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1. Introduction

We work over an algebraically closed field k of characteristic zero. Let X be
a normal projective variety of dimension n. Let K be an ample and spanned
vector bundle of rank r > n on X. Here F is said to be ample if the tautological
line bundle Op(1) of the projective bundle P = Px(FE) is ample. And F is said
to be spanned if F is generated by its global sections.

The purpose here is to classify ample and spanned vector bundles F of top
Chern number two when X is a smooth projective variety of arbitrary dimension
and when X is a normal Gorenstein surface: for the first case, we give only an
outline of a proof here and for the details we refer the reader to [11]; for the
second case, we give a proof in detail.

There are several studies on the problem of classifying ample and spanned
vector bundles of small top Chern number on normal projective varieties.

In case ¢,(F) = 1, Lanteri-Sommese [9] have shown that (X, F) =
(P, Op~(1)®") when X is a normal surface or a Gorenstein 3-fold with only iso-
lated singularities. In the higher dimensional case, Wisniewski [14] has shown
that the same is true when X is a smooth projective variety. Fujita has pointed
out that the same result for a variety X with only log terminal singularities also
follows from Zhang’s result [15] together with Lanteri-Sommese’s argument in
[9] (see Proposition 3.1). These results for ¢,(F£) = 1 have been proved in
this way: if ¢,(F) = 1, then the adjoint bundle Ky ® det £ is not nef by
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Lanteri-Sommese [9], namely there is a curve C' with (Kx @ det E,C) < 0;
hence theorems on bundles with non-nef adjoint bundles in [14] and [15] imply
(X, E) = (P, Opn(1)®).

In case ¢3( E) = 2, the structure of (X, E) has been described explicitly when
X is a smooth surface, along the idea of Ballico [1] ([10], see also [8]).

Our main results are the following:

Theorem 1.1. ([11, Theorem 1.1]). Let X be a smooth projective variety of
dimension n > 2, and E an ample and spanned vector bundle of rank r with

r>nand c,(F) =2 on X. Thenr =n and (X, E) is one of the following:

(1) There exists a finite morphism f X — P™ of degree 2 over a projective
space P*, and E = f*Opa(1)%".

(2) (X, E) 2 (P", Opn(2) ® Opn(1)271).

(3) (X, E) =2 (Q",0gn(1)%"), where Q™ is a smooth quadric hypersurface in
P, and Ogn(1) is the hyperplane line bundle.

(4) X is isomorphic to a projective space bundle Po(F) over an elliptic curve
C with the projection ™ : Po(F) — C and with the tautological line bundle
Opor) (1), and E = 7€ @ Op#)(1). Here F and £ are indecomposable

rank-n vector bundles of degree 1 on C'.

(5) X is isomorphic to a projective space bundle Po(F) over a hyperelliptic
curve C' of genus g > 2 with the projection m : Po(F) — C and with the
tautological line bundle Op(r)(1), and E = 7°E @ Op(5)(1). Here F and
E are vector bundles of rank n on C such that the system |det F @ det &|
is the hyperelliptic pencil g;.

Conversely, every bundle in the all cases but (5) is ample and spanned with

co(E) =2.

Remark. When n = 2, the case (5) is void (see Theorem 1.2 below and [10,
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Theorem 6.1 and Proposition 5.4]). When n > 3, I do not know whether a

bundle in the case (5) exists or not.

Theorem 1.2. Let F be an ample and spanned vector bundle of rank r > 2 on
a normal Gorenstein projective surface X. If c;(E) =2, thenr =2 and (X, E)
is one of the following :

(1) There exists a finite morphism f : X — P? of degree 2 whose branch

divisor has no double components and E = f*Op2(1)%2.

(2) (X, E) = (P2 Op2(1) & Op2(2)).
(3) (X, B) = (Q*, Og2(1)%%).
(4) (X, E) = (QF, 0g2(1)%?), where Qf is an (integral) quadric cone in P°.

(5) X is isomorphic to a geometrically ruled surface Po(F) over an elliptic
curve C' with the projection m : Po(F) — C and with the tautological
line bundle Op r)(1), and E = 7 @ Opyr)(1). Here F and € are

indecomposable rank-2 vector bundles of degree 1 on C'.

Conversely, every bundle above is ample and spanned with co(F) = 2.

To prove both theorems, the essential case is rankF = dim X. In this case,
an invariant sp(£) of Ballico [1] divides our situation into two cases: sp(E) = n
and sp(£) > n. When sp(F) = n, Ballico’s theorem [1] and, for a smooth higher
dimensional variety X, Zhang’s theorem [15] together with Lanteri-Sommese’s
argument [9] imply the precise structure. When sp(E) > n, a key step is to show
that the adjoint bundle K'x ® det E fails to be ample. Then Fujita’s theorem
[4] for smooth X, and a normal surface version of Lanteri-Maeda’s theorem for
a normal Gorenstein projective surface X tell us the structure of (X, E). We
pick up the bundles in our case and determine the precise structure.

Our exposition proceeds as follows. In §2, we recall the definition of Ballico’s

invariant sp(£) and some results on it. In §3, we outline a proof of Theorem
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1.1. In §4, we study the adjoint bundle of an ample and spanned vector bundle
on a normal Gorenstein projective surface. In §5, we give a proof of Theorem
1.2,

I would like to thank the organizers of the XIV-th Brazilian Algebra Meeting,
especially, Professors, Arnaldo Garcia, Abramo Hefez, and Eduardo Esteves.
Thanks also go to Instituto de Matematica Pure e Aplicada for support during

my stay at IMPA.

2. Ballico’s invariant sp(FE)

In this section, we recall the definition of the invariant sp(FE) of Ballico [1] (see
also [10]).

Let X be a normal projective variety of dimension n, and E a spanned vector
bundle of rank n with ¢,(E) > 0 on X. By |E| we denote P(H(X, E)Y) =
(H°(X,E) \ {0})/k* and by [t] the point of |E| corresponding to ¢ # 0 €
H°(X,E). We consider the family of zeros F' = {([t],p) € |E| x X;t(p) = 0},
the projective space bundle P x(FF) associated with the vector bundle Fr whose
dual bundle is the kernel of the evaluation map ev : H°(X,F) @ Ox — E.

Hence we get the following diagram:
|E|xX D F 2 X
41 (21)
|E].

Here & : ' — |E| and ¥ : F' — X denote the first and second projections.

Then @ is a finite flat morphism of degree ¢, (F) over a dense and open subset
| Ereg :={[t] €|E]; dim(t)o= 0 and (%)ois on the Cohen-Macaulay locus of X}.

Thus we have a morphism 7 : |E|e — Hilbi?(E) by the universality of the
Hilbert scheme Hilb‘}”(E) of ¢,(E) points in X. By considering the norm mor-
phism v : Hilb;}l(m — SeF)(X), we also have a morphism p = vor : |E|reg —

SenlB)(X) to the ¢,(E)th symmetric product of X.
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Then we define sp(£) by
sp(E) = dim 7(| Elyeg)-

Since v is isomorphic over the open subset parameterizing distinct smooth ¢, (F)
points of X, we have sp(E) = dimp(|E|.e). Hence this invariant is Ballico’s
in [1]. By definition, we have n < sp(F) < n-¢,(F). By [10, Proposition 1.1],
for every [t] € |Elreg, the fibre 771(7([t])) of 7 over 7([t]) is |E @ Z),| N | Eregs
where |E @ L), | := P(HYX,E ® L4),)Y) C |E|. Hence, for a general section
t € H°(X, E), it holds that

sp(E) = dimy, H(X, E) — dimy H*(X, E ® Ty, )- (2.2)

If sp(£) = n and if F is ample, the finite morphism from X to the Grass-
mann of n-quotients associated with the evaluation map H°(X,E) @ Ox — E

maps (t)o to one point. Thus we have the following proposition.

Proposition 2.3 (Ballico [1, Theorem 4.1], see also [11, Proposition 4.1]). Let
E be an ample and spanned vector bundle of rank n on a normal projective
variety X of dimension n. Assume that sp(E) = n. Then there exist an ample
and spanned vector bundle E' of rank n with ¢,(E") =1 on a normal projective
variety X' of dimension n, and a finite morphism f : X — X' of degree ¢,(EF)
such that E = f*(E'). Moreover if n =2, then X' 2 P? and F' = Op2(1)%2.

3. Outline of proof of Theorem 1.1

Now we outline a proof of Theorem 1.1. First we assume that r = n. In view
of Ballico’s invariant sp(E), we divide the proof into two cases; sp(E) = n and
sp(E) > n.

If sp(£) = n, by Proposition 2.3, X has a double cover f : X — X' over
a normal projective variety X’ of dimension n and F is the pull-back of an
ample and spanned vector bundle £’ with ¢,(£') = 1 on X’. Since X and X'
are normal and deg f = 2, there exists the involution ¢ on X such that the

quotient X/(¢) is X', and hence, X’ has only log terminal singularities. Thus
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by the following Proposition, which is a consequence of Zhang’s Theorem [15,
Theorem 1] along with Lanteri-Sommese’s argument [9], we have X’ 2 P™ and
E'" = Opa(1)®"; this is the case (1). (The above argument determining the
structure of (X', £') is due to Fujita).

Proposition 3.1 (See [11, Proposition 5.1]). Let X be a projective variety of
dimension n with only log terminal singularities and E an ample and spanned

vector bundle of rank n with ¢,(E) =1 on X. Then (X, E) = (P", Op(1)%").

If sp(F) > n, for a general point p € X and a general line £ C |E ® Iy,

C:={q€ X|{p,q} = (t)o for some t € L N |E|seq}
is a complete curve on X, where - denotes the closure. Assume that
g C |E|reg- (*)

Then we have (Kxy @ det £,C') < 0: Indeed, ® is a double cover over ¢, and
hence ®~1(f) = £ x {p} UL, where { := {(q,1) € F|t € {,(t)o = {p,q}}. Note
that @(Z) = (. Thus for the canonical line bundle KF of I, we have (K, Z) =
(Kp,l x {p}). On the other hand, (OF(]LZ) = (O(1),£) = (Or(1),£ x {p}).
Since Kp = U*(Ky @det £) @ Op(—N 4+ n—1), we have (V*(Kx @ det E), Z) =
(U*(Kx ® det ), x {p}). Since the right hand side is zero, we have (Kx ®
det E,C) = (U*(Kx ® det E),Z) = 0 by the projection formula.

Unfortunately, the assumption (*) above is not true in general (for example,
the case (4) in Theorem 1.1): namely, ® has a positive dimensional fibre on
L evenif p € X and £ C |E @ Iy, | are general, hence we cannot apply the
above argument directly. But we can modify it so that we have the following

proposition (see [11, Proposition 7.1] for the details).

Proposition 3.2. Let X be a normal projective variety of dimension n and E a
spanned vector bundle of rank n with ¢,(E) =2 on X. Assume thal sp(E) > n

and that X is Gorenstein. Then there exists a projective integral curve C on
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X through a general point of X such that (Kx @ det E,C) < 0. In particular,
Kx ® det E is not ample.
Therefore the adjoint bundle Ky ® det £ is not ample if sp(£) > n. Hence

by Fujita’s theorem [4], the following three cases fit our situation:
(a) (X, E) = (P, Opn(2) ® Opn(1)"71);
(b) (X, E) =(Q", Ogn(1)®");

(c) There ezxist vector bundles F and £ of rank n on a smooth projective curve
C, such that X is isomorphic to a projective space bundle Pc(F) over C
with the projection m : Po(F) — C and with the tautological line bundle
Op7)(1), and E =7 @ Op (5)(1).

The cases (a) and (b) correspond to (2) and (3) respectively. If the case is
(c), we have (4) if g(C) <1 and (5) if g(C) > 2, and conversely, we can check
that the bundles but in (5) are ample and spanned with ¢,(E) = 2. (For the
details, see [11, §8]).

To complete our proof, we have to show that there is no bundle when r > n,
by using a standard argument (see, [8], [11]): If r > n, by Serre’s lemma, we

have an exact sequence of vector bundles
009" s E— E —0,

since E is spanned. Then £’ is an ample and spanned vector bundle of rank n
with ¢,(E) = 2. By Theorem 1.1 for r = n, we easily check in each case that
H'(X,E"™) = 0. Therefore the exact sequence above is split in each case. This

contradicts the ampleness of E. This completes the proof of Theorem 1.1.

4. The adjoint bundle of an ample and spanned bundle
on a normal surface

To prove Theorem 1.2, we need the following proposition.
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Proposition 4.1 (Normal surface version of Theorem of Lanteri-Maeda [7]).
Let E be an ample and spanned vector bundle of rank r > 2 on a normal projec-
tive surface X. Then the adjoint system |Kx @ det E| on the Gorenstein locus
Gor(X) of X has no base points on Gor(X) unless (X, E) = (P% Op2(1)%?).

Before proving Proposition 4.1, we need the following three lemmas.

Lemma 4.2. Let E be an ample and spanned vector bundle of rank r > 2 on a
projective curve C'. Then E contains a subline bundle of degree > 1 and hence

deg(E) > r.

Proof. See [7, Lemma 2].

Lemma 4.3. Let E be an ample and spanned vector bundle of rankr > 2 on a
Gorenstein projective surface X. Assume that Kx @ det E 2 Ox. Then (X, E)

is isomorphic to one of the following.

(1) (P2 O0p2(1) & Op2(2)).

(2) (P%,Tp2), where Tp2 is the tangent bundle of P2.

(3) (P2 Op2(1)%7).

(4) (Q% Og:2(1)%9?) where Q* is a smooth quadric surface in P?.

(5) (Q3, OQS(])@Q) where Q3 is an (integral) quadric cone in P3.
Proof. By the assumption, X is a normal Del Pezzo surface (See Brenton
2], Hidaka-Watanabe [6]). Set L = det E. Let 7 : X — X be the minimal
resolution. If X is non-rational, by [6, Theorem 2.2], Xisa geometrically ruled
surface p : Po(Oc@®L) — C over an elliptic curve C', where deg(L£) > 0. And X
is obtained by contracting the minimal section Cy, and K ® (9}(00) =1*Kx.

Since K = O%(—2Co) ® p*L7Y, we have 7*L = m*K5' = 03(Co) ® p*L.
Hence for x € C, we have 7*L - p~'(x) = 1. By (4.2), this is a contradiction.
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Thus X is rational. By [6, Theorem 3.4], X has only rational double points as
singularities, and hence Ky = m*Kx = mL~'. By (4.2), X has no (=1)-curve.
By [6, Theorem 3.4] again, X = P2 X = Q?, or X = Q2.

When X = P2 we have L = Op2(3), and r = 2 or 3, by (4.2). Il r = 2, by a
theorem of van de Ven [13], (X, E) = (P2, Op2(1) ¢ Op2(2)) or (P2, Tp2), which
is the case (1) or (2). If r = 3, by uniformity, (X, F) = (P% O(1)®%), which is
the case (3).

When X 2 Q?, we have L = K3' = Ogz(2). For every fibre f 2 P! of
the projection p : Q* = P! x P! — P!, we have L|f = Opi(2) and hence
E|f = Opi(1)®? by ampleness. Thus p.(FE ® Og2(—1)) is locally free of rank
2 on P! and E @ Ogz(—1) = p*(p.(E @ Ogz(—1))) by Grauert’s theorem ([5,
ch. TII, Corollary 12.9]). Hence E is the direct sum of ample line bundles with
det E = Og2(2). Therefore we have (X, E) = (Q?, Og2(1)%?), which is the case
(4).

When X = Q2, we have X 2 F, := Ppi(Op1 & Op1(—2)) and 7 : X — X
is the contraction of the minimal section Cy. Let p : X = F, — P! be the
projection. Since every fibre f of p is not mapped to a point by =, 7*E|f is
ample and spanned. Since m*L = T Ky' = &')Z( = O(2Cy + 4f), we have
mE|f = Opi(1)®2. Thus m*E = O(Co + af) & O(Co + bf) with a +b =4 by
Grauert’s theorem. Since 7*(E) is spanned, a = b = 2. Since Og(Co + 2f) =
71'*0@3(]), we have (X, F) = (Qg,(’)@g(l)@z), which is the case (5).

Lemma 4.4. Let E be an ample and spanned vector bundle of rank r > 2 on a

normal projective surface X. Then ¢2(E) — co(E) > 3 holds.

Proof. By considering an exact sequence of vector bundles 0 — (93‘3(7"_2) —
E — E" — 0 for r > 3, we may assume that r = 2. Set L = det F. Let
t € H°X, E) be a general section so that the Koszul sequence 0 — Ox —
E — L ®ZIy, — 0is exact and (t)o is a set of smooth ¢y(F) points. And

X = Proj(({BnZOI@)u) is the blowing-up of (¢)o with the projection 7 : X X
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and with the exceptional Cartier divisor A defined by the ideal 71'_11-“)00)?. Let
L X Px(E) be the inclusion corresponding to £ — L ®I(t)0. Set O}'(v(l) =
(91[;(1)|4FXU Then O%(1) = 7L ® Og(—A) and Og(1)* = ¢}(E) — co(E) > 0. We
have to show that (9)?(1)2 =1, 2 do not occur.

If (’))7(1)2 = 1, since Og(1) is ample and spanned, then the A-genus
A(E(V,O;((l)) = 0x(1)? +2 - h”(Y,O;(l)) = 0 (see [3, (4.2)]), and hence
(X, Oz(1)) = (P?,0F(1)) by [3, (5.10) and (5.15)]. This contradicts the mini-
mality of P2

If Oz(1)? = 2, then A(X,03(1)) = 0 or 1. If A(X,0%(1)) = 0, X is

isomorphic to an integral quadric surface in P?, which has no (—1)-curve sup-

ported on the nonsingular locus, contradiction. If A(Y, O%(1)) = 1, then
ho(y, 0z(1)) =3,s0 ¢ = ¢|O§((1)| : X — P?is a flat morphism of degree
2, since X is normal of dimX = 2. Hence X is of the form Specp:(Op: &
Op2(—g — 1)) for the sectional genus g = g(X, O%(1)) as a scheme over P? (see
(3, p-49, (6.11) and (6.12)]). In particular, X is Gorenstein with the canonical
line bundle K = O%(g — 2). Since 7 is an isomorphism around the singular
points, X is also Gorenstein. So Px(£) is Gorenstein with the canonical line
bundle Kp = Op(—2) @ 7*(Kx @ det E). Since X € |Op(1)|, by the adjunction
formula, we also have K)? =mKx® (9)?(14). Calculating the intersection num-
ber K5 - A by using the two expression of K5, we have —cy(F) = (g —2)ca(E)
and hence ¢ = 1. Thus 7*L7!' ® O)?(A) = Og(—l) =Kz =mKx® 0);(14).
Hence Kx ® L = Ox. But, by (4.3), we have O%(1)* = ¢}(E) — a(E) > 2,

contradiction. Thus we have the claim.

Proof of Proposition 4.1. Set L = det £. As in (4.4), we may assume that
r = 2. Note that ¢;(£) > 0 since £ is ample and spanned. If ¢;(E) = 1,
then by [9, Theorem 1], (X, F) = (P?, Op2(1)®?). If ¢o(F) > 2, then ¢}(E) >
5 by (4.4). Suppose to the contrary that
Gor(X). By Reider-type-Theorem of Sakai [12, Theorem 4], there exists a non-

Kx @ det E| has a base point in

zero effective divisor B on X such that B.L < 1. This contradicts the ampleness
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and spannedness of £ by (4.2).

5. Proof of Theorem 1.2

Now we prove Theorem 1.2. If £ is ample and spanned with ¢,(F) = 2, and if
rank /' = 2, as in the proof of Theorem 1.1, we divide the proof into two cases,
sp(E) = 2 and sp(FE) > 2.

When sp(E) = 2, by (2.3), there exists a finite morphism f : X — P? of
degree 2 and E = f*(Op2(1)%?), i.e., this is the case (1). Note that the condition
on the branch divisor is a necessary and sufficient condition for a double cover
X to be integral and normal.

Next we assume that sp(E) > 2. By (4.1), ¢ = djxyadet | : X — P(H(Kx®
det £)) is a morphism defined everywhere on X. By (3.2), we have dimp(X) =
0,1. If (X) is a point, then Kx ® det £ = Ox. By (4.3), the case (2), (3)
or (4) occurs. If p(X) = C’ is an integral curve, we take Stein factorization
7: X —=>Cand C — C"of o : X - C'. Then C is a nonsingular projective
curve, and 7 is a flat morphism of connected fibres, and Kx ® det I is the pull-
back of a line bundle on C'. Since a general fibre f is smooth and irreducible

and since
degKf = ([\"X —I—f) 'f= [\,X 'f= —detE-f§ —2,

we have f = PL By the theorem of Noether-Enriques, X is ruled. Since
deg(Kx|r=!(z)) = —2, we have deg(det E|r~'(z)) = 2 for every x € C. By
(4.2), every fibre 7~'(z) is irreducible and reduced. Since 7 is flat, we have
7~ (z) = PL. Therefore X is a (smooth) geometrically ruled surface over C.
Thus by [10, Theorem 6.1] (see also [10, Proposition 5.4]), we have (5).

As in Theorem 1.1, there is no bundle with r > 2. Conversely every bundle
in the cases is ample and spanned with ¢;(£) = 2 as in [10] (see also [11]). This

completes the proof of Theorem 1.2.
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