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INTEGRAL POINTS ON GALOIS COVERS

Yuri Bilu

1. Introduction

Let C be a smooth projective curve of genus g = g(C), defined over the field of

rationals Q, and = € Q(C) a non-constant rational function on C. Let
Clx,Z) ={P € C(Q): z(P) e Z}

be the set of z-integral points on C. Siegel [26] has proved the following re-

markable theorem.

Theorem 1.1 (Siegel). Assume that either g(C) > 1 or x has al least 3
distinct poles defined over Q. Then |C(z,Z)| < oo.

In the remaining case, where g(C') = 0 and z has at most 2 poles, it is easy
to decide whether the set C(z,Z) is finite or infinite.

Indeed, assume first that « has only one pole, and denote it by Fy. Then Py
is defined over Q. Since g(C') = 0, there exists ¢ € Q(C) such that Q(C') = Q(t)
and the pole of ¢ is Py. The function ¢ is integral over Q[z]. After multiplying
t by a suitable integer, we may assume that ¢ is integral over Z[z]. So for any
P € C(z,Z) we have {(P) € Z.

On the other hand, z is integral over Q[t]. It follows that az = f(t) for
some non-zero a € Z and f(t) € Z[t]. Hence the set C(z,Z) is infinite if the
congruence

f(t)=0 (mod a)

has a solution, and C(z,Z) = () otherwise.
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If z has exactly two distinct poles P; and P, then they are defined over a
number field K of degree at most 2 over Q. But, there is ¢ € K(C') such that
div(t) = P, — P,. After multiplying by an appropriate integer, we may assume
that ¢ is integral over Z[z]. Also, there is a non-zero integer a such that at™! is

integral over Z[z]. Hence for any P € C(z,Z)
t(P) € O and t(P) divides a.

It follows that there are only finitely many possibilities for ¢(P) when K = Q
or K is an imaginary quadratic field. Therefore in these cases C(z,Z) is finite.

In the remaining case, when K is a real quadratic field, denote by 5 its
fundamental unit. Then there exists an effectively computable finite set M C
Ok such that for any P € C(x,Z) we have {(P) = un™, where p € M and
n € Z. Since z is integral over K[t,at™'], there exists F(U,V) € Ox[U,V]
and 8 € Ok such that Sz = F(t,at™"). If for some gy € M the exponential
congruence

F(un™,ap™'n™™) =0 (mod 3)

has a solution n € Z then the set C'(z,Z) is infinite; otherwise, it is empty.

Thus, Siegel’s theorem gives a criterion for the finiteness of the set of integral
points.

In this context one should mention Mordell’s conjecture, proved by

Faltings [16]:

Theorem 1.2 (Faltings). If g(C) > 2 then |C(Q)| < oo.

The results of both Siegel and Faltings extend to arbitrary number fields
and their rings of integers (or S-integers).

Unfortunately, all known proofs of Siegel’s and Faltings’ theorems are non-
effective. This means that they give estimates for the number of integral (or

rational) points', but nor for their size.

We refer to Pacheco’s contribution [19] for a survey of results on this topic. Mention only
that Bombieri’s [11] “elementary” proof of Mordell conjecture implies very explicit bounds
for the number of rational points.
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At present, no general effective method for the study of rational points is
known, and effective bound for the size of rational points are obtained only
in a few non-trivial cases, the most celebrated being Wiles” proof of Fermat’s
Last Theorem. (By “trivial” we mean the case when there is an “obvious” local
obstruction, like for the curve 2% + z* 4+ 2% 4+ % 4+ !0 = O.)

However, for integral points there is a quite powerful method of Gelfond-

Baker, based on the following Baker’s inequality:

Theorem 1.3 (Baker [1]). Let ay ...a, € be algebraic numbers distinct from
0 and 1, and ¢ > 0. Then there exists an effective constant ceg, which depends
on ay...oy and &, such that for any by ...b, € Z one has either ozl]71 sl =1
or

a?l .- 'U‘Z” — 1‘ > coge .

B = max(|by]...|bs]) 1)

(Note that inequality [a? ---aP» — 1| > e~%7B is a trivial consequence of the
product formula; Baker’s main contribution was to replace B by ¢B.)

Many authors, including Baker himself, Feldman, Stark, Waldschmidt,
Wiistholz, and others, worked on quantitative versions of Baker’s inequality.

The best result we know is due to Baker-Wiistholz [4] and Waldschmidt [31]:

ol oneabn — 1] > geimd)tlonB (2)

where
d = [Qer...an): Q,
@ = min(1L, h(ar) - h(an)),
c(n,d) = (nd)"".
Here h(-) stands for the absolute logarithmic height, and ¢’ is an absolute effec-
tive constant.
Using Baker’s inequality, Baker and others obtained effective upper bounds

for the size of integral points on certain curves. For instance, Siegel’s theorem
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is effective when g(C') < 1:

Theorem 1.4. [f either
g(C) =1
or

g(C) =0 and x has at least 3 poles

then

P [B(F)| £ GalC,w) (3)

The case g(C) = 1 is due to Baker and Coates [3]. They obtained a huge
explicit value for the constant ceq(C, ), which was improved by many authors,
see [17, 23, 6]. The case “g(C) = 0 and z has at least 3 poles” is a part of
the folklore, though the first explicit bound was written down quite recently by
Poulakis [21] (see also [6]).

When g(C) > 2 only partial results are known. For instance, consider

solutions (z,y) € Z x Q of the superelliptic equation
ay” = f(x), (4)
where f(z) = apa™ + -+ ag € Zlz] and a € Z \ {0}.

Theorem 1.5 (Baker [2], Brindza [12]) Let C be a smooth model of the
plane curve (4). If C has genus at least 1 then

(I‘T;)l';gi@ |z| < cet(f, a,n). (5)

ayn=f(z)

An explicit expression for cog(f, @, n) was obtained by many people, see [20, 25,

27, 28, 29]. The best published result is due to Voutier [30]:
cesi(fya,mn) = 6Ceﬂ(m,n)HOeﬂ(m8nz)’ o

where H = max(|al, |ao| . .. |an]), and Ox implies an absolute effective constant.



INTEGRAL POINTS ON GALOIS COVERS 5

The author [5] and Dvornicich & Zannier [13] proved independently the

following effective version of Siegel’s theorem for Galois coverings:

Theorem 1.6. If g(C) > 1 and Q(C) is a Galois extension of Q(x) then

Perrclggfz)lw(P)l < cet(C 7). (7)

Baker’s result on the superelliptic equation is a particular case of Theorem 1.6.
The author [9] obtained a quantitative version of Theorem 1.6. Let y € Q(C)
be such that Q(C') = Q(z,y), and let the (z,y)-plane model of C' be defined by

f(z,y) =0, where

YY) = f:f:aijxfw' € ZIX,Y].

i=0 j=0

Theorem 1.7. Assuming the hypothesis of Theorem 1.6, one has (7) with

Opgt (mn” +m?nt)
Ceff(C7 :L') = eCEﬂ(myn)H ’ )

where H = max |a;j|, and Oeg means an absolute effective constant.

In particular, this improves on the bound (6) of Voutier.

However, more important than the improvement of (6) by Theorem 1.7 is
the fact that this theorem gives a sharp quantitative result in a more general
set-up.

We refer to [9] for a complete proof of this theorem. There we prove it for
an arbitrary number field and a ring of S-integers in it.

The main novelty of our approach is reducing the problem directly to Baker’s
inequality, without the intermediate use of ”linear unit equations”, as it was
customary before. This method was elaborated in our thesis [6], see also [8].
Recently we were able to apply it to numerical solution of certain Diophantine
equations, see [7, 10].

Some further improvements are due to clever use of the Galois action, an
idea which goes back to Voutier [30].

In the next section we indicate the main steps of the proof.
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2. Proof of Theorem 1.7 (a sketch)

Step 1
For any o € QU oo the field Q(C) has the same ramification e, over Q(z) at
all places above a (this is the point where we use the Galois condition). Hence

by the Riemann-Hurwitz formula

0<29-2= 3 (ea—1)—2n, (8)
aeQu{co} €a
whence
>, [@L—e")2 2
a€Qu{co}
and so

d(l—e')>1.

()‘EQ
Therefore one of the following conditions is true:
(a) there exist distinct o, 3 € Q such that e, > 3 and e > 2;

(b) there exist pairwise distinct o, 3,7 € Q such that e, = e5 = e, = 2.

By an easy Galois argument, one concludes further that one of the following

conditions is true:
(al) there exist distinct o, 3 € Q, conjugate over Q, such that e, = e5 > 3.

a2) there exist distinct o € Q and 8 € Q such that eq > 3, e5 > 2 and
(a2) 5
[Q(B): Q] <2.

(b1) there exist pairwise distinct o, 3,7 € Q, conjugate over Q such that e, =

eg= ey = 2.

(b2) there exist pairwise distinct a € Q and 3,7 € Q, such that e, = e5 =
ey =2, and [Q(8): Q] = [Q(y): Q] < 2.
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In the sequel we assume (al) (the other cases are treated similarly).
Let D(X) be the discriminant of f(X,Y’) with respect to Y. Then « and 3
are roots of D(X) of order at least Z(p — 1) > Zn, where p = ¢,. Therefore
)

(2n —2)m
e

N = [Qe): QI =[Q(B): Q] <
Step 2
Let €, be a primitive p-th root of unity. For k& € {1...p} put

or = ((z — )7 — g(z — p)!17)’

This ¢ is algebraic over the field Q(C') of degree Ny < N2p < 9m?p, and for
any P € C(Q) we fix one of the N, possible values of @(P).

Proposition 2.1. There exists a positive integer A with the following property.
If P € C(x,Z) then @i(P) belongs to a number field of discriminant dividing
A.

Proof. It is easy to see that the field Q(C')(px) is unramified over Q(C') every-
where except may be the poles of z. Therefore the proposition is a consequence

of Chevalley-Weil theorem [18, 24].

In actual estimating the A we heavy used of the quantitative Eisenstein theorem
due to Dwork-Robba-Schmidt-van der Poorten [14, 15, 22]. This was the most
involved part of the proof.

Note that Proposition 2.1 remains true with ¢y = (z — a)'/? — f;j(ac — B,
but the degree of ¢y over Q(C) is bounded only by Nip?. With our definition of
@k we obtain a bound which is 1/p times the latter, which sharps the estimate
for A.

Step 3

Proposition 2.2. There exists a positive real number A, such that for any
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P € C(x,Z) we have @i(P) = un, where n is a Dirichlet unil, and the height

of the algebraic number 1 does not exceed A.

Proof. We have
ooy = (= a

Since every @g(P) is an algebraic integer, the result follows.

Step 4

Since p > 3, the function ¢ = (1 + £,)P¢1/p2 is non-constant. Therefore there

are finitely many P with ¢(P) = 1, and their size can be easily estimated.
Now assume that ¢(P) # 1. A trivial calculation shows that

$(P) =1+ O (2(P)7"),
where all constants implied by Oeg or <.g depend effectively on f. On the

other hand, by Propositions 2.1 and 2.2, ¥(P) is the product of a bounded

algebraic number by a Dirichlet unit, lying in a field of bounded discriminant,

say,
$(P) = non" - nPr.
Also, it is easy to see that B = max(|b,]...|b,|) satisfies
log |#(P)| et B <enr log |2(P)].
Hence

lon?’ -+ b — 1] < e (B,

which contradicts Baker’s inequality when B is large (the left-hand side is non-
zero because (P) # 1). We used Baker’s inequality in the sharp form (2), due
to Baker-Wiistholz [4], and Waldschmidt [31].
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