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CONICS FIVE-FOLD TANGENT TO A PLANE
CURVE
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Abstract

We study the question of determining the number of conics tangent
to a general plane curve at five unassigned points. This is related to
the number of rational curves in a system of curves on the K3—surface
obtained as a double cover of the plane ramified along a sextic.

Resumo

Analisamos a questao de determinar o nimero de conicas tangentes
a uma curva plana genérica em cinco pontos nao prefixados. Isto é rela-
cionado com o nimero de curvas racionais em um sistema de curvas na
superficie K3 obtida como recobrimento duplo do plano ramificado em
uma séxtica.

To the memory of Prof. Claude Itzykson

1. Introduction

This article is motivated by a question posed by C. Itzykson regarding the
number of conics five-fold tangent to a plane sextic. He asked it (priv. comm. on
Aug. 30, 1994) in connection with the problem of enumerating rational curves
on certain K3 surfaces. We present here only the general set-up, describing
appropriate maps and parameter spaces. Actual enumerative calculations must
be deferred until a few difficulties explained in the sequel are solved.

The subject of finding numerical invariants of families of curves of low genus

has received many recent contributions in the context of Gromov-Witten theory,
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cf. Fulton-Pandharipande [3] for a survey. The case envisaged here is not
covered by Yau-Zaslow [9] beautiful formula. This is also not a special case
of the well-known formula of De Jonquieres [2], [7] due to the presence of non—
reduced conics. The device enabling us to get rid of these “bad” members in
the family is the classical concept of complete conics (see [5] and the references
therein).

Let C denote a general plane curve of degree d. Let IK denote the variety

of complete conics (cf. §2 below for a review). We set (cf. 3.1 for precision),
Ko ={((k,k"),P) e Kx C|PernC and tpC € K'}.

Here tpC is the tangent line to C' at P. We wish to employ multiple point

formulas (cf. Kleiman [4]) to a suitable modification of the map

Kc PK
((k,k"),P) +— (K,K).

We show that for each ¢ = 1...5, the following holds (cf. 3.2).

1. The multiple point set m;(p) = {y € K¢

length p~'p(y) > i} is of the

right codimension ¢ — 1 and
2. the image p(ms(p)) in IK consists of nondegenerate conics only.

The modification is required in order to resolve singularities of the source of the
map p. Indeed, K¢ turns out to be singular (not even l.c.i.) along the graph of
the embedding ¢ : €' c—IK defined by P~ ((tpC)?, (P)?), where (P)? denotes
twice the line dual to a point P. It can be shown that the blowup K of Kc
along the graph of ¢ is smooth. But now the composite map Ke — Ko — 1K
is no longer finite.

To get around this difficulty, we let IK denote the blowup of IK along the
image of the embedding ¢. We get an induced map p : K¢ — K which can be
shown to be finite. Moreover, its restriction to the exceptional divisor of K¢ is
an embedding. Thus, roughly speaking, the original map p and its modification

p display the same multiple point loci, cf. [8]. In loc. cit. we hope to explain
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how to compute the relative tangent bundle of p: Ky —= ]/12’7 a main ingredient
for using multiple-point formulae. For this end, we will show in [8] that K is
obtained by blowingup twice the conormal variety of C' (embedded in pd5 by
the Veronese map) along explicit, smooth centers.

A few words of caution are due. Recall that when one applies the double
point formula to the Gauss map of a plane curve, one gets the number of bitan-
gent lines plus the inflexional ones. Of course, in this case, one knows how to
account for inflexions separately (e.g., employing ramification points formulae).
Similarly, multiple point theory in the present setting gives us the total number
of irreducible conics five-fold tangent to C. This includes stationary tangent
conics of several types, one for each partition 5=4+1=3+2... (e.g., sextactic’
conics).

Now, in order to apply the present setup to the counting of rational curves
on the double cover of IP? ramified along a plane sextic C, we need to
find the contributions of coalescing 5-fold points separately from the total of
5-fold points of p. Indeed, a sextactic point contributes less to genus reduction
than 5 distinct simple tangencies to the curve C' do. The same observation
applies to other partitions of 5. Unfortunately, these coalescing points occur in
wrong codimension for stationary multiple point theory: the known formulas
(cf. [1]) are not applicable. Some of the types of stationary tangent conics
may be computed by a De Jonquieres like approach. That is the case when the
number of distinct points of contact is at most 2. So far we haven’t been able
to calculate the remaining cases, e.g., irreducible conics cutting a divisor on C'
of the form 4P 4+ 2Q + 2R + - - -. Thus, straightforward application of multiple
point formula would give us, at the present stage, only an upper bound for the
sought for number of rational curves in a general K3 surface with a polarization
of genus 2.

A similar approach might work for the question of counting rational curves
of arithmetic genus 9 on a general quartic surface in 3-space (cf. B. Segre [6]).

See Fig. 2. We hope to report on this elsewhere.

LAs Coolidge has observed, “it is hard to keep away from sex these days”, [2], p. 280.
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We work throughout over the field of complex numbers.

2. Complete conics
Let IK C IP5 x IP® denote the closure of the graph of the rational map
P’k — K € IP"

that assigns to an irreducible conic K its dual conic K’. The variety IK is called
the variety of complete conics. The map p; : IK —IP5 induced by projection
is the blowup of the Veronese surface V = P2 C IP® of double lines. The
exceptional divisor p7'V is the set of pairs (K, k) such that K is a double line,
K’ is a line pair in the dual plane and the pair of points (called foci) dual to

the line pair &' lies on K.

Y

K C IP? K CIP?

A similar dual description holds for the second projection p, : IK — IP5.
We fix in the sequel affine coordinates z,y in IP? and a;,...,a; in IP°.

The a}s are thought of as coefficients of the conic
yP 4 aay + asa® + asy + asr + as.

The rational map K +— K’ is expressed by

bo = G/i . 4(15@2, bl = 4@501 - 2(14(l37
bg = 4(13(12 = 2&4&17 b3 = (l% = 4(157 (1)
b4 = 4(L4 = 2&1&3, b5 = (l% = 4(12.

Here the b;’s denote homogeneous coordinates in IP® corresponding to the

coefficients of the conic
K = boy® + broy + baBy + by + by 3 + b5 3°

in the dual plane with homogeneous coordinates «,/3,y.
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Recall that the polynomials in the right hand side of (1) generate the ideal
of the blowup center V. In the affine patch chosen above, the following three

generators in fact suffice:
et 2 _— . 2
Z9:= ag — aj/4, z4:= ay —araz/2, z5:=as — az/4.

The pullback of this patch to I is covered by three affine pieces, one for each
choice of zy, 24 or z5 as principal generator for the ideal of the exceptional
divisor. We fix the coordinate chart for IK so that z is a local equation of
the exceptional divisor. This is the affine space A’ with coordinate functions

a1, ay, a3, g, us such that the restriction of the blowup IK — IP® is given by the

homomorphism
kla1, az, as, as,as] = kla1, 22, a3, 24, 25] = klaq, 22, as, ua, us) 2
Z4 = UyZ, Z5 = UsZg. @,
Solving the equations by = 4uy(ay — a}/4), by = —dus(ag — ai/4) for a4, as

(with by, b3 as in (1)), we find

a4 = Uqay + ajaz/2 — uga? /4,

as = usay + aZ/4 — usa? /4.
Setting az = 2z + a}/4, the expression for each b; in (1) becomes a multiple
of z,. Thus, after cancelling out z,, we see that the rational map IP%- .. — IP®
extends to a morphism p, : IK — IP® given in the chosen affine patch of IK by

the assignment

bo = zouj + ayazuy — a3 — (af + 4z9)us, by = dajus — 2azuy,
bg = 4a3 = 2(11’[14, b3 = 74’[145, (3)
b4 = 411,4, b5 = —4

3. The completed conormal variety

Let C' be a smooth plane curve of degree at least 3. We set
Coc := {(P,K) € C xP°| Kk -C > 2P}.

One checks easily that Coc is a IP?-bundle/C. Tt is usually referred to as the
conormal variety of C' for the Veronese embedding C' C IP®.
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Let q: Coc — IP® be induced by projection. Set C':= ¢(Co¢). Thus C' is
the dual variety of ¢ C IP®. The induced map Coc — (' is finite, birational.
For k € C the fiber ¢~'K is supported in the set of P € C' such that k- C >
2P. If Kk is a double line then clearly ¢~k is equal to €' N K as sets. In

2 many r—fold points for each » =1...degC .

particular, notice ¢ admits oo
Thus ¢ : Coc —IP® is not appropriately generic in the sense of [4]. Hence the
formulas for r—fold loci do not apply to the map g¢.

Our goal is to replace the map ¢ by a map obtained by blowing up its source
and target. The new map will be shown to be appropriately generic.

The intuition supporting the idea of the construction is best explained by
the picture below. The top complete conic is threefold tangent whereas the

middle one is transversal and the bottom one is bitangent! Moreover, no de-

generate complete conic contributes to the five-fold point locus, cf. 3.2.

Fig. 1
Set
W ={(Pt)eCxIP?|(-C> P}

Clearly W is a IP'-bundle over C. It embeds in C' x IP® by squaring the linear
form ¢. Also note that C' embeds in W as the graph of the Gauss map, with
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image
{(P,6) e C xTP?|¢-C > 2P}.
We get the commutative diagram,
C x IP5 D) COC
U U (4)
CxV > W o C
It is fair to say that the whole fun (or difficulty if you wish) in the sequel stems

from the fact that the square in the previous diagram is not cartesian. Indeed,

it turns out that the scheme intersection

W= (C x V)N Co¢

—_
ot
e

presents an embedded component along the image of C' in W by the Gauss map
described above. This is revealed by the local-analytic calculations performed

in the sequel.

3.1. We call the blowup K¢ of Co¢ along W the completed conormal variety
of C.

Let x,y (resp. ai,...,as) be affine coordinates in IP? (resp. IP?®). Assume
that the line y = 0 is tangent to C' at the origin. Let f(z):= cya®+--- be a

power series so that y = f(z) holds in the completion

Oco = Clle,yl/(v - f(2) (6)
of the local ring of C' at 0. Put

71 i=a1/2 4 f(z), 29 1= ay — al /4,
z3 1= a3/2 + a1z/2 + f(z), Zy 1= aq — a1a3/2, (7)
25 = as — a3 /4

We have the following local-analytic generators for the ideals of the embeddings

displayed in the diagram (4):

CxVCCxIP?: 2,242 (8)



208 I. VAINSENCHER

2 2
Coc C C x P {23“” + 7T+ 5, (9)

223721 + 2290 + 24

Indeed, let a8 be affine coordinates in the dual plane IP2. Put

Ai=y+tax+f
q = y2+a1xy+a2x2+a3y+a4;r+a5

Matching the coefficients of A? and ¢, we see the map P2 — V — IP% is

given by
(a,8) = (a1 =20,0; = &% a3 = 20,04 = 205,05 = §°). (10)

Eliminating a3 yields local equations for V C IP®, whence (8). The second
relation follows by substituting y = f(z) in A, ¢. For this, write ¢ = A*4+¢— 2.
We get q(z, f(z)) = 22+ z92% + 247+ z5. Differentiating with respect to z yields
the second generator in (9).

It can be easily shown that the completed conormal variety Ko is equal to

the closure in €' x IK of the correspondence
{(P,K) € C x IP5| K is an irreducible conic tangent to C' at P}.
The precise meaning of Fig. 1 above may be stated thus.
1. Let K be a double line and let (P, (k, k")) € C x IK. We have

(P,(k,k") € K¢ ifand only if P € CNK and ¢pC € K.

2. Suppose the support of a double line K is transversal to C' at P. Then

(P, (k,k") € IK¢ if and only if P is one of the foci of (K, K'). (11)

In fact, we compute below the possible dimensions for the artinian local k-
algebra A of the fiber of IK¢ over (k,k') at (0, (K, K')). The answers depend

on whether

® K4 is transversal to C at 0,

e the point 0 is inflexional and
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e a focus of K’ is on 0.

For this end, we describe local-analytic equations of IK¢ in €' x IP5.

The uniformizing parameter z (see 6) enables us to replace C' by A' (or a
small disc) in the étale (or classical-analytic) topology. Accordingly, we replace
C x IP® by the affine space (or poly-disk) A! x A with coordinate functions
T, ay, ay, as, 4y, as. In view of (7) we may as well employ the coordinate functions

Ly 21522, %3y Z4y 5.

Put
2
Vs i= —Z7 — U4X — U5,

. 12

{ Vg 1= —2% — uy. (12)

Recalling (9), we see that the ideal of the total transform of Coc in C x IK,
restricted to this A®, is generated by ¢ := 23 — zuvs and n := 223z —
z9v4. Hence it also contains 2z — z3n = z(z3v4 — 22105). Since z is a

local equation of the exceptional divisor, it follows that the last expression in
parenthesis vanishes on the strict transform K¢ of Coc in C' x IK. We proceed

to show that the ideal of K¢ is in fact locally generated by the three quadrics,
22 — 205, 22321 — 29V4, 234 — 22105, (13)

The reader will at once identify (13) as the homogeneous equations in IP* (with
homogeneous coordinates z1, z2, 23, v4, v5) of a ruled cubic surface isomorphic to
P2 blown up at a point, embedded by the system of conics through the point.
Hence these quadrics define an integral subscheme of A® which coincides with
Bly: (Cog) = K¢ on the complement of the exceptional divisor. Therefore, the
present affine patch of K¢ is analytically isomorphic to a product Al x V' of
the affine line (with z coordinate) by the affine cone V' C A’ of the ruled
surface.

The three local equations (13) will enable us to compute the fiber of K¢ — IK

over a complete conic (K, K’) € IK. Assume K is a double line, say

K = (y + apz)?.

Notation as in (10), we have

a1(K) = 200, a2(K) = ag, z2(K) = az(K) = a4(K) = as(k) = 0,



210 I. VAINSENCHER

and from (3), we may write
K = —4/3* — duso® + 4iig0f + Susapay — dugaofy — dusady?, (14)

for some uy,us € €. The local ring A of the fiber of K¢ over (K,K’) at
(0,(k,K")) is the quotient of

@ [ah A2, (3, Uy, U‘B] — @ [217 22,23, U4, u5]

localized at the maximal ideal
<ZL’7 ay — 20[07 as — 0[(2)7 az, Ug — 7-7447 Us — ﬁ5> =
(@, 21 — Flo)— o, 2, % — ove — (@), ws— B4, ug—Ts)
by the ideal
<€11—20¢07 az—03, a3, Ug—Uy, Us—Us, 25—22Vs5, 22371 — 2304, 23U4—221U5> ==
<21—f’(;z:)—a0, 29, z3—apr— f(x), ug—u4, us—us, 23, 2371, 2304 —221U5>.
By (12), we have
A=C/T (15)
where J denotes the ideal
I = {(a0r + f(@)P, (aor + J(@)(F(x) + av),
(a0 + f(2))(22 + @) + 2(f'(2) + c0)(2? + Gz + s))
= ((aor + f(2))?, e + aof(z) + avzf'(z) + f(2)f (),
2005 + aptiar + 2us f'(x) — g f(2) + 2ugz f(x) — 2f (2)x + 2f'(2)2? >
Clearly the quotient ring A is non-zero if and only if apus = 0. Now ap =0
means that the reduced line of K is tangent to C' at 0; in this case the (point
dual to the) line tpC is in K'.
In order to grasp the condition us = 0, recall that the point (zo,y0) on the
line y + awwx = 0 corresponds by duality to the line xzoar + f — apzo = 0 in
the «, 3 plane. Thus the line pair in the «, 8-plane corresponding to a pair of

points (xg, —apxo), (1, —apx1) is given by the conic

B2 + zoz10® + (20 + 71)af + adzor) — 2002010 — oo + 21)5.
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Comparing with (14) (with v = 1), we see that us = 0 holds if and only if the
line pair K’ is dual to a pair of points on the line y + agz = 0, one of which

coincides with the origin. Thus tpC € K’ holds, thereby establishing (11).

We list below the possible lengths of the artinian local C-algebra A of the
fiber of IK¢ over (kK,K') at (0,(k,K')) for K a double line. We assume for
simplicity the intersection index of the tangent line t,C' with C at 0is < 3,
since we will need the estimates only for generic C. The calculations follow

easily from (15).

‘ algebraic condition ‘ geometric meaning ‘ length A |
agus # 0 Rred transversal, no focus at 0 0
ag # 0,45 =0 Rreq transversal, some focus at 0 1
. 1 (not inflexion
ag=0,u5 #0 Rred tangent, no focus at 0 Q&Tion)) (16)
2 t inflexi
ag =15 =07 U4 Krea tangent, one focus at 0 (i(r?f(l)exlil(;n()exmn)
. t inflexi
ap=ts=us=0 Kred tangent, both foci at 0 i Einri)ﬂe;nioz))ﬂon)

Proposition 3.2. Keep the notation of 3.1. Let C be a generic plane curve.

Let p:IKe C C X IK = K be induced by projection. Then, for 2 <i <5,
mi(p) := {(P, (%, K")) € Kc |lengthp~' (5, K")) > i}

is of codimension i — 1 in K¢ and for each (K,K') € p(ms(p)) we have that K

is non-degenerate.

Proof. The hypothesis that C' is generic allows us to assume that

e the inflexion and bitangent lines of C are all simple, i.e., for each P,Q € C'
and line £ € P2, if £- C' > 2P +2Q (vesp. £-C > 3P) then P # Q and
the divisor £-C — 2P — 2@ (resp. ¢- C — 3P) is reduced and

o for each partition 1 < 7y + --- 4+ 7, <5, the set of reduced conics cutting
C in a divisor of the form (1 + m;)P + R with R reduced, is of the

right dimension 5 — Xm;.
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By the previous discussion of the possible lengths of fibers of p, we see that if
K is a double line and (k,K’) € K¢ then p~'((K,K')) is of length at most 4
(hitting that bound only when Keq is inflexional). Therefore, ms(p) lies in
Ko\ Keyy,, = Coc \ W

For each partition

™= (ﬂla"'vﬂi) € {(5)7(471)7(372)7(37171)7(27211)1(2317171)7(17171a171)}7

put
Y. = {(P,K) € Coc | kisreduced and k- C=(1+m )P+
+(1+m)Pr+ R with R reduced}.

Thus ms(p) is the union of the ¥.. Each X, is finite for general ¢ by an
easy count of constants. Since ms(p) is easily seen to be nonempty, it follows
that each m;(p) must be of the right (minimal) dimension 5—¢ for ¢ =2...5.
Alternatively, the dimension estimates also follow easily by a count of constants

in view of (16).

4. Final comments

In order to apply the present setup to count rational curves on the double cover

of IP? ramified along C, we still face the following tasks.

1. To gather enough information to compute the relative tangent bundle of

the map p : K¢ — IK referred to at the introduction.

2. To account for the contributions of coalescing 5-fold points separately

from the total of 5-fold points of p.

The first point will be the object of a forthcoming article [8].

The second task is, as of this writing, only “half-solved” at best. Indeed,
we may use De Jonquieres formulae to count X, for # € {(5),(4,1),(3,2)}.
However, we haven’t been able yet to detect the weights with which these enter

the total number furnished by multiple point theory. The question requires
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a better understanding of the local structure of the Fitting ideal defining the
scheme structure of the 5-point locus around a point of coalescence.

The picture below might convince the reader acquainted with notion of com-
plete quadrics why a similar approach should work for the study of quadrics
multi-tangent to a surface in IP3. Thus, a plane-pair with two marks (e signs)
is expected to be at most 8-fold tangent, this case occurring if and only if each
plane is tritangent (say at the o’s) and the marks are contained in the intersec-

tion (x’s) of the distinguished line with the surface.

o o o
o

Fig. 2

Similarly, a double plane with a marked complete conic should be at most 8-fold
tangent, this being so precisely when the supporting plane is tritangent and the

marked conic is 5-fold tangent to the plane section.
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