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SOME HOMOTOPY GROUPS OF THE DOUBLE
SUSPENSION OF THE REAL PROJECTIVE SPACE
RP®

Juno Mukai*

Introduction

Before we state our result, let us fix some notations. Let X be a based finite
CW-complex and
YPX =XAS"
be the n-fold reduced suspension of X. Let tx be the homotopy class of the
identity map of X. The order of the element ¥tx = txx in [EX, X X] is called
the suspension order ([13]) or the characteristic ([2]) of X.
We denote by RP™ the real n-dimensional projective space. The purpose of

the present note is to prove the following.

Theorem 1. The suspension order of S*RP® is 8.

As a direct consequence of this theorem, we have

Theorem 2. The suspension order of S*RP?" is 2¢C%) where @(m) stands for
the number of integers k satisfying 1 <k <m and k =0,1,2 or 4 mod 8.
We set
M™ = " ?RP? (n > 2).

This is a Moore space of type (Zy,n — 1). To prove Theorem 1, we need to

determine the following unstable homotopy groups

m:(X*RP®) and [M*, X*RP9] (i < 8).
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Our method is the composition methods developed by Toda([12]). We shall
also use the homotopy excision theorem ([5]) about the metastable relative
homotopy groups m;(X, A), where A is a finite CW-complex of dimension less
than n — 1 and X = AU e".

The results and notations of [12] will be used freely. It is assumed that we
are especially familiar with the results and relations in m,45(S™) (k < 6). We
will also deal with the Whitehead products ([3], [1]) freely.

Let ¢, = tgn,n2 be the Hopf map, n, = "%y and 72 = n, 0 §uy1. Let
V' € m6(S?) be a generator of the 2-primary component Z4 of m(S?), v4 € m7(S5%)
be the Hopf map and v, = ¥ vy (n > 4).

1. Recalling some fundamental results

We set P* = RP" for simplicity. We set P? = P"/P*! (k < n). Let v, :
5" — P" be the projection. We denote by 7,_; : S"7' < M™ an inclusion
and by p, : M* — S™ a collapsing map. Let X = AU CB be a mapping
cone of a mapping from B to A, where B = S"7! or M"~!. For an element
a € mp_1(B), we denote by & € mp(X, A) an element satisfying pl& = Xa,
where p': (X, A) = (£B, %) is a collapsing map. We recall

Y2 = 2u9m2; 2272 =0,

and so we have

YIP2 = Mt v SO

Let
ky: M* < M*Vv S® and ky : S° < M*v S°

be the inclusions, respectively. Then, by the cell structure of 32P%, we have
22")/3 = :tk'lﬁg + 2]{’2

Here 73 € m5(M*) is a coextension of 13 satisfying ps,i3 = na. We recall ([10])
that
my(M?) = Z4{a}, where o = 7j;.
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We denote by p!, : P?"+? — P37t = M*"+% a map given by pinching P*" to a
single point. We set
T = 2Y2n-

We know that 7, is of order 2. We define an extension
7, € [M?+? $p¥
of 7, as the third map of the cofiber sequence
Pio, L, pante By piantd__mpi,

By abuse of notation, we often use p to represent a collapsing map and use
i to represent an inclusion map. We define an element 3 € m5(%%P*) as the
composite ik, for the inclusion 7 : ¥*P? < ¥2P*. From the definition of 3,
we have p|8 = i5 € m5(M®) and X is taken as a coextension 75 of 5. Let
3 € [M®, 5% be an extension of 13, set 7, = " ?ij3 € [M"*2,5"] and 7, =
Y30y € Tppa(M™) (n > 3). We recall ([7]) that m(X?P*) = Zg{is} and the

following.

Lemma 1.1. 277'1 = 7’~]3p e [M5, M4] and 227'2 = 55776 - [A{S, 23134]
We have the following.

Lemma 1.2. m5(X%P*) = Zg{8}, where 23 = +i'fj3 and H(B) = i € m5(S(TP*A
TPY)).

Proof. We consider the exact sequence
76(52P%, £2P%) Ly g (D2P3) 2255 (22P) —> 0.

We have mg(X2P*, 22P%) = Z{w}, m5(2?P?) = m5(M*) @ m5(S®), where w is the
characteristic map of the 6-cell of £2P%. We have dw = X2y3 = ki3 + 2k,.
From the definition of 3, we have the result apart from the last assertion.

In the EHP sequence

ma(SPY) S5 (£2PY) Lo (R(TP? A TPY)) Sy (SPY),



238 J. MUKAI

we have m5(Z(XP* A XP*)) = m5(S(M3 A M?)) = m5(M®) = Z, and Ai =
i"Aus = 2imy = i"Svy, = 0, where 1 : M® — YP* is an inclusion satisfying
Y¢" =i'. So H is an epimorphism and H(8) = i. This completes the proof.

O

We denote by ¢/, the identity map of M™. We recall that M* A M? =
M? Uy, CM? and that 24 = damaps € [M®, M.

We have the following([10]) ; ms(M?AM?) = Zs{7,} and mo, (S(M"AM™)) =
Z,{3*"=37,} for n > 3, where 7, is a coextension of iy and it satisfies 275 = in,.
We also recall ([10]) that mg(M*) = Z4{6} @ Zo{fsns }, where § € mg(M™?) is the
attaching map in the Stiefel manifold Vs, = M* Us €”. We have the relations

28 = izv = A(X51), X6 = 2i4vy and H(S) = ¥°%,. We show

Lemma 1.3. m(2?P*) = Z,{i'0} & Zo{3ns}
and Bns = B2y + 20’6 € me(X?P?) so that me(X?P?) = Z,{i'6}.
Proof. In the exact sequence
m (2P, D2P?) Ly g (£2P%) 2y mg(D2P) —0,
we have
m7(22P*, 22P%) = Zo {5} and me(Z°P?) = me(M*) @ me(S°).

Since 95 = %%v3 0 15 = ky7j3ms, we have the first half.
We consider the EHP sequence

(3P Zimg(E2P) i ms(D(B2P2 A B2PY))LSame (TP —s - -
Since
m3(D(T2PY A £2PY)) = mg(S(E2P3 A B2P?)) = mg(B(M* A M) = Z,{5%}},

we have an isomorphism X(i’ A i), : ms(S(M* A M*)) — mg(Z(Z2P* A £2PY)).
Lemmas 1.1 implies that ¥y = (£8)n6 € m7(X°P*) so that 2y4 = Bns mod A(Z(i'A
i')25%) = 2i'd. Since H(Ons) = ins and 2H(8) = H(iz') = ins, we have the

relation. The structure of mg(X*P?) follows, completing the proof. a
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Let ¢/ : M**~* — M™ A M™ be the inclusion and set i/ = ¥i. By
inspecting the proof of Theorem 2.4 of Chapter 12 of [14], by [1] and by Remark
in §1 of [10], we have the following.

Lemma 1.4. A(iy,,) = [t415 tga)in = (41, 00] € [M?", M"Y forn > 3.

Next we show

Lemma 1.5.

1) [M°, M*] = Zo{isns} @ Zo{isps}
and ¥ : [M?, M*] — [M®, M?] is an isomorphism.

ii) []\/14, MS] = Zz{’f'l} EB ZQ{Q[)4} (md 277'1 = E(ap4) = 773[)5.

iii) [M", M®] = Zo{imais} © Zo{ianepr} © Za{iavapr};
[M®, M*] = Zy{dpe} @ Zo{isnsiia} ® Zof{iisnspe};
[M?, M?] = Za{iiis} © Zo{[e5, ia]} ® Za{iavanzps}
and [M7, M) = Z4{n37js } ® Zo{Snepr } ® Za{130'}, where 1307 is an exten-
sion of izt € me(M*).

iv) A(i}) = [}, 3] = Spe € [M®, M*Y]; H[dL, 14] = (3°%)ps € [ME, (M1 A M)
and Y3t = iqvgnrps € [M®, M®].

Proof. By making use of the cofibration 44 : S* — M?®, an EHP sequence and
the fact [i3,¢3] = 0, we have i). By making use of the cofibration starting with
2u3 and by Lemma 4.1 of [10], we have ii).

By making use of cofibrations starting with 2, for n = 5, 6 and 7 and by
Lemma 2.2 of [7], we have iii). We note that 230/ = i3/ nspr = 26n6pr = 0.

In the EHP sequence

(M7, M4 5[ M3, M) -Z5 [ M8, S(M* A M) -2 [MS, M4 Z5[M7, MP),

we have ([10]) [M® S(M* A M*Y)] = Z,{i}} ® Zo{(X%%)ps}. Since T(dps) =
2i4v4p7r = 0, A((2°%)ps) = 20ps = 0 and H (iqvamzps) = inrps = 2(X°%)ps = 0,

we have iv) by iii) and Lemma 1.4. This completes the proof.
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2. Some homotopy groups of Z?P°

By making use of the cofibration 75 : S° < M® and by Lemmas 1.2 and 1.3, we

have the following.

Lemma 2.1. We have the following isomorphisms;
[M®, 5P = Zo{insia} © Zo{i'Spe} © Zo{Bnspe};
[]‘/[6, EQPG] = ZQ{iT]3ﬁ4} @ ZQ{LI(Spe}

We show

Lemma 2.2.

1) m(22P*) = Zo{Bn2}Z2{[i, B]} and [i, B3] has an extension [, 3] € [M®, ?P4],

where 1 : M* < Y2P* is the inclusion.
i) me(S2P) = Zu (i, A]}.
iil) [M7, 2P = Zy{i"30'} & Zo{d'[s, Blpr}-
Proof. Since ¥?P% = M*V S°, we have a split exact sequence
0—sms(M* x 55, £2P%) Loy (S2P%) o (M* x §%)—0.

We know M* x S% = (M*V 5%)Up, 4,) C M®, ms(M* x S° X?P?) = Z,{is} and
827 = U’?l’ kg] ] i7.

We consider the exact sequence
ma(D2P4, D2P3) Ly (D2P) -ty (B2PH) Ly (D2P4, £2P3) Ly g (S2P3).
By the homotopy excision theorem, we have
7s(S2P4, B°P%) = Zo{n2} ® Zo{[w, 4]} for i = kyis
and m7(22P4, £2P3) = Zy{#s}. By Lemma 1.5.iv), we have

05 = X3 05 = katjsms, OnE = B2y5 002 = kafjsn?
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and
a[wv Z] = [22737 l] = [Qk% Z] + [klﬁ?n Z]
= kl [ﬁ?)y 13]
= k [Lip i3]
= k15n6.
So i, is an epimorphism and i[ky, ko]iz = [¢/, B]ir = [¢, B]. This leads us to i).
In the homotopy exact sequence
a(52P%, £2PY) Ly (S2PY) 2y my (B2P8) L5 1y (B2P8, £2PY) Ly g (Z2PY),
we have

71'8(221)6, 22P4) = Zg{ig’f}@} and 7T7(22P67 221)4) = ZZ{;G}

By Lemma 1.3, dig = %24 and I(iet)s) = Y244 06 = Bnk. So we have ii).
By ii) and Lemma 1.3, [M7, X?P®] is generated by i'130/ and i"[i, 8]p,. This

leads us to iii) and completes the proof.

Remark. The result ii) of Lemma 2.2 was pointed out by Milgram ([6]).

Next we shall determine mg(X?P™). Since nsvy = v/ng, fsvs € ms(M?*) is a

coextension of v/n.
Lemma 2.3. ij3v5 is of order 2 and ijqve = iqvqgn?.

Proof. We have 2ij3v5 = isnivs = i3(n350 )pr = 0. So we have the first half.

From the definition of the Toda bracket, we have

wV's € {isv, 2u6, 76}
a {i3a2’/la776}
D {i3a2L3; VIT]6}

> f]31/5.
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So we have fjsvs = 1301} mod i3,ms(S%) + mr(M?) 0 pr = {dni}. We have
$(dnd) = 2iqvam? = 0. So, by Lemma 1.5.iv), we have ijyvs = E(Wﬁe) = dqu4n2.

This completes the proof.

Lemma 2.4. TFB(IWA‘) = ZQ{ﬁ;;I/;;} D Zg{é?’]é} (&) Zz{[(s’ Zg]}

Proof, By the exact sequence
77(Va,2y M) —Zsme(M*)~Lomg(Vi 2)—0,

we have mg(Vs2) = Zo{i7j3ns}.

We consider the homotopy exact sequence for the S3-bundle V54 over S*:
m10(5%) 23 me(3) oo (Vs 2) Zsm(5%) 2o ms(S%) 2o ma (Vs p) Zosms(S%)
A ma(S%) < (Ve 2) Lo e (S1) 2o me( 5%) Sy me (V5 5) Looma(SY).
Since the last p, is an isomorphism and A(Xr') = 2/, we have A(ry) = +1/.

Hence, by chasing the diagram, we have the following result which overlaps with

the results of [11]:
mr(Vs) 2 Z @ Zy,ms(Vs2) = Zo{ifsvs} and mg(Vs2) = Zo{ifjsvsnst.
We consider the exact sequence
o M) 23 1mo (Vs 2) Lo (Vs o, M%) —Zoms(M*)
(Vo .z) - ms(Va., M) —Zomr (M),

There exists an element fjsvsns € mo(M*) of order 2, because py,fsvsns =
navsns = (Sv/)n2 # 0. So, by the above result and by Lemma 2.3, both i,

are split epimorphisms, respectively. Therefore we have a split exact sequence
0—s70( Va2, M*)Lsmg( M*) s (V5 2) —0.

By the homotopy excision theorem, we have mg(Vs o, M*) = ZQ{T/IE}@Z2{[W, is]},
where w is the charactesitic map of the 7-cell of V5,. We have 3% = én¢ and
Olw, i3] = [4,73]. This completes the proof.
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Finally we show the main result in this section.

Lemma 2.5.
i) ms(2PY) = Zu{Brs} @ Zo{i'[6, 1]} @ Zo{[i, Blur} and 2Bvs = i'fjsvs.

ii) [M®,32PY] = Zo{[i", A1} & Zo{Busiie} © Za{i'[8, islps} © Zo{Brsps}
and 2[', 3] = [4, B]nps.

iii) 71'8(221:)5) = Z4{7:”/31/5} 69 ZQ{Z"[(S’ ‘l’3]}7 i//[i, ﬁ]n'? = 0
and mg(S2P%) = mg(S2PP).

iv) [M®,2%P%] = Zo{i"[i", B} © Zo{i'[9,45]ps} © Z2{i"Bsps}.
Proof. In the exact sequence
7o (52P%, 2P3) L g (B2P3) 2 g (B2P) 224 - .-,

we have mg(X?P?) 2 mg( M*) @ ms(S®) B mo(M* x S®, MV S°) = (Z,)* @ Zoy D Z

and ¢, is an epimorphism by the proof of Lemma 2.2.i). We have
’/'7'9(221:)47 EZPS) = Z24{I>5} @ ZQ{[U}, Z]TA]7}

Since 95 = $2q3 0 15 = kyijsvs + 2kovs and 9([w, 1]77) = k1dné, we have i).

In the exact sequence
04— (S2PH) &L [ M3, D2PH 25 g (S2P4) ¢ 2 mg (D2PY),

we find elements [/, 3] and Busije in [M®, $2P1] by Lemma 2.2.i). We have
2[¢, 3] = [¢', Bliznzps = [, B]nzps. This determine the group extension of ii).

In the exact sequence
mo(D2P%, D2P4) Ly g (D2P4) 2y g (2P%) Loy g (D2P%, D2P4) Ly (S2PY),

we have mg(%2P? N2P1) = Zy{ie} and O = L?q4 0 6 = Bn? by Lemma 1.3.

So 7, is an epimorphism. We have

mo(5°P%, 52P%) = Z, {nZ} © Z{[w, ]}
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Since 6?72 = B2 = ABvs = 2i'ijzvs = 0 and Iw, ] = [Bns, 1] + [2¢6, 4] = [i, Bz,
we have the result of iii) apart from the last assertion.

In the exact sequence
mo(52P, £2P%) Ly g (D2P%) 225 g (D2P%) —0),
we have mo(X2P%, 22P%) = Zy{f:}.

Since Y2v5 € {i”, $2v4, 216}, we have, by Lemma 1.3,

onr = 22’75 onr € {i", 22’747 26} 017
= —i"{3%yy, 26,16}
C —i"{i, 26,6} — i"{ 015,216, M6}

By Lemma 2.2, we have {iv', 26,16} C {7,20/,n6} D i'{i3,2t3,0'n6}. So
we have 'fjsvs € {iv/,2u6,16} mod i.ms(S?) + w7 (52P*) oy = {[i, Blnz} and
{Bns,2t6,m6} 2 2Bvs mod m7(X*P*) oy = {[¢, Blnr}. Therefore we have dff; =
(1315 + 20v5) = 0 mod [z, B]nr = 0. This leads us to iii).

In the exact sequence for X = X2PS:
(X)X [MB, X ms(X) 2 (X),

we have "[i',3] o i = i"[¢, 5] by the proof of Lemma 2.2.i). We also have
2¢"[¢', 3] = i"[i, Blnzps = 0 by ii) and iii). This completes the proof.

3. The suspension order of ¥?P°

Let ¢ € [M®, M*] be the attaching map in P§ = M*U, CM®. We consider the
cofiber sequence

JYLRIN AN VLR Vi (3.1)
The squaring operation

Sq*: f[i(Pg;Zz) - ﬁ[H—Z(PS;Zz)
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is nontrivial for ¢ = 3 and trivial for 7 = 4. So, by Lemma 1.5.1), we can take
© = 1373.

We set p” = pep’ : P§ — 5%, Since [P§, M) is stable, we have 2p’ = 2i50p/.
So we have

2p’ = isnsp” € [PS, M. (3.2)

Let p € {p,ins,p'} C [EPS,S?] be an extension of p = ps : M® — S5,

Because 5 € {2¢5,p, 1}, a bracket with indeterminancy {2¢5}, we have
2p = +7s5p’. (33)

We show

Lemma 3.1.

i) [M®, 5% = Zo{nsiia} @ Zo{v'Epe};

(M7, 5% = Zo{nins} @ Zo{v'nepr};

[M?®, S%] = Z{v/ T},

(M7, 5] = Zo{nmais } © Zo{vapr} © Zo{ (X )pr};
[M®, S*] = Zo{niiis} © Zo{vanzps} © Zo{(Zv )nzps}.

i) [E°P§, 5% = Zo{niZp} ® Zo{van-X%p"} @ Zo{ (T )0 X%p"}.
iii) [E2PS, 5] = Zo{/Sp}.

Proof. i) is easily obtained. By use of the cofiber sequence (3.1), we have an

exact sequence for v = X2p = i57j;:

[M7, S4 [ M, §4)<2 [S2P8, S4E2 M3, S & (M7, §4.
By 1), we have

MY = TMafls, MasXy = Ni7e and v4pr Xy = (Sv/)prEy = 0.

This leads us to ii). By a parallel argument to ii) and by (3.3), we have iii).
This completes the proof.
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We set 0 = insigy € [M®, 5?P*]. By Lemma 1.2, we have
0 0 1ffs = in3fs = 2'7ja7s = 487 = 0 € [M", 2*PY).
So we can define an extension f € [L2P§, 32P4] of §. We have
9 € {0,575, 5p'} C [S2PS, 52P4).
We show

Lemma 3.2.

i) [D2PS, X2PC] is generated by i"0,i'0%p, 1" BusS2p",
i'[6,13)X%p" and i"[i, B]Z?*p.

ii) 20 = 0 mod {[z, B]n-5%p",2¢'§5p}, 200 = 0 mod 2i'6%p
and 0 is of order 2.

Proof. By (3.1), we have an exact sequence

M7, 5?P8]— [’V[6 EQPﬁ] [Z‘, PE,EQP‘S] [M8 b3 PG] [’\/[7 5Pe.

By Lemma 2.1, there exist elements 0 with § = insf, and '§Xp in [S2P§, ©2P1].
So we settle the generators of [X2P§, ©2P¢] by Lemma 2.5.iii). This leads us to
1).

From the definition of § and by (3.2), we have

20 € {insia, iafls, igneXp”}
C {ins,ni, eZp"}
i'{isns,ni, neSp"}.
So we have
20 € i'{isns, n3, neTp"'} mod ins[L*PS, 4] + w7 (Z2P*) 0 X

We also have

{isns, ms, neXp"} C {is, 20/, n6Xp"} D {is, 2u3, /06 Tp"}.
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So we have
favs 52p" € {ians, i, neXp"} mod 43, [5*P3, S°] + mr(M*) 0 1y B2p".

In [X2P§,X%PY), we have i'fusX%p" = 2BvsX%p" = 0. We have m7(M*) o
22" = {5nL?p"} = 0, because §n2¥%p" = 205sX%p = 46%p = 0 by (3.2)
and (3.3). By Lemma 3.1, we have 73[%*P§, %] = {is/Sp} = {20Zp} and
in3[E2PS, 51 = 0. By Lemmas 2.2.i) and 2.5.ii), we have m7(X?P*) o n,X%p" =
{[¢, BInzX?p"}. This completes the proof.

O

Remark. By use of the exact sequence induced from (3.1) and by Lemma

2.5.i1), we have

20 € {[i", 8],7[6,1]ps, Bns7eps, Bvsps} o B2p'.
By (3.3), we have 3ns7eX?p” = 0. By Theorem 3.4 of [7], BvsX?p” survives in

the stable range. So we have 2%0 = 0.
Finally we prove Theorem 1. We consider the cofiber sequence
PP Eps A pB ¥y ... (3.4)
and the exact sequence induced from (3.4):
[M*, £2P8)« " [52P6, 22P¢) 2 [92P8, 02Pe| T [M°, n2P6).
By Lemmas 2.5 and 3.2, we have the relations for X = P®:

4%%x € Im X%
= {il//0_7 2'52?, ,l'l//61/522p/l7 i/[57 i3]22p1/7 z'll[il’ ,3]22]7,}224?

and

8%%x = 0 mod 2i'65p%q.

So we have 8%%.x = 0 mod 4ir4%?pX3g = 0. Hence we have

8%3% x = 0.
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This completes the proof of Theorem 1.

The proof of Thorem 2 is immediately obtained from the method of the
appendix of [8].

Conjecture. "/ is of order 2 and the suspension order of $P% is 8.

Remark.

i) The author announced the result mo(M?®) = (Z3)* ([10]). This result
should be corrected as follows: m2(M?) = (Z3)3([4]).

ii) The author obtained the result {2t5,m5,v6} = 0 and {25,75,(s} = 0
by Lemma 4.3 of [9]. By Lemma 2.3, we have 7jsv7 = ivsn?. So it should be
corrected as follows: {2¢5, 15, 6} = vsnZ mod 0 and {2¢5, 15, (s } = vsnspie mod 0.

The author’s mistake was induced from using the following wrong formula
about the Toda bracket: {i,2t5,0}2 3 0. This formula should be corrected as
follows:

{2'5,2L5’O}2 C {i572b5,0} 50 mod Z.5l/57]$.

Acknowledgement. The author wishes to thank Professor Rigas for the kind
hospitality given during the stay at Unicamp. In fact the above serious mistake
was found during this stay.

The author also wishes to thank the referee for the kind and useful advices

helping improve the manuscript.
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