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ON PROJECTIVE MANIFOLDS WITH
DEGENERATE SECANT VARIETIES

Masahiro Ohno®

0. Introduction

Let X be an n-dimensional nondegenerate (i.e., not contained in a hyperplane)
projective manifold in PV over an algebraically closed field k of characteristic 0.
Let SecX denote the secant variety of X in PN. We have always dim SecX <
min{2n+1, N}. If dimSecX < min{2n+1, N}, we say that SecX is degenerate.
The Linear Normality Theorem [Z, Chap.2, Corollary 2.17] implies that if SecX
is degenerate then dim SecX > (3n+2)/2. If equality holds, X is called a Severi
variety. Severi varieties were completely classified by F. L. Zak [Z, Chap.4,
Th. 4.7]. Zak also generalized the class of Severi varieties to a class of manifolds,
named Scorza varieties, and classified Scorza varieties [Z, Chap.6]. In this paper,
we propose a new class of projective manifolds with degenerate secant varieties,
which is wider than the class of Scorza varieties, and investigate some properties
of this class of manifolds.

Suppose that SecX is degenerate. Let ¢ = 2dimSecX — 3n — 2. Let
Sm(SecX) denote the smooth locus of SecX, and v : Sm(SecX') — G(dim SecX,
PY) the Gauss map u — T,SecX of Sm(SecX). Then we have the following

proposition.

Proposition 0.1. dimIm(y) = 2(dimSecX —n — 1 — ¢) for some integer ¢
(0<e<e).

Note that if X C PV is a Scorza variety then the integer ¢ in Proposition 0.1
is zero ([Z, Chap.6, (1.4.11)]) but the converse is not true. Note also that, to


http://doi.org/10.21711/231766361998/rmc1411
https://orcid.org/0000-0002-8734-2796

116 M. OHNO

the best of my knowledge, all examples of ¢ > 0 are constructed from those
of ¢ = 0. In this paper we classify low dimensional projective manifolds with

degenerate secant varieties satisfying ¢ = 0.

The main result of this paper is the following.

Theorem 0.2. Suppose that SecX is degenerate and of dimension 2n and that
dimIm(y) = 2(n — 1).

If n =4, then (X,0x(1)) is one of the following.

1) (Ppi(€), H(E)), where € = O(1)8U4-) 3 0O(2) (I = 2,3,4);

2) (Pp2(€), H(E)), where £ =O(1) @ Tpe.

Ifn =75, then (X,0x(1)) is one of the following.

1) (Ppi(€), H(E)), where € = O(1)2C~D @ O(2) (I = 2,3,4,5);

2) (Ppi(&), H(E)), where & = O(1)8E= @ Tp: (1 = 2,3)
3) X C PV is a linear section of G(1,P®) C P a section cut out by codimen-

sion 3 linear subspace of P1;

4) (L10, O(1)), where Xyg is the adjoint manifold of the simple algebraic group
of exceptional type Gy and O(1) is the fundamental line bundle on it. (In other
words Yg is the 5-dimensional Mukai manifold of genus 10 ([Mu]).)

If Sec X is degenerate and of dimension 2n, then n > 2 by the Linear Normal-
ity Theorem. If n = 3, then T. Fujita ([F. Th. (2.1)]) showed that (X, Ox(1))
is one of the following: (Pp:(O(1)**~" & O(2)), H(O(1)%*~* & O(2))) where
(1=2,3), or (P(Tp:), H(Tp2)).

Notation and conventions

We work over an algebraically closed field k of characteristic 0. We follow
the notation and terminology of [H]. We use the word manifold to mean a
smooth variety. For a manifold X, we denote by x(X) the Kodaira dimension
of X. We use the word line to mean a smooth rational curve of degree 1. Given

two distinct points z, y on PV, let x * y denote the line joining them. For
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subsets X, Y of PV, let X Y be the closure of the union of all lines = * y
joining two distinct points € X and y € Y. For a vector bundle F of rank
e+ 1 on a variety X, we define the i-th Segre class s;(E£) of E by the formula
si(E)Na = p*((fl(OP(EV)(l)e-'.i N p*a) where « is a k-dimensional cycle modulo
rational equivalence and p : P(E) — X is the projection. We also define the
total Segre class s(E) to be 1 4 s;(E) + s2(E) + ---. The total Chern class
E)Y=14ci1(E)+ cao(E) + -+ - is defined by the formula ¢(F)s(F) = 1. These
definitions of s;( E) and ¢;(E) are the same as those of [F1]. By abuse of notation,
we simply write s,,(F) for deg s,(E) when n = dim X. We denote also by H(F)
the tautological line bundle Op(z)(1) on P(F). For a linear system A, BsA
denotes the base locus of A. Let [r] denote the greatest integer not greater than

r for a real number r.

1. Preliminaries and Proof of Proposition 0.1

Let X be an n-dimensional nondegenerate closed submanifold in PV. Let B be
the blowing-up of X x X along the diagonal A, and let Sy = {(z,y,u) € (X x
X\ A) x PN|z,y, and u are collinear}. Since P(Q2x) is the exceptional divisor
of B, we can identify X x X\ A with B\P(Q2x). Thus Sy can be identified with
a closed submanifold of (B\P(Qx)) x PY. We define S to be the closure of Sy in
B xPY. We call S the complete secant bundle of X. Let p: S — BxPN — B
be the first projection and ¢ : S — B x PV — PY the second projection.
Then SecX = Im(o). For a point u € SecX, let ¥, = a(p~ (p(c™(w)))),
Q.=%X,NX,and 0, = {z € X|u € T, X}. We call £, the secant cone, Q,

the secant locus, and 6, the tangent locus, with respect to u. Let Sm(SecX)
denote the smooth locus of SecX. Let v : Sm(SecX) — G(dim SecX,PV) be
the Gauss map of Sm(SecX). For a point v € Sm(SecX), C, denotes the closure
of v7'(y(u)) in SecX. We call C,, the contact locus of T},SecX with SecX. We
fix and will use these notations in the following sections.

We first observe that for a general point u € SecX dim@, = 2n + 1 —

dimSecX, ¥, = u * Q,, and C, is a linear subspace in PV (see, for example,
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[Z, Chap. 1, Th. 2.3 ¢)]). We also have ¥, C C, for any general point u €
Sm(SecX) (see, for example, [Oh, Cor. 1.2]). Therefore 2n + 2 — dimSecX =
dim¥, < dimC, and hence dimIm(vy) < 2dim SecX — 2n — 2.

Now we give a proof of Proposition 0.1. Let D!, = U,ec,: general@y. Then
C, = SecD! and 1+ 2dim D!, = dim@,, + dimC,, for any general point u €
SecX (see [Oh, Lemma 1.4]). Let X, = {z € X|T.X C T,SecX} for a point
v € Sm(SecX). Then D! C X, for any general point u € SecX by [Oh,
Corollary 1.3]. Let T'(X,, X) = Upex,T:X. Then T(X,,X) C T,SecX. Note
that T,,SecX # P since SecX is degenerate. Note also that X € X, * X and X
is not contained in T},SecX since X is nondegenerate in PV and T,SecX # PV,
Therefore dim X, * X = dim X,, + n + 1 by [Z, Chap.1l, Theorem 1.4]. Since
dim X, * X < dimSecX, we have dim D!, < dimSecX —n — 1. Therefore we
have dimC,, = 2n + 2 — dim SecX + 2¢ for some integer ¢ (0 < ¢ < ¢). This

completes the proof.

Suppose that SecX is degenerate in the following. Then we have the follow-

ing proposition.

Proposition 1.1. Assume that dimIm(y) = 2(dimSecX —n — 1). Then the
secant cone ¥, is a linear subspace of PN of dimension 2n 4+ 2 — dim SecX
for any general point u € SecX. Moreover the secant locus @, is a smooth
hyperquadric in ¥, and the tangent locus 0, is a smooth hyperplane section of

Q. for any general point u € SecX. In particular X is rationally connected,

k(X) = —oo, and h'(Ox) =0 for all i > 0.

Proof. The first statement follows immediately from the fact that ¥, C C,.
For a proof of the second statement, note first that a linear subspace ¥, contains
Q. as a hypersurface. Second note that X is not a hypersurface in PV because
SecX is degenerate, so that the trisecant lemma [F, (1.6)] shows that @, is a
hyperquadric in ¥,. For the rest of the second statement, refer to the proof
of Th. 3 in [F-R, p.964, 1.15 — p.967, 1.7], and make obvious adjustments. For

the definition of rational connectedness, see [Ko-Mi-Mo, (2.2)]. Since general
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two points can be joined by a positive dimensional quadric @,, X is rationally

connected. The rest of the assertion follows immediately from [M-M, Th. 1] and
[Ko-Mi-Mo, (2.5.2)].

O

By generalizing [F, Lemma (2.3)], where n = 3, to arbitrary dimension n,

we have the following proposition.

Proposition 1.2. Assume that dimIm(vy) = 2(dim SecX—n—1). IfdimSecX =
2n, then Kx.Q, = —n — 1 for a general point u € SecX.

2. Proof of Theorem 0.2

In this section we give a proof of Theorem 0.2. First of all, we state a couple

of Lemmas.

Lemma 2.1. Let X C PN be an n-dimensional projective manifold. Then

dim SecX < 2n if and only if

faeg X7 = 32 (7 ) e@x(Ps,msm) 0 X1 =0

For a proof, see, for example, [F, (1.5) and (1.7)].

Lemma 2.2. Let X C PV be an n-dimensional projective manifold, I =
Ox(1), and assume that (X, L) = (Py (&), H(E)) for some locally free sheaf €

of rank n —m + 1 on an m-dimensional projective manifold Y. Then

-3 (2".* 1) (LY sns (Tx) (1 [X]

(5m@)-3 33 <2]+ 1) (‘" L 1) itpmtontm (E)81(E)sns— (Ty)

§=0p=0 I=0 p—i
c1()? = 2n+ e (&) —n(n+ 1) (g(Y) - 1) ifm=1

(L2 - (n?+n —I— 1)L% - (1/6)(2n + 1)(n + 1)nei (&) (Ky)
- (") (e (Ky)? = e2(Ty)) = ("THe1 (€)? if m=2.

IfY = P!, then dimSecX < 2n if and only if € = O(1)®" or O(1)2*-1Ng0(2),
and under this equivalent condition we obtain SecX = P(H(L)).
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Proof. We obtain these results by calculation and by Lemma 2.1.

We get the following lemma by calculation.

Lemma 2.3. Let C be a smooth complete curve of genus g and € a vector
bundle of rank n on C. Lel X be a smooth irreducible effective Cartier divisor
of P(E) such that Op(e)(X) = H(E)®* @ m*M for some line bundle M of degree
m on C, where 7 : P(§) — C is the projection. Lel L = H(E) ® Ox and
d=L". Then

& - Zn: (277, ¥ ]>61(L)j8n_j(Tx) N[X] = d® —4nd — m — 4n*(g — 1).

In the rest of this section, let X be an n-dimensional nondegenerate projec-
tive manifold in PV with degenerate secant variety SecX of dimension 2n, and

let L = Ox(1).

Lemma 2.4. If dimIm(y) = 2(n — 1), then we have Bs|Kx + (n — 1)L| = 0
foralln > 3.

Proof. If Bs|Kx + (n—1)L| # 0, then (X, L) & (P¢(&), H(E)) for some vector
bundle € of rank n on a smooth curve C' by [S-V, (0.1)] since SecX # P¥ and
n > 3. Because X is rationally connected by Proposition 1.1, so is €, and
hence C' = P*. Therefore SecX = P(H°(L)) by Lemma 2.2, which contradicts
the hypothesis that SecX # PV,

O

In the following, we always assume that n > 4. Let ¢ : X — P(H°(Kx +

(n — 1)L)) be the adjunction map, and let ¢ = sor (r : X - VY,s: ¥V —
P(H°(Kx + (n —1)L))) be the Stein factorization of ¢.

Theorem 2.5. If dimIm(y) = 2(n — 1), then there are the following possibili-

ties.
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(1) Y is a smooth rational projective surface, s is a closed immersion induced

by |Ky + a1 (E)], (Ky + a(€))* < (n—3)?, (X,L) = (Py(&),H(E)) for

some vector bundle of rankn —1 on'Y, and

(L*)? — (n® + n+1)L* — (1/6)(2n + 1)(n + D)nKy i (€)
~ <” I 2)(1{,‘3 —eo(Ty)) - (”; 1)c1(5)2 = 0.

Furthermore (Ky + ¢1(€))? > 5 unless (Y,€) = (P2, 0(1)® & O(2)) or
(P2, 0(1)®-! @ Tp2) where [ =2 or 3;

(2) Y is an n-dimensional rationally connected smooth projective variely, and
r is the blowing-up of Y at a finite point set, and L = r*M — XE; (E;:
exceptional divisors) for some ample line bundle M on'Y, and Ky +
(n — 1)M is very ample. Moreover (Ky 4 (n — 2)M)|,g,) < n —5 for
a general point u € SecX, and Ky + (n — 2)M is nef if n > 5, and
(Y, M) = (P4,0(2)) if n = 4.

Proof. First note that Y is rationally connected because so is X by Propo-
sition 1.1. Since (Kx + (n — 1)L)
have dim¢(X) > 1. Assume that dimY = 1. Then r is a quadric fibra-

Q. = n —3 > 1 by Proposition 1.2, we

tion over Y by [S-V, (0.2)] and a contraction morphism of an extremal ray
by [B-S-W, Th. (3.2.6)]. Therefore we can show, by the same argument as
that in [Fb, p.100, 1.10-1.27], that there exist a locally free sheaf £ of rank
n+1onY and a line bundle M on Y such that X is a Cartier divisor of
P(€), that Op)(X) = H(E)®® @ n*M, and that L = H(E) @ Ox, where
7 : P(€) = Y is the projection and r = 7|x. Since Y is rationally connected, ¥
is a smooth rational curve. Let d = L", e = deg¢1(€), and m = deg M. Then
we have n — 3 = (Kx 4+ (n — 1)L)|g, = (Kpe) + (n+ 1)H(E) + 7°M)|q, =
(Opi(e + m — 2))|g,, and hence € + m < n — 1. On the other hand,
(B — s (2";'1)01(L)j5n_j(TX) N[X] = (d —2n)> — m by Lemma 2.3,

and therefore dim SecX = 2n implies that (d —2n)? = m. Let m’ be a nonneg-

ative integer such that m = m'2. Then we have e = n — (m/(m’ F1)/2) because
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d = 2e + m. It follows from e + m < n — 1 that m’?> £ m’ + 2 < 0, which is
however a contradiction. Hence dimY > 2.

If dimY = 2, then Y is a smooth projective surface and (X, L) = (Py (&),
H(E)) for some vector bundle of rank n — 1 on Y by [S-V, (0.2)]. Furthermore
Ky + ¢1(€) is very ample by [L-M, Th. B and Th. C] because H(E) is very
ample, so that s is a closed immersion. Note also that Y is rational since
dimY = 2. For general three points z,y,z € X, there exist two points u,v €
SecX such that z,y € @, and y,z € @, and u,v are in general position.
Since @, and @, are algebraically equivalent, so is r.(@Q,) and r.(Q,). Since
r(y) € r(Qu) N7(Q,) and r(Q,) # r(Q.), we get r(Q,)* > 1. We also have
(Ky + ¢1(€))*r(Qu)* < (Ky + c1(€))lrq.))? < (n — 3)* by the Hodge index
theorem. Therefore (Ky + ¢1(€))* < (n —3)%. If (Ky + a1(€))* = 1, then
Y = P? and ¢/(€) = O(4). If the rank of € is 3, then & = O(1)%% & O(2) or
O(1) @& Tp: by [E1]. In this case dimSecX = 8 and h°(L) > 11. The condition
that dim C, = 2 is also satisfied. If the rank of &€ is 4, then £ = O(1)®*. Hence
(X, L) = (P2xP? 0(1)@0(1)), which, however, does not satisfy the condition
that dimSecX = 10. If (Ky + ¢1(€))? > 2, then rk& > 4 since (n — 3)* > 2. If
(Ky+al(€))? =2, then Y = P'xP! and ¢;(€) = O(3)@O(3). This contradicts
the ampleness of €. If (Ky + ¢;(€))? = 3, then Y is either a cubic surface in
P3 or P(Opi(1) @ Opi(2)) by [Fb, (17.2)]. If Y is cubic, then ¢;(€)|; = 2 for
every [, one of the 27 lines on Y, which is a contradiction. For the scroll we
have ¢;(€)|; = 3 where [ is any fiber of the scroll, and this also contradicts the
ampleness of €. Suppose that (Ky + ¢;(£))? = 4. Then Y is either a del Pezzo
surface of degree 4, a scroll P(Op1(1) & Op1(3)), a scroll P(Op1(2) & Op:1(2)),
or a Veronese surface P2 C P® by [Fb, (17.3)] since £(Y) = —oco. If Y is a del
Pezzo surface, then ¢;(€)|; = 2 for any exceptional divisor [ of Y, which is a
contradiction. For the scrolls we have ¢;(€)|; = 3 where f is any fiber of the
projection Y — P!, and this is also a contradiction. If Y is a Veronese surface,
we obtain ¢(£) = O(5). If € is an ample vector bundle of rank 4, we have
EXO(MPa0(2) or O(1)%2 & Tp: by [E2, Th. 5.1]. For both bundles, we have
dim SecX = 10 and h°(L) > 14. The condition that dim C\, = 2 is also satisfied.
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If the rank of £ is 5, then £ = O(1)®%. Hence (X, L) = (P2 x P4, O(1)® O(1)),
which however does not satisfy the condition that dimSecX = 12. The rest of
the assertion in the case dimY = 2 follows from Lemma 2.2.

If dimY > 2, then dimY = n by [S-V, (0.2)], and Y is smooth, r is the
blowing-up of ¥ at a finite point set, and L = r*M — X FE; (F;: exceptional
divisors) for some ample line bundle M on Y by [S-V, (0.3)]. Moreover Ky +(n—
1)M is very ample by [S-V, Th. (2.1)]. Sincen—3 = (Kx+(n—1)L)|g, = (Ky+
(n=1)M)|.(q.) and M|.q,) > Ll|q. = 2, we obtain (Ky+(n—2)M)|q,) < n—>5.
If n > 5, then we know that Ky +(n—2)M is nef by [Fb, (
of the fact that Ky + (n — 1)M is ample. If n =4, then (Ky +2M)|q,) < —1
and hence Ky + 2M is not nef. Therefore (Y, M) = (P* O(2)) by [Fb, (11.8)]

because Ky + 3M is ample.

11.8)], taking account

Now we give a proof of Theorem 0.2.

Proof of Theorem 0.2. Suppose first that n = 4. Then by Theorem 2.5,
dimY =2 or 4. If dimY = 2, then (X, L) is isomorphic to (Ppz(£), H(E)),
where £ = O(1)®2 & O(2) or O(1) & Tpz by Theorem 2.5 (1). If dimY = 4,
then (Y, M) = (P*,0O(2)) by Theorem 2.5 (2). If r is an isomorphism, then
(X, L) = (P* 0O(2)). If r is not an isomorphism, then (X, L) = (Pp:(O(1) &
0(2))), HO(1) & O(2))). These polarized manifolds satisfy the assumptions
that dim SecX = 10 and that dim C, = 2.

Suppose in the following that n = 5. Then by Theorem 2.5, dimY = 2 or
5. If dimY = 2, then (X,0x (1)) & (Pp2(€), H(E)), where £ = O(1)%* @ O(2)
or O(1)% & Tpz by Theorem 2.5 (1). These two polarized manifolds satisfy
the hypotheses that dim SecX = 10 and that dim ', = 2.

Let us consider the case (2) of Theorem 2.5. Now we have Ky + 3M is nef
and therefore (Ky + 3M)|.(,) = 0. Since general two points can be joined by
r(Q.), this implies that Ky + 3M = 0 by [K-M-M, Th. 3-1-1 and Th. 3-2-1].
If M is not the fundamental line bundle, then (Y, M) = (P O(2)). If r is
an isomorphism, then (X, L) = (P?,O(2)). If r is not an isomorphism, then
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(X, L) = (Ppa(O(1) ® O(2)), H(O(1) & O(2))). These two polarized manifolds
satisfy the hypotheses that dim SecX = 10 and that dim C, = 2. Assume that
M is the fundamental line bundle of Y. Then Y is a Fano manifold of coindex
3 and M is very ample because Ky +4M is very ample, so that (Y, M) satisfies
the hypothesis (ES) of [M]. If By(Y') > 2, then (Y, M) is either (P x Q% O(1)®
O(1)), (P(Tps), H(T2)), or (Pes(O(1) & O(2)), H(O(1)% & O(2))) by [M,
Th. 7]. Thus for every point y € Y there exists a line passing through y,
which implies that r is an isomorphism by the ampleness of L. Since the secant
variety of the manifold (P? x Q% O(1) ® O(1)) is 11-dimensional by [Z, Chap.3,
Th. 1.6], (X, L) is either (P(Tp:), H(Tps)) or (Pps(O(1)*20(2)), H(O(1)®* &
0(2))). These polarized manifolds satisfy the hypothesis that dimC, = 2 and
the condition that dim SecX = 10.

Next let us consider the case that By(Y) = 1. Note that g(Y, M) +4 =
RO(M) > h°(L) > dimSecX +2 = 12.

Suppose that r is an isomorphism. Then we get g(X, L) > 8. Thus X C PV
is either a complete intersection of G(1,P?) C P' and a codimension 3 linear
subspace of P or the (G, adjoint manifold ;o C P'® by [Mu, Th. 2], because
SecYy = P'? by [K] and therefore the dimension of the secant variety of a
general hyperplane section of Yg is eleven, and all smooth hyperplane section
of X9 are isomorphic. A smooth complete intersection of G(1,P?) C P with a
codimension 3 linear subspace of P'* satisfies the condition that dim SecX = 10.
The G5 adjoint manifold £,y C P*'? satisfies the assumptions that dim SecX =
10 and that dimC, = 2 by [K-O-Y].

Suppose that r is not an isomorphism. Then R°(M) > h°(L) + 1 so that
g(Y, M) > 9. Therefore Y is either a hyperplane section of ¥y C P or
Y10 C P'. For each point y € Y9, X9 contains a rational curve C' passing
through y such that —K|c < 7 by [Ko, Chap.V, Th. 1.6.1]. Since the index of
the Fano manifold Yg is four, we have —K|c = 4, and hence C is a line in Y.
Let f: P! — C < Yy be the normalization of C' and let f(0) = y. Denote
by ¢ the restriction of f to {0}. Then dimpjHom(P',Xg;¢) > —K|c = 4. On

the other hand, we have dim Aut(P';0) = 2. Thus Xy contains a closed cone of
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dimension > 3 with vertex y. A hyperplane section Y of ¥g therefore contains a
line passing through y for each point y € Y. This contradicts the ampleness of
L. For the Gy adjoint variety $19 C P*? it follows from [Ko, Chap.V, Th. 1.15]
that there exists a line C' (i.e., M|c = 1) on X9. Hence for every point y € g

there exists a line passing through y on X9, which contradicts the ampleness

of L.
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