Hilbert space direct sum).

Writting 41 = |, for each character y of C', we define

C (B, F)x = @ICZ(E7), @ FO(oi ' xv)]
where C2°(E*), is the space of smooth, compactly supported functions ¢ : £* —
C such that ¢(e’z) = v(e?)p(z) for all € € C', for all z € E* (note that
we can identify C2°(E£~), with C°(R7}) - where R% of course denotes the real
positive numbers - by writting ¢ in the form ¢(e?z) = v(e?) f(z) for z € R}
and [ € C>(R3)) and F°(~7 ' xv) is the space of K'-finite vectors in F(y7 " xv)
relative to the action of S" (K" is a maximal compact subgroup of S").

The group T = {d(a) = d(a,1,...,1,a7") : a € E*} acts on ¢, ® £ €
CX(E*,F), (with € € F(y7 xv)) by d(a).(¢, @ €) = % @ &, where 2 is the
function in C(E*), defined by ¢2%(x) = v(a)|aa|'*p,(za). We also have an
action of the pair (U(S"), K') on C=(E*, F), (where $4(S") denotes the universal
enveloping algebra associated to S') and it is easy to check that the center Z
of G acts by x on C°(E*, F),.

Let now A (E*, F) be the space of all smooth functions on £* with values
in F. Let P acts on A™(E*,F) by the mixed model formulas (Cf. proposition
(3.1.1)) and we denote by A>(E*,F), the sbspace of A™(E*,F) on which
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the center Z of P acts by x. With the same notation as before, let 7 = x ®
w"2(v,4¢) ® 7y be the representation of R on F such that for z € 7, s €
S, n € N we define 7(zsn) = x(2)w"2(7y,%)(s)my(n). It is simple to prove
that IndE(7) is isomorphic to the space of smooth (not necessarily compactly

supported) functions
C.(E*,F)={¢: E* = F such that B(ex) = T(d(e"”))p(z)}

where the action a, on C,(E* F) is given by the formulas in section (4.1).
Furthermore, the map
A=(E*,F)y — C.(E*,F)
@ — @
where @(z) = v(z)|zz|'/?¢(Z) is a P-isomorphism.
Notice that the map
Co(B",F) — AN(E"F),

p®E = P
where p,¢(2) = @, ()€, defines a natural embedding. On the other hand,
global Fourier coefficients (f + (fy,r);) give rise to a linear map (after applying

Frobenius reciprocity)
¢ CZ(E™, F)y = A™(E", F)y
and if we write

Co(E", F)y = DIC™(E"), @ F(r7 xv)]

(C*=(E*), equals C*(E*), without the support condition) then we see that
the image of ¢ is contained in C=(E*, F),, since ¢ intertwines the action of K.
Thus we may view ¢ as a map from C°(E*, F), to C*(E*, F), which intertwines
the action of the groups T, U, and of the pair (4(S"), K'). Therefore it induces
the maps ¢, below, that make the following diagram commute:

B (1), © FoOoitw)] 5 @IC(B7), © Floi )]

) d:
CR(EY, @ F(yitww) B C(E"), @ F(y )
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(where the vertical maps are just the standard inclusion and projection).

The maps ¢, necessarily factor, since F°(y7 ' xv) is a direct sum of finite
dimensional representations of K'. In fact, we see that ¢, is determined by
maps C(E*), — C>(FE*), and these reduce to maps C°(R;) — C*(R%)
commuting with the action of the groups {d(a) : a« € R} and {[0,#] : t € R},
which is given by the formulas (coming from the mixed model formulas):

. (d(@)) = (@)lalf ()
(0,411 = ¥t ()
for all a € R%, t € Rand f € C*(R7})). Now we apply the technical lemma

below to conclude that each ¢, (and therefore ¢) is the standard inclusion.

t

Technical Lemma 1. Let the group of matrices H = {( e .ta ) ca€Ry, te
R} C SLy(R) act on the spaces C°(R%) and C=(R7) by the formulas:

(5 20) D) = a)lalf(za)

(3 1 )1} =" F(z).

Let T : CX(RY) — C(RY) be a linear map which is conlinuous in the topology
defined by the semi-norms

PK.m(f) = sup |f(])(T)|

zeK
0<j<m

Jor K C R} compact. Assume also that T intertwines the action of H. Then

T is a multiple of the standard inclusion.

2

Proof. For t € R let u(z) = €. If f is any function in C2°(R7}), then
(é f)f = u;f and hence we get that T(u,f) = wT(f). By linearity,
T(X us, f) = (X ug; )T(f) for all uy; and f as above.

Consider the distribution

We claim that A is a distribution supported at {1}. To see this, let f €
C(R7) be such that 1 ¢ supp(f). Then f vanishes on an open interval around
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1. Choose functions N
py
— Z ajeztja‘
j=1
such that u(1) = 0 and u approaches the constant 1 uniformly on supp(f).

Then, T'(uf) = «T'(f) implies that

T(uf)(1) = u(M)T()(1) =0 .

By continuity of 7', we get T'(f)(1) = 0, i.e., A(f) = 0, hence we conclude that

supp(A) = {1}.
Now, by [Y], Theorem(3), p. 64 we get that

M E:
= S wsO)
But for any v as above we have
M
Muf) =T(uf)(1) = w(V)T(f)(1) = u(1)A(f) = u(1) Z%‘f(j)(l) :

thus,
M

Z (uf).?) Z fJ)

=0
and this implies that A(f) = aof(1) for all f € C*(R3). In other words,
T(f)(1) = aof(1) for all f € CF(RY), hence by dilation invariance we get
T(f)(x) = aof(x), for all z € R and for all f € C(R%), which proves the
lemma.
O
Now we come back to the proof of theorem (7.2.3). Using the local unique-
ness of Heisenberg models for Weil representations established in section (5.2),
one employs a standard procedure (Cf. [G]) to prove that L; : 75, @ 7% —
Té0®7'-5° can be written as L; = L‘g RLP = Lg()@(l_[veso L!),where L} :m, = 7,
is the unique element L, of Homg, (m,, 7,,) such that L,(£2) = 2% (note that since
Ty 2w, for all v & Sy, we have dim(Hompg, (7, 7,)) = 1).

From this factorization we also get

»c] = ﬁjgn ® (®1/€So’c11;) 9
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where Ego (respectively £!) is the map associated to Léo (respectively L!) by
Frobenius reciprocity.
In formula (6) we are only concerned with ,Cj|T(A), and for any f € 7™ we

then have the formulas:

Li(Hlray = £5(Fs)lry, @ (SugseLi(fo)lz,) -

If for each v" € S, we choose f,s in CZ°(E}, Fur)y,,, then by our archimedean

calculations above the map Eéo (f50)|T has to factor at v’, and actually
,Cj,(fU/)IT has to be the canonical inclusion from CZ(F},Fy)y,, to
C*(Ey, Fur)y,, Picking a non-zero J5 for each archimedean place v, for any

v’

= (®U,€5wf ) ® ® [, we get the factorization

Lj(f)|T(A) = Egl(f51)|T51 ® (®v’€5m5i'(f3')|Tv,) ® (®U€50‘C’1lz(fv)|T,,)' (8)

Let us divide the rest of the proof into steps:

Step(1): For vy € S; = {v1,...,vn}, let us write 7, = (7, Fy,) and denote
(Tory Vi) simply by (g, V). For /1@ ... ® frn € VI @ ... @ V},, we will write
CHe.@fm - ,Tél) for the function ,Cgl(fl ®.e.® fin)|ps1 € S(Toy X ooo X Ty Fu @
o ® Fun) = Q1S (T, Fun)-

Then there exists ) ® ... @ {5 € V2 ® ... ® V)2 (recall VP = V,(U(F,,)) =
span{m(u) — € 1w € U(F,,), £ € Vi}) such that ppg gp (- ,75) # 0 and
Ppe..o( g~ y=0forall j =2, ...

Proof. The proof is divided in two parts. First we show that it is possible to
get 1 @..0 2 e VP ®...Q V2 such that T A ,75,) # 0 and then we
work on f{ @ ...® f2 a bit more to get {2 @ ... ® {2, satislying step(1).

Recall that we know that L} :ms, — 73 is a non-zero map. Suppose that
we had LY, |V1°®...®V;,; = 0. Choose u € U(F,,) such that ¢, (u) # 1. Then, for
any f1® f3 @ ...@ 2 € V1 @ Vo...® V;, we have

Lb (M@ .. @Tm(u, 1, AR 1R ...0 f2)

Ly (m(u)i® f Q.. ®P)

(mfi—f)OR®. . +H®R®..0f2)
(iR f1®..®fh)

S
1
S
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since (m(u)fi — f1) € V2. On the other hand,

L151(7T1 ®..R0 7Tm('u, j F— 1)f1 ® fg R ... fgb)

7 (uy e, NIL (i ® R ® .. ® f2)

LRl ®.. @7 (4,1, DI (AR .0 f5)
Yo (u) Ly, (1 ® f§ @ ... ® f3)

and hence Lgl(fl @fI®..0 f2) =0, or yet, L}gl |V1®V2“_®Vm =0.

The same calculations now done for V3 would give us that L}, |V1®V2®V30®...®Vyg
= 0, and finally after m steps we would get Ll1 = 0, a contradiction.

Hence L}, |V{’®-~~®Vr‘,’l # 0 and choosing f2®...® f2 in V?®...®@ V2 such that
Ly (ff ®...® f)) # 0 (note that clearly L}, |V1°®...®Vgl # 0 implies that we can
find f°®...® f2 - a single tensor - such that qul(fl0 ®@ ... f2) # 0) we have
that @ g g (-, 75,) Z 0.

Let us write each (Tél,]'—:j) as (1§ ® ...@7 ,F! ®...9 Fi ). Note that for
each f1 ® .. ® fm € V2 ® ... ® V2, ¢o.0sm( * »73,) belongs to S(Ty x ... x
T, Fi ® ... @ Fi_) which is isomorphic to S(T1,F}) @ ... @ S(Tn, Fi ) (on
which ay R®R..RQ o, acts).

We claim that o R..Q oy o o ®...0 Q- if, and only if 7 = L.

To see that, first notice that it suffices to prove that o R .. o x>~
o @ .. @ agq if, and only if a, =aq for all kK =1,...,m, since (from our
local computations on the representations «.) this last condition implies that

75, and Tél are Ty x ... x Tj,-conjugates, which can not happen unless 75 = 7k

(e, j=1).

(s 8y — H 3 ~
Now, clearly ay Zaq for all k = 1,...,m implies o ®.Qay Zay @

.

...Qa, . Conversely, assume that we have an isomorphism ¢ : a; ®@.Qa, —
Vm vl Um
oy ®...® an . Fix a non-zero vector £, ® ... 8 &, € o @ ... a; and
Toy Tom s Tog Toirn

basis {y/ },...,{y"} of Ort 5eeeyirt respectively (where the i belong to some

families of indeces). For each h € a_; we have that
Hh©ED . ©6n) = T T hiin WL () B @G (D) (9

(this is a finite sum, listing of course only the non-zero X;,
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The thing to notice here is that y? (h) @ ... @ y" (k) belong to a finite di-
mensional subspace of ot @ ...@ o, as we vary h.

To see this, let P) x...x P)_be an open subgroup of P(F,,)x...x P(F,,,) such
that (ozTé2 ® ... ®aT‘{m)(p2, o Pm)E2® ... R =E Q... Q &y, for all (pa,...,pm) €
BE %o B Py Forafmh € {2, .t} Job Bk = (1, vy 1y Py Lycong 1) € Pp, Xoes X
P) x ..x P{ . Then we have that

Moy ®..®ay JL,Ah®ER ... ® &n)
Ah @& ®...Qbm)

.....

Il
§
=
P
=
o
558
—
banl
Sl
®
®
=
§d
=
<

and on the other hand,

qﬁ((ad1 ®..®ay JL,p)h®H® ... ®&m)
oy Q.0 aﬁm(l,;fk)(p(h RER...QEL)

from what we get that

Xityoia ()i, (B) ® .. @ yh (R) ® ... ® g ()
Xityi ()l (B) ® .. @ . (pr)yl (B) ® .. ® Y[ (R)

hence yf (h) € (o%k )ng, which is finite dimensional (by admissibility). Since
k € {2,...,m} was arbitrary, we get that y? (h) @ ... ® y/" (h) belongs to a finite
dimensional subspace of o @..Qam , independent of h.

Let us then fix {y; gil,...,{yﬂ}N"’ basis for (aTéz)sz,...,(aT}) )Pom re-
i

=1

spectively. Then, for each h € o ; we can write (let us write £ = & ® ... @ &)
vy

Ny N

PhR®E =D . D Zigin(h) @ YL (R) ® .. ® Y (h)

ip=1 tm=1

with 2, i, () € ayr . Since £ # 0 and ¢ has trivial kernel, z;, i, (h) must be
a non-zero element of at when h # 0, for some ig,, ..., ix,,. Let us assume for
1

simplicity that for some h # 0,2,..1(h) # 0. then we a get a non-zero P, -map

.....

i o) ©1,...1
Q= o @...@aT, - o Q...Q au = Qs
v] U v vm

Ty

oo het 13 = z.a(h)
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]

By irreducibility of both « ; and a; we get that « ; o . Similarly
V1 v v v

a; Zan forall E=2,..,m and this completes the proof of our claim.
YE

Uk

Now let us go back to the proof of Step(1). Recall that we have already
selected an element 0 ®...® f2 of VP ® ...® V2 such that @f{’@...@f&( T ®
@7, ) # 0. Therefore the J elements @ og g0 (-7, ®...@ 7)) form a finite
collection of vectors belonging to the inequivalent irreducible representations
o Q.0 o and then it is possible (see for instance [L], p. 650) to find a
smooth compactly supported function A = A\ ® ... ® A,, on Py X ... X P, such
that

(o ®..@an J(Nese. e, - T @ QT ) = Crg..05( - T @ @ Ty

and

(an, ® - ®an Y Nepe.op( 7 @07, )=0

for all y =2,...,.J. Since
(o, ®...@an Y Nege. o7 ©.. 0T, )=

s‘am(/\l)f{)@m@ﬂm(/\m)fgz( ’ ’Tgl @ ... 7—ij)

for all j and 7 (M) fP @ ... @ (A ) f2 still belongs to V2 @ ... @ V2, step(1)

follows.

Step(2): There exists non-zero f! € m, and non-zero f® € w such that

Li(fD)ray = L2 r(ay and Li(f)|pay =0forall j =2,...,J.
Proof. For each v’ € S, choose f2 as above. For f ® ... @ {9, as in step(1), let

fF=(®..0%) @ (Quvesnls) ® (Rugs,&s) -

By formula (8) we see that

‘Cj(fl)lT(A) = ‘Cgl (f(l) ®... 8 fg'z,)|T51 ® (®v’€5m£i'(fv?')|Tu,) ® (®U€50‘C11/(§S)|Tv)

is non-zero precisely for j =1 (by step(1)).
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Let us now look at the w side. First, for v € Sy we have the diagram

-

Ty — Wy

13\ vl
T’U

and by uniqueness of Heisenberg models we get that there exists A, € C* such
that L! = X\,LY o o,. By changing our fixed unramified vectors by multiples if
necessary, we may assume that L! = L% o o, for all v € So. From this follows
that £ = L% 0 o, for all v & S.

Finally, let £ (f} ® ... ® f?n)|Tg1 =YL ¢ @..9 ¢, which belongs to
STy X oo Ty Foy @..@F,,,) = @7, 8(T,,, Fu,)- Foreach i =1,..., I choose
ki € w,, such that Egk(h};ﬂnk = ¢, (recall that locally, for a finite v and a
Weil representation (w,, W,) we have that (w,|p , W) = (a,,S(T,, F,)) and
the isomorphism is given by (h — L9(h)|;, ), so we can choose the hj, above).

Now let
I 5 &
4/‘0 = [Z hzl B ee® th] ® (®U/€5mf3) ® (®v€500v(€2)) .
=1

Then, it is easy to see that Co(f0)|T(A) = Ll(f1)|T(A) and step(2) follows
(we are assuming for simplincity that for v' € S, L1,(.)|y, and L£3(.)|; , are

both equal to the standard inclusion

CE(E™, Fur)x,r = CT (B, Fur)x,
rather than non-zero multiples).
Step(3): f' = f°.

Proof. Let ¢ = f' — f°. Since ¢ is an automorphic form on G(A), to prove
that ¢ = 0 it is enough to show that ¢|P(A) = 0. By step(2) above and formulas
(6) and (7) we see that for any p € P(A), ¢(p) = ¢u(p) = fi(p) — fi(p).

We claim that the choices of f! and f° force f1|P(A) = f0|P(A) = 0. Indeed,
we have f! = (P ® ... ® 12) ® ()5 and f2 € V;}i for £k = 1,....m. Say



198 M. V. A. SOARES

= ZJJ‘] Ty (uj)h;—h; with u; € U(F,,) and h; € V. Let @; = (u;,1,1,...) €
U(A). Then,

!t o= (Sfm(u)hi — i) ® (fl){“‘}

E] 17Tv1(uj)hj®(f1){m} (fl){vl}
Tl w(ii)h; ® (S — by ®(f1){”‘}
. Z}Izl 77(“])}‘] *h

(7Lj = h; @ (1)1}, of course). Hence, for any p € P(A),

T(p)

fU(F NU(A) f 1(J“l’) du .

IUSF \U(A)(Z] 1 W(“J)fl )(UP) du ~

= i 1(fU(F NU@4a) T m(i;)h;(up) d”—fU(F)\U(A) hj(up) du)
= 0.

Also, f* = [T, B} ® ... ® hin] ® (Bugs. [)) ® (Bugs,00(£))) with each hj,
in W), and the same argument shows that f{}|P(A) = 0. We conclude that

LpUlP(A) =0, therefore o = 0 and f! = f°.

Finally, note that this also concludes the proof of the theorem (7.2.3), since

we have constructed a non-zero element f* = f%in VN W.
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