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CRITICAL SETS OF PROPER WHITNEY
FUNCTIONS IN THE PLANE

Iaci Malta Nicolau C. Saldanha® Carlos Tomei*®

Abstract

A characterization of critical sets and their images for suitable proper
Whitney functions in the plane is given. More precisely, necessary and
sufficient conditions are provided for the existence of proper Whitney ex-
tensions I of f: C' — IR? such that C is the critical set of . Although
this result relies strongly on previous theorems of Blank and Troyer, it is
presented in a self-contained fashion.

Resumo

Descreve-se uma caracterizacao do conjunto critico e sua imagem para
fungoes préprias de Whitney do plano no plano. Mais precisamente, dada
uma funcdo f de um conjunto C' para oplano, sdo obtidas condi¢oes
necessarias e suficientes para a existéncia de uma extensao prépria I
doplano no plano, tendo C' como conjunto critico. O resultado é apresen-
tado de forma auto-contida, apesar de depender de teoremas de Blank e
Troyer.

Introduction

The purpose of this paper is to provide a characterization of critical sets and
their images for suitable proper Whitney functions from the plane to the plane.
Knowledge of the critical set of such a function F' is essentially sufficient for the
understanding of the global behaviour of /' and is most useful for the numerical
inversion of F' (i.e., for the computation of all the solutions of the equation
F(z) = y) by continuation methods. In [MST2], numerical inversion and a

geometric description of F' are provided for generic proper Whitney functions
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with bounded critical set. Interest in this last problem arose from the study of
Rankine-Hugoniot equations for hyperbolic conservation laws as considered in
[MT]. Indeed, the interest in the problem considered in this paper derived from
the approach used in [MST2]. The need to find the critical set of a function I’

naturally leads to the following purely topological question:

e In which conditions a given set C' of smooth curves and a smooth function
f:C — IR? can be the critical set of a Whitney function F : IR* — IR?
such that F|c = f?

In other words,

e When is it possible to extend f : C — IR? to a Whitney function F :

R? — IR?* whose critical set is C?

In this paper, a complete answer to this question is provided for C being a
finite union of smooth curves, f(C) having a finite number of cusps and inter-
section points, all of them being generic, and the additional requirement that
the extension F' be proper.

This problem can be reduced to two virtually independent issues: the exis-
tence of a local extension of f to a tubular neighbourhood of C' and the existence
of extensions to regular regions (the connected components of the complement
of a neighbourhood of C') of proper immersions defined on their boundaries. In
Section 1, the class of functions considered is introduced and the existence of
the desired local extension is proved.

The problem of existence of extensions to a disk of immersions defined on the
boundary was solved by Blank ([B], [P]). Troyer generalized Blank’s result for
disks with finitely many holes. A slightly modified version of Blank’s theorem
together with Troyer’s result are presented in section 2. Proofs are included
because the version of Blank’s result presented in this paper admits a somewhat
simpler proof and Troyer’s work is not readily available; furthermore, Troyer’s
theorem is proved by induction, Blank’s theorem being the initial step. The

existential part of both theorems has an essentially constructive proof.
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In section 3, with heavy use of Blank’s methods, these results are extended to
unbounded regions in the plane with finitely many boundary curves, assuming
finitely many intersection points in the image of the boundary; it is now essential
that immersions be proper. Finally, in section 4, the main theorem is stated
and proved. Formulae for the topological degree and number of pre-images of
a regular point are also given. As with Blank’s theorem, the existential part of

our results is essentially constructive.

1. Preliminaries and local problems

Let C be the finite union of disjoint curves in IR? and let [ : ¢ — IR* be a
smooth proper function. Since C' is to be the critical set of a Whitney function,
curves in C are assumed to be images of smooth proper embeddings of S! or IR
in IR2.

As mentioned in the introduction, to prove the existence of F, we first
extend f to a proper Whitney function f, defined in a thin closed tubular
neighbourhood U of C' whose critical set is C. We then extend f|3y to obtain
a function I which is a topological immersion outside C' and is a Whitney
function outside QU. To get the desired Whitney function F' it is enough to
regularize F at QU, a standard procedure which we shall not discuss in this
paper.

The existence of F' is thus equivalent to:
(a) the existence of an extension f of [ as above,

(b) the existence of an immersion of a region in the plane with a prescribed

behaviour at its boundary.

Item (a) was studied by Francis and Troyer in [FT] but, for completeness,
we also present it in this section (Proposition 1.1). Item (b) is the subject of
Sections 2 and 3.

Recall that a Whitney function is a smooth function whose critical points

are all folds or cusps. A fold is a critical point such that, after smooth local
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changes of coordinates in the domain and image, the function is of the form

Fla,y) = (l'ayZ)e

the critical point being taken to the origin. For a cusp, after a change of

coordinates, the function is of the form

F(x,y) = (‘Tviys - $y)7

where again the critical point is taken to the origin. If changes of coordinates
preserve orientation, the sign in the formula above is well defined.

A critical curve for a Whitney function F' admits a natural orientation, which
will be called the sense of folding, leaving nearby points with positive det DF
to the left of the oriented curve. If we take a smooth curve following parallel to
the critical curve, slightly to the left (resp., right) the image of the curve will
form loops precisely at the cusps for which the sign in the above normal form
is + (resp., —). We therefore say the cusp is eflective to the left if the said sign
is +; otherwise, the cusp is said to be effective to the right.

If we parametrize a critical curve v of a Whitney function by a smooth
regular function g, then @ = F o ¢ has critical points precisely at the cusps
and at all cusps in v the sign of a” A o is the same. More generally, for
a parametrized curve 3, the generic critical point (in which 8" = 0) satisfies
B" A 3" # 0 and its image is called a cusp of the curve. Thus, in our context,
images of cusps of a Whitney function I are cusps of the curves in F/(C). If
g follows the sense of folding, o A o < 0 and all cusps of F(C) point to the
right of the curve F(v) with the induced orientation.

We now characterize critical curves for Whitney functions with orientation
given by the sense of folding, assuming a finite number of cusps. Let v be an
oriented proper curve embedded in IR* (i.e., the image of a proper embedding of
St or IR). A smooth proper function f: v — IR? is called extension-compatible
if there exists only a finite number of points on which the derivative of f is zero
and at each such point we have o’ A o < 0 where « is the composition with

f of an orientation-preserving regular parametrization of the curve. In other
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words, the critical values of the image of v under f are all cusps of f(v) and

point to the right of f(v).

Proposition 1.1 ([FT]): Let v be an embedded smooth proper oriented curve in
R?. If f : v — IR? is an extension-compatible function then there exist an open
neighbourhood U of v and a smooth Whitney function f: U — IR? extending f
such that v is the critical set of f and the sense of folding corresponds to the
prescribed orientation on . Furthermore, [ can be chosen so that cusps are

effective to whichever side we prescribe.

Proof. We first prove a local version of the theorem, i.e., that given a point py
in 7 there exists a neighbourhood Uy of py and a Whitney function iO Uy — IR?
such that JF0|~mUo = flyatp- Furthermore, if po is a cusp, fo can be taken so that
the cusp is effective to the left or right, as we choose.

Assume first that pg is a fold point, i.e., py is not a critical point of f.
There exists an orientation preserving diffeomorphism ¢ : Uy — U}, taking po
to the origin and v N Uy to the x-axis. Similarly, for V4 a sufficiently small
neighbourhood of f(pg), there exists an orientation preserving diffeomorphism
¥ @ Vo — Vy such that, after reducing Uy and U}, (¢ o f o ¢~')(2,0) = (x,0).
Let Gi(z,y) = (z,y*); we can take fo=1"" oGy 0, which clearly satisfies the
required conditions.

If po is a cusp, ¢ is taken as above and, for a sufficiently small V4, there is
an orientation preserving diffeomorphism t, : V5 — V{ such that the function
(1) = (n(0),halt)) = (1 0 ] 0 671)(1,0) satisfies €(0) = (0,0), ¢/(0) = (6,0)
and £"(0) = (0,—12) (notice that £'(0) is automatically 0): this is possible
because we require a” A o < 0 and ¢ must satisfy the same property (¢ can

be taken as an orientation preserving affine transformation). Let

Fi,) = () £ 0, hafu) £ 22

signs varying together. Tt is clear that fi : U) — V{ coincides with ¢ o f o ¢!

on the z-axis and it is now easy to check that the origin is a cusp for f; ([W]),
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that the sense of folding corresponds to the usual orientation for the z-axis and
that the cusp is effective to the right if we take the + sign and to the left if we
take the — sign. Finally, take f =o' o fl 0 .

Now, using a partition of unity, glue functions ffor a covering of . Since
they all coincide in v, f thus defined is indeed an extension of f. It is further-
more easy to verify that such partitions of unity preserve folds (cusps are never

touched).

In this paper, we are interested in considering only certain very well behaved
Whitney functions, which we call nice: smooth Whitney functions F' : IR* — IR?

satisfying the properties below.
e The function F' is proper.
o The critical set C'is the union of finitely many curves (necessarily disjoint).
e There are only finitely many cusps.

o There are finitely many intersection points in F(C), i.e., points in F(C)

with more than one pre-image in C.

e All intersection points are double, transversal and are not cusps, that is,
all intersection points have precisely two pre-images in C', both of them
being fold points, so that tangent vectors to C' at these two points are

taken by DF to linearly independent vectors.

Thus, the precise question we answer in this paper is: when is it possible to
extend f: C — IR? to a nice function F : IR? — IR* whose critical set is C'?

Recall that a critical curve of a nice function has a natural orientation, the
sense of folding. Thus, given a nice function F', with the curves in the critical
set C of F oriented by sense of folding, the definition of a nice function imposes

the following conditions on C and f = F|¢:
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(a) The set C is the disjoint union of a finite number of embedded proper

curves.

(b) Each connected component of IR* —C admits an orientation such that the

induced orientation on its boundary coincides with the sense of folding.
(c) The function f restricted to any of the curves in C' is extension-compatible.

(d) There exist only finitely many intersection points (i.e., points in f(C)
with more than one pre-image), all of them being double (i.e., with two
pre-images) and transversal (tangent vectors to C' at the two pre-images

are taken by f’ to linearly independent vectors).

These properties then lead us to consider only sets C' of oriented curves
and smooth proper functions f : ¢ — IR?, which we call adequate, satisfying
conditions (a) to (d), above. In particular, a proper immersion f : C' — IR*
satisfying (a), (b) and (d) (hold automatically) will be called an adequate im-
mersion. So, except for the requirement that the number of intersections be
finite (which is automatically satisfied if C' is compact), adequate immersions
correspond to what is known as normal immersions. Notice that curves in C
have to be appropriately oriented.

Proposition 1.1 tells us that it is always possible to extend an adequate f to
a Whitney function f defined on a neighbourhood U of €' such that the critical
set of f is C'; we may even choose to which side cusps are effective. Notice
that U can be taken to be a tubular neighbourhood of C', with one connected
component per curve and boundary made of smooth curves; furthermore, given

[, U can be made smaller if necessary so that f|sr is an adequate immersion.

2. The Theorems of Blank and Troyer

In this section, we present the results of Blank and Troyer on the existence of
extensions of boundary immersions for bounded regions in the plane. First of
all we recall some properties of the turning of locally simple closed curves which

will be necessary to state and prove the theorems.
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Let g : S* — IR? be a locally injective continuous function and § > 0 be such
that g is injective in any interval of size §. The turning of g, 7(g), is defined as
the degree of the function
L, 9(0+9)—g(9)

lg(6 +8) — g(8)|
from S' to S'. Notice that 7(g) does not depend on the choice of 4. In par-
ticular, if g is regular, 7(g) is the degree of 8 — ¢'(6)/|g'(6)|. Clearly, if p is a
homeomorphism of S', 7(g 0 p) = £7(g), the sign depending on whether p pre-
serves orientation or not. If 4 is an oriented simple closed curve and f : v — IR?
is continuous and locally injective we define 7(f) = 7(f 0 g) where g is any ori-
entation preserving simple parametrization of v by S'; the previous property
guarantees that 7 is independent from g. We will make use of the following

proposition, whose proof, being standard, is omitted.

Proposition 2.0. Let A be a disk with k holes, with exterior and interior bound-
aries given by the smooth curves o and vy, ...k, respectively. If yo,v1, ..., Yk

are oriented counterclockwise and ¢ : A — IR* is an immersion then

7(Blo) = sgn(det(D¢))( + 22 TSl
1<i<k
As a corollary, given an orientation for A, if the curves yo,71,...,7% are

oriented as the boundary of A and ¢ : A — IR? is an immersion then
> 7(¢hy) = sgn(det(Dg)) sgn(A)x(A),
0<i<k
where sgn(A) = £1 indicates the orientation of A and x(A) is the Euler char-
acteristic of A.

Let C' be the union of finitely many disjoint oriented simple closed curves
and let f: C — IR? be an adequate function. Define 7(f) = Yyce (7). The
cycles of the Seifert decomposition of f(C') are the simple closed oriented curves
obtained by following the curves in f(C'), respecting orientation and turning at
every intersection. It is also well known that 7(f) = m —n where m and n are

the number of positively and negatively oriented cycles, respectively.
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Let v be a positively oriented simple closed curve in the plane and let
f + v — r? be a adequate immersion. Consider in the image f(v) the ori-
entation induced by f from the orientation of 4. Blank’s theorem gives us a
necessary and sufficient condition for the existence of an orientation preserving
immersion F', from the disk bounded by 7 to the plane, extending f. We begin
with a simple example. Consider f(v) as in Figure 2.1(a). How can we decide
whether an orientation preserving immersion F' exists, extending f to the disk
bounded by 4?7 Such an I exists, and can be constructed by juxtaposing three
homeomorphisms taking three sub-disks in the domain to three disks in the
image as indicated in Figure 2.1(b), where the homeomorphisms coincide in the

common part of the boundary.

Figure 2.1

Blank’s theorem describes a construction of F' by decomposing the domain
into disks inside which F' is a homeomorphism. For a closed subset X of IR?,
we call the connected components of IR* — X the tiles for X. The following
definitions are exemplified in Figure 2.1(c). A ray for [ is a proper embedding
r: [0, +00) — IR* which is transversal to f(v) and never goes through an inter-

section point in f(y). The images of rays, oriented by the given parametrization,
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are also called rays. A system of rays for f is a finite family of disjoint rays

with the following properties:
o the origin of each ray is in some bounded tile for f(7v),
o cach bounded tile for f(v) contains the origin of a unique ray.

Since f(v) and the rays are oriented, their intersections naturally have an
orientation: when the curve crosses the ray from right to left, we call the orienta-
tion positive, otherwise negative. Each intersection also has a height associated
to it: it is the number of other intersections on the same ray which are closer to
the origin of the ray. Therefore, the first intersection of a ray with a curve always
has height zero. The Blank word is obtained following f(v) once, respecting the
orientation, and writing down, at each intersection, a letter corresponding to
the ray, the sign of the intersection (as an exponent) and its height (as an lower
index). Blank words are defined only up to cyclic permutation: any intersection
can be taken as the beginning of the word. In the example of Figure 2.1, the

Blank word is
B o L o R R = S
Bw = agby ¢l d eg {07 ¢ [o 95 bo dy €1 3797 -

Actually, Blank’s original theorem does not involve the concept of height
in its statement, and there are indeed generalizations of Blank’s and Troyer’s
theorems which do not make use of the concept of heights ([CW]). Heights
are, however, essential for Troyer’s theorem and the generalizations we have in
mind and the modified version of Blank’s theorem with which we work also
involves heights in its statement. We prefer to work with heights from the
beginning for three reasons. First, heights have to be introduced at some point
anyway. Second, Blank’s theorem admits a simpler proof if heights are taken
into account. Finally, and most importantly, if Blank’s theorem (or any of
its generalizations) is interpreted as providing a combinatorial criterion for the
existence of extensions, the criterion becomes computationally simpler if heights

are used.
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A Blank word admits a simplification if there existis a pair of letters z*,
z~, such that, after a cyclic permutation if necessary, there are no letters with
negative exponent between z* and z~. In this case, the simplification is obtained
by deleting from the word z*, z= and the letters between them; we say that
z~ was cancelled with z*. A simplification is positive if the height of z~ is
smaller than that of z*. A Blank word groups (or admits a grouping) if we
can sequentially simplify it until we get to a word with no negative exponents.
A grouping is positive when all simplifications are positive. In the previous

example, a positive grouping is given by
ple, ap g pingis g Y
I ey s g
Bw — agbycldyeq fiTdyey [y g7 — agbyclel fi g7

We indicate simplifications connecting two equal letters with opposite signs by

brackets, as in the example below:

e
— gt bt ot JF et f+ bt £+ gt e = ot £+ ot
Bw = agbjcf dieg fi b cg 5 g5 by dy €7 f3 97

Notice that, in a grouping, brackets are not allowed to intersect. Since the word
is cyclic, for each simplification we can choose between the two brackets which
cover complementary parts of the word: both are equivalent with respect to
the possibility of grouping. Simplifications describe the previously mentioned
decompositions of the domain into sub-disks, as we shall see. We introduce the

notation D, for the closed disk bounded by the simple closed curve «.

Theorem 2.1. Let v be a regular, posilively oriented, simple closed curve,
[ v — r? an adequate immersion and consider a system of rays for f. Then

there exists an orientalion preserving immersion F extending [ to D. if and
only if
(a) the turning of [ is 1,

(b) the Blank word groups positively.

As mentioned, this is a modified version of Blank’s Theorem. In the original
one ([B], [P]), the condition in item (b) is that the Blank word groups. In fact,
Blank proves that a word groups if and only if it groups positively.
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To prove Theorem 2.1, we need a few technical lemmas.

Lemma 2.2. Let ( be a closed oriented curve which is the image of an adequate
function. If  is not simple, then it has more than one Seifert cycle.

Proof. Consider the boundary « of the unbounded connected component of
the complement of (: if « has a consistent orientation, it forms a Seifert cycle
which can only be the whole curve if ¢ is simple. On the other hand, segments
of a with opposite orientations belong to different Seifert cycles: the orientation
of a segment of « determines the orientation of its Seifert cycle. Indeed, the
orientation of this arc tells us on which side lies the unbounded connected

component of the complement of the cycle.

Lemma 2.3. Considery, [ and a system of rays as in the theorem. If the Blank
word has no negative exponents, the turning of [ is strictly positive. Moreover,

if the turning is equal to 1, f(v) is a simple closed curve.

Proof. Consider the Seifert decomposition of f(v). If there exists a cycle with
negative orientation, there exists a ray beginning inside the cycle which, when
leaving the cycle, creates a negative intersection. There are, therefore, no cycles

with negative orientation. The result now follows from the previous lemma.

Lemma 2.4. Let v, f and a system of rays be as in the theorem. If the Blank
word groups positively then the turning of f(7y) is strictly positive.

Proof. Define the depth of an intersection as the number of other intersections
on the same ray closer to infinity — thus, depth plus height equals the number
of intersections on the ray minus one. To each [ and system of rays for f,
assign the polynomial in the variable w with natural coefficients }" a,w", where
a, is the number of negative intersections with depth n. Define on this set of

polynomials the following order: P < @ if and only if the coefficient of highest
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degree of Q — P is positive. It is easy to see that this set is well ordered:
each non-empty subset contains a smallest polynomial (the reader may have
noticed that these polynomials correspond to ordinals below w“). Suppose by
contradiction that there are counter-examples to the lemma, and consider one
such with minimal associated polynomial.

There exists at least one simplification, since, by Lemma 2.3, there are letters
with negative exponents. Consider therefore the first simplification (positive,
by hypothesis), associating f(p—) and f(py), intersections of the curve f(v)
with a ray r. Connect points p_ and py of v by a simple, regular curve con-
tained entirely in D.. Define new curves 4; and 72 bounding disks D., and D.,
as indicated in Figure 2.2. Let fi : 1 — r? and f, : 72 — r? be such that,
on 7, they coincide with f, and on the new segment, they follow the ray. By
summability, 7(f) = 7(f1) + 7(f2) — 1.

Figure 2.2

The original problem then gives rise to two analogous problems on two
curves. In order to deal with the problem involving f; and 72, we now describe
a system of rays for f,. Take the original rays, moving slightly to the left the

ray over which the simplification was performed (follow the argument in Figure
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2.3(a)): the two reasons for which the set of rays may not suit the new problem
are the possible existence of two or more rays starting from the same tile for
J2(72) and the existence of tiles for f5(72) from which no ray departs. The first
difficulty is solved simply by omitting a few rays. The only tiles for which the
second difficulty may apply are those immediately to the right of the segment
of the original ray going from f(p_) to f(p+). In any case, we can construct
rays for these tiles crossing the original ray and following it to infinity. Thus the
word for f, 2 and the system of rays described above has positive intersections
only: indeed, being a (first) simplification, there are no negative intersections in
the segment of the original curve between f(p_) and f(ps). From the previous
lemma, 7(f3) > 1.

As to f1 and 7, take the rays of the original problem, moving slightly to
the right the ray over which the simplification was performed (Figure 2.3(b)).
Omit and add rays exactly as above. We claim that the word associated to
this system of rays also groups positively. Indeed, for each negative intersection
over an old ray, the simplification that cancelled this intersection in the word
for f still takes care of it. For the new rays, mimic groupings along the ray they

follow.

Figure 2.3
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cancelled this intersection in the word for f still takes care of it. For the new
rays, mimic groupings along the ray the follow.

Notice that the polynomial (ordinal) associated to fi is strictly less than that
associated to f. In fact, going from f to fi, we eliminate a negative intersection,
and any new negative intersection possibly arising must have strictly smaller
depth. Notice also that possible eliminations of rays only help and the depth of
a given negative intersection may go down, but never up.

Since by hypothesis f is a minimal counter-example, 7(f;) > 1. Thus, we
know that 7(f1) > 1 and 7(f2) > 1, and hence 7(f) = 7(f1) + 7(f2) — 1 > 1,
contradicting the hypothesis of f being a counter-example.

O
Proof of Theorem 2.1. We initially show necessity. Since F' is an orientation
preserving immersion, Proposition 2.0 with & = 0 tells us that 7(f) = 1. For
each intersection of f(v) with a system of rays we shall indicate its unique pre-
image (by f) by the corresponding letter in the Blank word. The inverse images

of rays by F' (as for the example in Figure 2.4) satisfy the following properties:

e cach connected component is a regular curve with boundary,

e these curves are disjoint and have a natural orientation induced by the

orientation of rays,

e curves always start either at a negative intersection or at a pre-image of

the origin of the ray,

e curves always end at a positive letter,

e every negative letter is the starting point of such a curve,

e curves which begin and end on 7 associate a negative letter with a positive

one of greater height.
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Figure 2.4

The positive grouping is defined by matching letters indicating points con-
nected by curves which begin and end on ~.

To prove the other implication, associate to each situation the same poly-
nomial (ordinal) as in the proof of Lemma 2.4 and assume the existence of a
minimal counter-example.

Again, by Lemma 2.3, there is at least one simplification. Given a simplifi-
cation involving p_ and p4, perform the construction in the proof of Lemma 2.4
in order to obtain fi, f, and systems of rays as in the lemma. Since 7(f) =1,
r(fi) > 1, v(f2) = L and 7(f) = 7() + 7(f2) = 1 we have r(f;) = 7(f2) = 1.
So, by Lemma 2.3, f3(72) is the boundary of a disk since the corresponding
Blank word has no negative exponent: f, therefore extends to an immersion
F; on Dy. By the minimality hypothesis, since the polynomial (ordinal) for
f1 is smaller than that for f, f; also extends to an immersion F; on D;. The
juxtaposition of these immersions gives us a local homeomorphism F' extending
[ toD.

It is now possible by classical methods to render F smooth by changing it
in a neighborhood of the segment connecting p_ and p; in such a way as to
obtain an immersion F as desired, which contradicts the hypothesis of f being

a counter-example.



CRITICAL SETS OF PROPER WHITNEY FUNCTIONS 197

]

Although our proof is somewhat indirect, it shows us how to construct an
immersion with the required properties. Indeed, the rays on which we perform
groupings indicate how to cut domain and image into disks inside which the
immersion clearly exists. The proof is necessary only to guarantee that this
process works, i.e., that the curves so constructed are indeed boundaries of
disks. Alternatively, the reader may think of the proof not as by contradiction
but as by (transfinite) induction. In this case, we have a recursive procedure to

construct the desired immersions.

We now prove the generalization of this result to a disk with & holes, due to
Troyer ([T]). Let A be a disk with % holes in the plane, with positively oriented
exterior boundary v and negatively oriented interior boundaries v1,...,v;. Let
[ : 9A — r? be an adequate immersion. Troyer’s theorem provides a criterion
for the existence of an orientation preserving immersion I : A — r? extending
f, also involving rays and Blank words.

Systems of rays are defined exactly as before, for tiles for f(0A). Consider
in the curve f(v;) the orientation induced by f and the orientation of v;. In-
tersections with rays are classified as positive or negative as before. Therefore,
following f(~;), we have a Blank word for each ;. A concatenation of two
Blank words from a pair of intersections in the same ray z~ e z*, one in each
word, is obtained by cyclically permuting the two words so as to leave z~ at the
right extreme and z* at the left extreme of their respective words, juxtaposing
both words and eliminating the pair z7z* produced at the juxtaposition. A
concatenation is positive when the height of z~ is smaller than that of zt. A
family of Blank words groups positively if there exist positive concatenations

giving rise to a single word which in turn groups positively.

Theorem 2.5 (Troyer [T]): Let A be a (positively oriented) disk with k holes
and [ : A — IR? be an adequate immersion. Consider a system of rays and the

associated Blank words. Then there exists an orientation preserving immersion
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F: A — r? which extends the [; to A if and only if
(a) the turning of f is 1 —k,
(b) the Blank words group positively.

Notice that Troyer’s theorem for k& = 0 is Theorem 2.1. We first prove a

technical lemma.

Lemma 2.6. Let A be a (positively oriented) disk with k holes and g : 9A — r*
be an adequate immersion. Consider a system of rays and the associated Blank

words. If the Blank words group positively, then 7(g) > 1 — k.

Figure 2.5

Proof. We proceed by induction on k: the case k = 0 is Lemma 2.4. Let k #£ 0.
Assume the first concatenation to be made from g(p_) to g(p4) — clearly, p_
and p, are in different boundary components of A. Let A be obtained from A by
removing an open tubular neighbourhood of a simple arc contained in A joining
p— and py as in Figure 2.5; A is thus a disk with & — 1 holes. We construct
an adequate immersion § : A — IR? and a system of rays for § such that the
associated Blank words group positively. Let § be equal to ¢ on 9AN A and

on the two remaining arcs define § by closely following the ray along which
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concatenation was performed, again as in Figure 2.5. As in Lemma 2.4, we
construct a system of rays for ¢ from the given system of rays for g by omitting
superfluous rays and adding, when necessary, rays following the concatenation
ray. The result now follows since, by construction, 7(g) = 7(g) + 1.

]

Proof of Theorem 2.5. First, assume the existence of F. Item (a) is the
corollary to Proposition 2.0. As to item (b), take the inverse image by F of the
rays. These pre-images satisfy all the properties listed in the proof of Blank’s
Theorem. Pre-images of rays going from the boundary to the boundary indicate
concatenations or groupings (see Figure 2.6); of course, concatenations always
come from pre-images joining distinct boundary components. It now suffices to
see that there exist pre-images of rays connecting the various boundary curves
in such a way that we can select k& connected pre-images of rays to be the k
necessary concatenations. Thus, it remains only to prove that the union of
the boundaries with the pre-images of the rays is a connected set. If this set
were disconnected, we would have £ > 2 disjoint sets of (boundary) curves with
1+k; curves, 1 < j </, for which the corresponding sets of Blank words group
positively, independently from one another, since a concatenation and grouping
is obtained by associating intersections connected by pre-images of rays which
begin and end in JA. By the previous lemma, the turning of F' restricted to
each such set of curves is greater than or equal to 1 — k;; notice that the lemma
can be applied to such sets of curves even when they do not include the exterior
boundary, as the position of curves in the domain is irrelevant. The turning
of I restricted to A would therefore be greater than or equal to 20 — 1 — k
(remember that Y (1 + k;) = 1 + k), contradicting item (a), according to which
this turning is 1 — k.
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Figure 2.6

We shall now prove the converse by induction on k, the case kK = 0 being
given by Theorem 2.1. By performing the same construction as in Lemma 2.6,
we obtain a disk A with k& — 1 holes and an adequate immersion f : 9A — IR
which coincides with f on the common parts of the domains. By induction, f
can be extended to an immersion ' : A — IR?. Clearly, F' can be extended to
an immersion ' : A — IR? (extending f) by taking the tubular neighbourhood

in the domain to the tubular neighbourhood in the image (see Figure 2.5).

The above theorems deal with orientation preserving extensions but we shall
also need an orientation reversing version of Troyer’s Theorem. In order to
simplify our exposition, we present both versions in a single theorem.

Let A be an oriented disk with &k holes and give the induced orientation to
its boundary, that is, A is to the left of each boundary curve. Given an adequate
immersion f : A — IR* define a system of rays and Blank words exactly as
for Troyer’s theorem taking into account the induced orientations for f(9A).
We are interested in immersions F' extending f such that det(DF) > 0 iff A is

positively oriented.

Theorem 2.7. Let A be an oriented disk with k holes and f : 0A — IR? be
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an adequate itmmersion. Given a system of rays, consider the associated Blank
words. Then there exists an immersion F : A — IR? extending [, with the sign

of det(DF) agreeing with the orientation of A, if and only if
(a) the turning of [ is 1 —k,

(b) the Blank words group positively.

Proof. If A is positively oriented, this is exactly Troyer’s theorem.

If A is negatively oriented, change the orientation of the domain by com-
posing with R(z,y) = (z,—y). Let A= R(A) and f = fo R. In one direction,
apply Troyer’s theorem to [ : @A — IR? in order to get an extension F' of [ and
let F' = Fo R. For the other direction, let F' = F o R and again apply Troyer’s

theorem. In both cases turnings and Blank words are unaltered.

3. Boundary immersions for unbounded regions

In this section we give the versions of Theorem 2.7 for unbounded regions in
the plane.

Let A be an open connected oriented subset of the plane with boundary given
by a finite number of smooth curves, which are either smooth embeddings of S!
or smooth proper embeddings of R. We divide such regions A into three types:
A is of type I if bounded, of type IT if unbounded with bounded boundary, and
of type III if unbounded with unbounded boundary. Regions of type I have
been already considered in Theorem 2.7. We shall need versions of this theorem
for regions of type II and III.

Let o4 = +1 if Ais positively oriented and o4 = —1 otherwise. The bounded
boundary components of A will be called ~;,7 = 1,...,k and the unbounded
ones, 3;,7 = 1,...,£. The boundary curves are oriented compatibly with A:
A is to their left iff A is positively oriented. In this section, we assume that

f:0A — IR* is an adequate immersion. We are concerned with the possible
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existence of an immersion F from A to r? extending f such that the induced
orientation in the image is positive. In other words, we are looking for an
immersion F' with sgn(det(DF)) = o4.

In our proofs, we often will make use of auxiliary closed curves. We define
an enveloping curve in the domain to be a smooth simple oriented closed curve

¢ with the following properties:
e ¢ is oriented counterclockwise iff o4 > 0.
e ¢ encloses the bounded components of JA.
e ¢ is transversal to JA.

e For each unbounded component 3; of 0A (if any), 3; meets ¢ at exactly

two points.

If A is of type II the two last conditions in the definition of § are vacuosly
satisfied. Similarly, an enveloping curve in the image is a smooth simple oriented

closed curve ¢ with the following properties:
e ( is oriented counterclockwise.

e ( encloses the image of the bounded components of JA.

¢ surrounds the intersection points of the image.
o ( is transversal to f(0A).

e For each unbounded component §3; of A (if any), f(5;) meets  at exactly

two points.

As before, if A is of type II the three last conditions are vacuosly satisfied.
Let A be a region of type IIT and ¢ be an enveloping curve in the domain.
The unbounded connected components of A—§ naturally correspond to the ends
of A (see [S]). The set 3; — &, on the other hand, has two unbounded connected
components: following the orientation induced by 3;, one component, «;, goes

from infinity to 4, while the other, w;, goes from § to infinity. The symbols
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a; and w; shall be interpreted as names for the two ends of 3;. Tracing &
according to its orientation and keeping track of the ends of the 3;’s, we build
a cyclic word with letters a; and wj, the word for the domain. This is a precise
formulation of the rather geometric concept of order of arrival at infinity of the
components of the boundary of A. It can easily be verified that this word is
independent of the choice of the enveloping curve §. We assume the curves j3;
to be labeled so that the word for the domain is ajwiay...w,. In particular,
the boundary of an unbounded component of A — ¢ is composed of w;, an arc
of § and ajy1 (where 8rp1 = $1). Similarly, using an enveloping curve ¢ in the
image and letters f(a;) and f(w;), we define the order of arrival at infinity of
the curves f(3;), or the word for the image W.

Alternatively, consider compact subsets K of r? and take the unbounded
connected component of r? — K — dA: if K is large enough, we will have 2¢
such connected components and a well defined cyclic order among them. If
K, C Ky, we can naturally map the connected components for K, to those for
K;: again, if these are large enough, this map is a bijection. Thus, eventually,
these connected components can be interpreted as the gaps between neighboring
letters in the word of order of arrival at infinity: for each connected component,
both neighbors correspond to boundary curves. Thus, the set A has £ ends: we
call them FE;, j =1,...,£, where F; is bounded by w; and aj41 (indices are to
be interpreted cyclically).

The cyclic word W induces a permutation m of {1,2,...,2¢ —1}. Turn W
into a linear word leaving f(wy) at the last position. The numbers 7(25 —1) and
m(27) give the positions of f(a;) and f(w;) in the linear word, respectively. We
now define p4 to be the number of runs of 7 ([K]), i.e., the number of maximal
intervals in {1,2,...,2¢ — 1} where = is increasing. Equivalently, pa is the
number of times required to go through W in order to pass sequentially by the
letters f(ar), f(w1),..., f(we), f(e1). A more directly relevant interpretation
is the following: let § and ( be enveloping curves in the domain and image,
respectively. Consider orientation preserving immersions from ¢ to ¢ taking «;

to f(ey) and w; to f(w;), i.e., taking the points in 3; N ¢ to the corresponding
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points in f(3;)N¢. The minimum degree (or turning) of such immersions is p4.
In Figure 3.1, the word for the image is f(on)f(a2) f(as)f(w2)f(wr)f(ws),
the permutation 7 is given by 7(1) = 1, n(2) = 5, n(3) = 2, 7(4) = 4 and

7(5) = 3 and therefore p4 = 3.

Figure 3.1

The turning of an oriented closed curve was defined in the previous section:
we now define the turning of an unbounded oriented curve with a finite num-
ber of self-intersections. Take two points p and ¢ on the curve, one on each
unbounded connected component of the curve minus its self-intersections. Con-
nect p and ¢ by a simple arc which does not intersect the portion pq of the curve
between p and ¢ and consider the oriented closed curve formed by the arc and
pq, respecting in pq the original orientation of the curve. There are two possi-
ble values, differing by 2, for the turning of the closed curve thus constructed,
depending on the choice of the simple arc. The turning of the unbounded curve
is by definition the average of these two values. In particular, a curve with no
self-intersections has turning number 0. We then define 7((3;) as the turning of
f(B;), where f(53;) has the orientation induced by f and the orientation of 3;.

”)-

We first prove some preliminary results about immersions F : A — IR%.

Similarly, 7(v;) = 7(f

Lemma 3.1. Let A be a region of type Il or IIl, F : A — r* a smooth
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proper immersion such that Flaa is an adequate immersion. Suppose that A is

oriented so that o4 = sgn(det(DF)). Let ¢ be an enveloping curve in the image

0ff= F|3A Then
(1) If A is of type 11, the pre-image of ¢ by F' is a simple closed curve.

(i1) If A is of type I, then each connected component of the pre-image of ¢

by F' is a simple arc lying in A joining end w; to ojyq.

Proof. Since I is a proper immersion, the connected components of the (non-
empty) pre-image of a simple, closed, regular curve are either simple closed
curves or simple arcs whose endpoints belong to dA. If this closed curve is the
enveloping curve ¢, any arc must go from some w; to aj. Indeed, a neighbour-
hood in A of a point in 3; is taken to the left of F'(3;) if F' preserves orientation
and to the right if F' reverses orientation. Since ( is an enveloping curve, there
are only two intersections with each F'(3;) and, by the remark above, if an arc
starts at some w; it must end at some a/.

Let A be of type I1. From the previous paragraph, the connected components
of the pre-image of ( are simple, closed curves. In order to prove (i), then, it
suffices to show that there is only one such component. We first show this for an
auxiliary curve ¢, defined as follows. By properness of F, there is an enveloping
curve ¢ bounding a disk Ds which contains the pre-image of F'(0A). Notice that,
since A is of type II, § has to be contained in A. Now, let { be an enveloping
curve in the image surrounding F'(Ds) and (. The connected components of
the pre-image of ¢ are necessarily simple closed curves surrounding the disk
Ds, by construction. The existence of two such components would give rise to
a critical point of I in the annulus between them, contradicting the fact that
I is an immersion. Thus the pre-image of ¢ is connected; we now proceed to
prove that the pre-image of ¢ is also connected. Consider the open annulus
R between the curves ¢ and ¢ and set § = F~Y(R). Tt suffices to show now
that S is also an annulus. For this we first claim that S is connected. Indeed,

being an immersion, F' must take the boundary of S to the boundary of R,
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and the pre-image of a point in the boundary of R must be in the boundary
of S. The outer boundary ¢ of R has a connected pre-image, which can only
bound one connected component of S. The set .S can have no other connected
components because the image of their boundary would have to be contained
in ¢, a contradiction. Thus, we conclude that S is an open disk with holes,
with outer boundary given by the pre-image of ¢ and inner boundaries given by
all the connected components of the pre-image of (. Since the restriction of I
to S is a proper, local homeomorphism onto R, we have that S is a connected
covering space of R, and hence must also be an annulus. This proves (i).

Let A be of type III. Construct in the domain an enveloping curve § sur-
rounding F='(D¢). Let ¢ be an enveloping curve in the image surrounding
F(Ds). We first prove (ii) for the auxiliary curve (. Remember that since § is
an enveloping curve in the domain, each connected component of A — Djs is an
end bounded by w; and a;;1. Thus, from the fact that ¢ surrounds F(Ds) it
is clear that any connected component of F_l(f) is contained in one of these
ends. Arcs must therefore join w; to aj4q and it remains to prove that there are
no closed curves in the pre-image of C. Indeed, the image of the disk bounded
by such a closed curve would be D;, which contains D¢, contradicting the fact
that F~'(D¢) is contained in Ds. In order to transfer the result from ¢ to ¢,
consider a smooth non-zero vector field in the annulus contained between ( and
¢ transversal to these two curves, coming in through ¢ and going out through ¢
and tangent to F'(8;). The pullback of this vector field by F' defines a smooth
non-zero vector field on the pre-image of the said annulus. Each connected com-
ponent of this pre-image must therefore be a disk with boundary consisting of
an arc in w;, a connected component of F‘l(f), an arc in a4 and a connected
component of F~'({), in this order. Item (ii) is therefore proved for (.

O

Notice that it follows from the above proof that the inverse image of the
disk D¢ bounded by (¢ is a disk with finitely many holes. The outer boundary
Yoo Of this pre-image is simply the pre-image of ( if A is of type II. If A is of

type I, 4o is formed by arcs which are alternatedly connected components of
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F~1({) and segments of 3;; these segments come in the order indicated by the
indices. In either case, the inner boundaries are the ;. We orient 7., so that it
is positively oriented iff o4 > 0; define 7(ys) = 7(Fly)-

Let F and A be as in the previous lemma. If A is of type II, let d be the
number of pre-images of an arbitrary point on an enveloping curve; clearly,
this number is independent of the point or the curve. We define the degree at
infinity of F' by deg(F') = sgn(det(DF'))d. Any continuous function extending
I to the plane has topological degree equal to the degree of F' at infinity. Also,
deg(F) = 7(70)

If A is of type I1I, we assign a non-negative integer d; (somewhat similar to
d) to each end E; of A, where E; is enclosed between w; and a;4;. Consider an
arbitrary enveloping curve ( in the image and let p be the only intersection of
¢ with F'(w;). The number d; is defined to be the number of pre-images of p in
the interior of the connected component of the pre-image of ¢ corresponding to
the end FE;. Clearly, d; thus defined does not depend on the choice of ¢ since
there are d; pre-images of F'(w;) (i.e., connected components of F~'(F(w;))) in
the interior of E;. We call sgn(det(DF))d; the partial degree of I' at infinity

associated to the end Fj.

Lemma 3.2. Let A be an oriented region of type III and F : A — IR? be an
immersion with sgn(det(DF)) = o4 such that F|aa is an adequate immersion.

Let ¢ be an enveloping curve in the image and consider v, as above. Then

T(Yeo) = X 7(B5) + Zd]‘ + pa.

J

Proof. If all d; and 7(5;) are zero the curve F(7s,) can be deformed without
changing turning numbers to the orientation preserving immersion from v, to ¢
with minimum degree taking a; and w; to F'(ej) and F(w;), respectively, hence
the formula in this special case. Clearly, changing a d; amounts to introducing
extra turns to the above immersion. Finally, the additive property of turnings

takes care of the 7(5;).
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Lemma 3.3. Let F': A — IR® be an immersion with sgn(det(DF)) = o4 and
such that F|aa is an adequate immersion. Also, let  be an enveloping curve in

the image and consider v, as above. Then
(Vo) + 2 7(%) = x(4),
where x(A) is the Euler characteristic of A.

Proof. This is the corollary to Proposition 2.0.
O

In order get generalizations of Theorem 2.7 to regions of type II or III we
will make use of Blank words. Thus, we first generalize the notion of systems
of rays for an adequate immersion f defined on the boundary of an oriented
region A.

For regions of type I1, a system of rays for f is defined exactly as in Section 2.
For regions of type I11, a system of rays for f is again a finite set of embeddings
of the closed positive half-line, with the same properties of disjointness and
transversality to the image of the boundary curves as described in Section 2
plus the additional condition that a ray may only intersect f(0A) finitely many
times. Also, there must be one ray with origin at each of the (finitely many)
bounded tiles for the image of the curves. In each case, Blank words for each
bounded curve in A are constructed exactly as in Troyer’s theorem but, since
we are now dealing with unbounded regions, we need a new ingredient which
will be called the word at infinity.

Consider a system of rays for f as described above. Let ¢ be an envelop-
ing curve surrounding all intersections of rays with f(0A) crossing each ray
transversally and exactly once. Tracing ¢ counterclockwise and keeping track
of intersections with rays and images of boundary curves, we build a cyclic word
W* with the letters used for the rays, f(o;) and f(w;), describing the order of

arrival at infinity of rays and images of unbounded boundary curves (if any).
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It can easily be verified that this word is independent of the choice of ¢ (with
the properties above). Notice that, for A of type III, by ommiting the letters
for rays we obtain the word for the image W.

We first consider regions of type II. Let d be a positive integer (the absolute
value of the degree at infinity of the desired extension of f). The word at
infinity is made up of d juxtaposed copies of the word of W* giving all letters
a positive sign and height index equal to oo (indicating that such heights are
always greater than those of intersections with f(J0A)).

For A of type IlI, given non-negative integers d; (the absolute value of the
partial degrees at infinity of the desired extension), we first construct auxiliary
strings S; and R;. The string S; is obtained by following f(/3;), keeping track
of oriented intersections with the rays as before. The string R; is constructed
by following W* starting at w; and reaching a1 (or ay if j = £) after making
d; full turns around W*, ignoring o’s and w’s. Finally, the word at infinity is
obtained by concatenating &1, R1,S2, Ra,...,Sr, Re, in this order. Letters in
the strings S; receive height indices as before while letters in the strings R;
have height indices equal to co. An example is provided immediately after the
statement of Theorem 3.5.

Thus, for unbounded regions, we have, given an adequate function and a
system of rays, a Blank word for each bounded boundary curve and the word
at infinity. The notions of adjunction and grouping are exactly as in Section 2

taking into account all of the above words.

Theorem 3.4. Let A be an oriented region of type IT and f: A — IR* be an
adequate immersion. Given d > 0 and a system of rays consider the assoctated
Blank words. Then, there exists a proper immersion F 1 A — r? extending f,

with sgn(det(DF)) = o4 and degree al infinity equal to o4d if and only if

(a) d+ Cicick (%) = x(4),

(b) the Blank words together with the word at infinily group positively.
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Theorem 3.5. Let A be an oriented region of type III and f : 0A — IR* be
an adequate immersion. Given non-negative integers d;, 3 = 1,...,{, and a
system of rays consider the associated Blank words. Then, there exists a proper
immersion F : A — r? extending f with sgn(det(DF)) = o4 and partial degree
at E; equal to oad; if and only if

(@) pat+X;di+3;7(8i) + i () = x(4),
(b) the Blank words together with the word at infinity group positively.

Before proving the theorems, we provide an example. Consider the region
A of type IIT in Figure 3.2(a) with image of the boundary under an adequate
immersion [ shown in 3.2(b). We assign to the two ends of A partial degrees
d; = 0 and dy = 2; orientation and ends of curves are indicated in the figures.
We then have 7(y;) = =5, 7(81) = +1 and 7(3;) = 0. The word at the image
W is f(wr)f(az)f(aq)f(wz) and the corresponding permutation is 7(1) = 3,
m(2) = 1 and 7(3) = 2, whence p4 = 2. Condition (a) in Theorem 3.5 holds,
since x(A) = 0. For the rays in the picture, the Blank word for f(v1) is
infinity are
St =agbictdfef firgfht,
Ri1 = (empty word),
S: =afbicfdfe] [ gihi,

Ry =atbtctdtet frothtatbtctdtet fXgthtatbtchdt et ftgtht .

OO0 700 700 00 TO0J OOJO0 T TO0 OO0 00 o0 OO0 YO0 00T 00T V00 o0 00 00 o0 T o0

The reader is invited to check that these words indeed satisfy condition (b) in
Theorem 3.5. An immersion F' extending f therefore exists and the proofs of
the previous theorems show how to construct it; we shall see a related example

in Section 4.
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Figure 3.2

Proof of Theorem 3.4. We apply Theorem 2.7 to a bounded region Ay C A,
with the same interior boundaries as A and exterior boundary given by a simple
closed curve vy, which we now construct.

Consider a closed regular curve 4 in the image, parametrized by go : [0,1] —
r? with go(0) = go(1) satisfying the following properties (see Figure 3.3, where
d=3and 0A=C).

e The curve 4 turns d times conterclockwise around a fixed enveloping

curve in the image.

e The curve 4y intersects each ray transversally exactly d times.

e The curve 4y has exactly d — 1 self-intersections, all transversal.
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Figure 3.3

We initially prove that if an immersion exists, then items (a) and (b) hold.
By continuation, there is a g : [0,1] — r? with gy = F o g for any choice of
go(0), a pre-image of §o(0). We want to show that g is the parametrization of
a simple closed curve. Indeed, let us first prove that there are no proper loops.
A loop has to surround 0A since its image surrounds an enveloping curve and
therefore the turning of the restriction of F' to the loop has to be equal to the
turning of F|,_, which is d. The image of a proper loop must of course have
smaller turning than d, a contradiction. If go(0) # go(1), continue the inversion
process until gy comes back to go(0), which it must eventually do since F' is
proper. The turning of I o gy is greater than d since F' o gy traces 9 more than
once. Let vy be the image of go.

In order to obtain a system of rays for the new problem, it suffices to add
to the old system a few rays starting from the tiles created by 3 with positive
intersections only. The Blank word for 49 in the new problem is therefore, up
to irrelevant new letters, equal to the word at infinity. Conditions (a) and (b)

of our proposition follow from the corresponding conditions in Theorem 2.7.
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To prove the converse, let 49 be any enveloping curve in the domain of f.
We define [y : 7o — r? as an orientation preserving regular parametrization of
Y. Let Ap be as above and apply to it Theorem 2.7. Clearly, heights for letters
in the Blank word of 7o are greater than the height of any other intersection on
the same ray with any other curve, so that the existence of a positive grouping
is unaffected by the change of word. Therefore, conditions (a) and (b) of the
proposition imply conditions (a) and (b) in Theorem 2.7. There exists then an
Fy extending simultaneously f and fy to Ag. The existence of an F,, extending
Jo to A — A is trivial. By gluing Fy and F,, we obtain an extension F' of [ to

A which may be non smooth, but which can easily be rendered smooth.

Proof of Theorem 3.5. The proof is similar to that of Proposition 3.4: we ap-
ply Theorem 2.7 to a bounded region Ay C A with the same interior boundaries
as A and with exterior boundary a curve 7o similar to e, i.e., composed of big
chunks of ;s together with arcs & (to be constructed) connecting w; C 3; to
[&7EN1 C ﬁj+1-

Let ¢ be an arbitrary enveloping curve in the image. For each j take an

oriented arc g} outside D¢ with the following properties (see Figure 3.4):

o & goes from f(w;) to fajs),

° Ej intersects any f(w) transversally from right to left and any f(«) transver-

sally from left to right,
° Ej intersects any ray transversally from right to left,
e the intersection of the closed arc Ej with f(w;) has exactly d; + 1 points,

e the arcs Ej are simple and disjoint.
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Figure 3.4

First we prove that the existence of F implies (a) and (b). For each j take by
continuation a pre-image ¢; of &;, starting at the only pre-image of the beginning
of Ej in wj; the process can get started since F' preserves orientation. This will
of course produce a simple arc entirely contained in the end E;. We have to
prove that this arc ends at aj4; and that its image is the entire arc &. The
continuation process cannot fail before we reach the end of Ej since we would
then have less than d; pre-images of f(w;) in the interior of £;, contradicting the
fact that d; is the corresponding partial degree. On the other hand, the process
must end by reaching oj41: otherwise, extend Ej respecting sense of intersections
until we reach w; and we have d; + 1 pre-images of f(w;) in the interior of Ej;,
again a contradiction. We thus have the curve v constructed from these arcs Ej
and chunks of f3;’s, oriented consistently with the 3; (and thus, automatically,
consistently with the ;). As usual, let (o) = 7(F|,,). Clearly, since F is an
immersion, 7(y0) = 7(Yeo ), Where 74, is obtained from ¢ and F', and so Lemmas
3.2 and 3.3 imply item (a). Again, in order to apply Theorem 2.7 to Ag we need

to add extra rays but these can be taken with positive intersections only and
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are therefore irrelevant when considering grouping. The Blank word for vy is,
except for these new positive letters, the word at infinity; item (b) follows.

In the other direction, let {; be arbitrary simple arcs contained in F; joining
w; to ajy1. We have thus defined the curve 7 and [ is defined on those parts
of it coming from 3;. In order to extend f to 7o, define homeomorphisms from
&, onto Ej respecting endpoints. In order to apply Theorem 2.7 to Ag we first
observe that the curve vy and f on it were constructed in order to guarantee

that
(%) = pa + Z (r(B;) + d;),

similarly to Lemma 3.2. Item (a) in Theorem 2.7 now follows from our item
(a). Item (b) follows from our item (b) since again we need to introduce a few
irrelevant rays and then the word for ¢ is essentially the word at infinity. As
in the previous theorem, the extension to each end is trivial; overall smoothing

is again done by classical methods.

4. The main theorem

In the main theorem, presented in this section, we assemble the previous results
in order to give criteria similar to Blank’s (and its generalizations) which are
appropriate for functions with cusps.

Recall that for a closed subset X of IR? the connected components of IR*— X
are called tilesfor X. Let C be the union of disjoint oriented curves v;, 1 <17 < k
and (3;, 1 < j < {, where 4; and 3; are images of proper embeddings of S' and
IR respectively. We assume that these curves are consistently oriented, i.e., that
any tile S for C' can be oriented so that the induced orientation in 5 C ' is
consistent with that of C: we always use this orientation for S and we say that
S is consistently oriented with C'. Notice that if £ = 0, we have bounded tiles
(regions of type I) and a single unbounded one (of type II). On the other hand,
if £ > 0, all unbounded tiles are regions of type III and there are at least two of

them.
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As we saw in Section 1, cusps of a Whitney function can be effective to
the right or to the left of their critical curves. The function f alone does not
determine to which side of a critical curve a cusp will be effective and it is
thus natural to consider this information as another given of the problem. We
therefore assign indices < or r to cusps indicating if they are to be effective to
the left or right, respectively, for the desired Whitney function F. Thus, a cusp
labeled < (resp., r) will be called effective in S if S is the tile for C' immediately
to the left (resp., right) of the cusp.

We shall now discuss the construction of Blank words. In our new context,

a5 is a proper embedding r : [0,4+00) — IR* with the previous

a ray for f
properties and the extra requirements that, except possibly at the origin, the
ray does not meet images of cusps. Similarly, a system of rays for f|ss (or, for
simplicity, a system of rays for S) is a finite system of disjoint rays with the

following properties:

e Given a bounded connected component of IR*— f(9S5), there exists exactly

one ray such that its origin lies in this connected component.

o Given a effective cusp in 5, there exists exactly one ray such that its origin
is the image of this cusp; furthermore, the ray leaves the cusp to the right

of f(DS).

e Rays start either in a bounded component of IR* — f(9S) or at the image

of an effective cusp in S.

For each S, given a system of rays for S and d > 0, if S is of type II, or
d; >0 (1 <j<05),if S is of type II, we construct one word for each v; in the
boundary of S and, if S is unbounded, an additional word at infinity. The words
for each such 4; are constructed by following f(7;), keeping track of oriented
intersections with the rays, as before. Letters corresponding to intersections at
images of cusps receive a minus sign and a height index 0, by definition. The
word at infinity is constructed as before, again assigning to letters corresponding

to cusps a minus sign and a height index 0.
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Given a tile S for C, let k(S) be the total number of effective cusps in S

and 7(5) be the sum of the turning of f at each boundary curve of S.

Theorem 4.1. Let f : C — IR? be an adequate function and let labels < and v
be assigned to the cusps of f. Consider a system of rays for each tile S for C.
Then there exists a proper Whitney function F eztending f to IR* with critical
set C, sense of folding corresponding to the given orientation of C' and such that
a cusp is effective to the left (resp., right) if ils label is < (resp., r) if and only
if for each tile S (consistently oriented with C') the following condition holds:

o For S of type I, the identity

holds and the Blank words group positively.
o For S of type II, we have that the number d, defined by
7(5) — (5) + d = x(5)

is strictly positive and the associated Blank words group positively (in this

case, d = | deg(F)|).

o For S of type IlI, with ends E;, 1 < j < (%, there exist non-negative
integers d;, 1 < j < 05, with
ps+7(8) —k(S)+ X dj=x(9),
1<j<es

such that the assoctated Blank words group positively (d; is the absolute
value of the partial degree of F' at the end E;).

As an example, consider C' and f(C) as in Figure 4.1, (a) and (b), respec-
tively. The tiles in the domain are S7, Sz, S3 and Sy, the first three being of
type IIT and the last one of type I. The orientations of C' and f(C') (which are
to be the sense of folding) are indicated, as are the labels for cusps and partial

degrees. We now check the condition in Theorem 4.1 for tile S;. It is easy to see
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that x(.51) = 6 and that 7(y) = 1, 7(81) = 1 and 7(8;) = 0, whence 7(S5;) = 2.
Since the behaviour at infinity of this example for tile S; is identical to that
of the example shown in Figure 3.2, we have pg, = 2 and the same word at
infinity. The expression for x(.S1) = 0 therefore holds. Also, the Blank word for
~1 is identical to that for the example in Figure 3.2, and again the words group
positively. The reader will easily check that the remaining tiles also satisfy the
appropriate conditions in the above theorem. Thus, there is a proper Whit-
ney function I’ extending f with prescribed critical set C', partial degrees and

senses of cusps. Later, we shall give a more explicit description of this function.

Figure 4.1

Remember, however, that we are often interested in computing the critical
set of a nice function F. Assuming that some critical curves for F' are known
we may use Theorem 4.1 to check if it is at least consistent that these are all
the critical curves. Information about F' such as sense of folding, sense of cusps
and partial degrees makes the application of the theorem more efficient.

For example, given a generic proper polynomial functions from IR? to IR?, a
nice function, its behaviour at infinity can be determined by methods such as

Newton polygons. This gives us the number of unbounded critical curves, the
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extrema of such curves, their order of arrival at infinity and the partial degrees
at infinity. Thus, using Theorem 4.1 as a test to see if it is reasonable to assume
that we have already found the full critical set of such a polynomial function,
the criterion as in item (c) has to work with the d; being the known partial

degrees.

Proof of Theorem 4.1. Since f is adequate, Proposition 1.1 tells us that it can
be extended to a Whitney function f defined on a thin tubular neighborhood
U of C. In order to prove the existence of F, it therefore suffices to extend to
each tile S immersions which are already defined near the boundary.

Let S be a tile and let its boundary be composed of bounded curves 77,
1 < i < k*, and unbounded curves 37, 1 < j < (5. We denote by x%(7;)
(resp., £°(7)) the number of cusps on 7 (resp., 37) which are effective in S.

Thus,

and

K(S)= 3 &S00+ X K5(B)).

1<i<hs 1<j<es

Let S* C S be a closed set whose boundary is composed of smooth curves ~*
and 3f which are sufficiently near the corresponding curves in 95 and contained
in U. Orient 77 and 3} as the nearby v and ,BJS, so that they form the oriented
boundary of S*, which is oriented positively or negatively according to the
constant sign of det(Df) in SNU. We apply to S* Theorem 2.7 if S is of type
I, Theorem 3.4 if S is of type IT or Theorem 3.5 if S is of type I1I. We now show
that the conditions in our theorem are precisely what is necessary in order to
guarantee the hypothesis of these theorems.

From the local behaviour of cusps, each effective cusp creates a little loop
in f(yf) or f(B}), always negatively oriented (see the paragraph immediately
following the proof for an example) and if 7 and 3} are sufficiently near 77 and

ﬂf these are the only new intersections. This implies

r(f(v0)) = 7(+%) — £5(+7)
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and
r(F(87)) = 7(BF) — &5(57).

Also, the connected components of IR> — (|; f(’yl*) U U f(%*)) coincide with
those of IR* — (U; f(77)UU; f(77)) except that one small disk has been created
by the loop around the image of each effective cusp. The Blank words (with
cusps) as constructed for our theorem are therefore the Blank words for S*.
Thus, the hypothesis of the appropriate theorem for the type of S* hold and
the desired immersion exists. If we take the immersions for all tiles and smooth
out the resulting function we obtain the proper Whitney function F.

Conversely, if F' exists, its restriction to S* as above is an immersion and
the same theorems show that the conditions in our theorem hold.

O

With the notation of the above proof, we explain the relation between the
examples in Figures 3.2 and 4.1. Indeed, taking ST for S; in Figure 4.1 as
described in the proof above, we obtain precisely the example in Figure 3.2.
Notice that the six cusps on v; are effective in S; and thus generate six small
negatively oriented loops, whereas the cusp in (3, not being effective in Sy,
creates no loop.

The next two results give formulae for the topological degree of F' and the
number of pre-images of an arbitrary regular value. Clearly, the number of
pre-images is constant on tiles for F/(C') and changes by 2 from a tile to another
neighbouring one, the tile to the left (according to sense of folding) having more
pre-images. In the first theorem, we use information about the behaviour of the
function near infinity (such as ps or d;). In the second one, we express these
results in terms of finite information (such as 7 or k).

For a closed oriented parametrized curve o : S* — IR? and a point p not on
the image of a let w(a, p) be winding number of a around p (i.e., the topological
degree of § — () — p/|a(f) — p|). We extend this concept for parametrized
curves of the form a : IR — IR?, where o is a proper continuous function in-

jective in the complement of a compact interval /. Consider a circle around
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the origin such that a(I) and p are in its interior. Taking the maximal arc
of a which contains a([) and is in the interior of the circle, we construct two
oriented closed curves by using two complementary arcs in the circle. We define
the winding number w(a, p) as the average of the two winding numbers of these
auxiliary closed curves around p. Notice that w(e,p) independs on the choice
of the circle and is always in Z + 1/2. In Figure 4.2, we have w(a,p;) = 1/2,
w(a, ps) = —1/2 and w(a, p3) = —3/2.

Figure 4.2

Let F' be a nice function with bounded critical curves 74; and unbounded
critical curves (3;, always oriented by sense of folding. Consider a connected
component T' of IR> —J 3;. Let o(T) be the sign of det(DF') in the unbounded
tile S contained in T', pr = ps and dr be the sum of the absolute values of the

partial degrees of F on the ends of S.

Theorem 4.2. The topological degree of I is

deg(F) = 3_o(T)(pr + dr)
T
and the number of pre-images of an arbitrary regular value p is

#EF ' (p) = 3 (pr + dr) + 23 (w(F(B;),p) = 1/2) + 23 w(F (%), p)

T J
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where T ranges over all connected components of IR? — Ui<i<e Bi-

Let us apply this result to the example in Figure 4.1: we must have deg(F') =
2 (o(T') being obtained from the orientations of critical curves) and #F~'(p) = 2
for p in the uppermost tile. This can be visualized by considering the behaviour
of I on a pre-image 6 of a simple closed curve ( in the image which is envelop-
ing for every unbounded tile S. From Lemma 3.1, § is a simple closed curve
(with the same properties of an enveloping curve in the domain) and we orient
it counterclockwise. The behaviour of F' on § is schematically shown in Figure
4.3: actually, the image of J is contained in ¢ and in order to render the graph
visible we lifted it away from (; the true value of F/(p), p € ¢ is obtained by
radial projection onto ¢. The diagram is constructed from the sign of det(DF),

the word in the image and the partial degrees.

Figure 4.3

Proof of Theorem 4.2. We use the same notation for the boundary of a tile

S as in the proof of Theorem 4.1.
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Take a curve ¢ in the image which is enveloping for every tile and consider
its pre-image by F, a curve é which is, up to orientation, an enveloping curve for
every tile in the domain. For each unbounded tile S construct 45 as in Section
3. The turning of F(75), 7(v2), can be interpreted as the degree of a function
¢% from 45 to ¢. In order to construct ¢, first smooth out the curves F(ﬂ]s)
near cusps without introducing new intersections and bend them near ( so that
they become tangent to (, with counterclockwise orientation in ¢ corresponding
to the sense of folding in F(37). Clearly, 7(7J) coincides with the turning
of this deformed curve. Now define ¢°(p) = F(p) for p € § and ¢°(p) as the
direction of the normal vector to the auxiliary curve above near F'(p) for p € /3]5
By construction, the degree of ¢° is the turning of the deformed curve and so
deg(¢®) = 7(73)-

(Clearly, the topological degree of F is the degree of F|s as a function from
the oriented curve § to the oriented curve (. This last degree can be written as

> deg(¢”),

unbounded S

if each 42 is oriented counterclockwise or

> o(5)deg(¢),

unbounded §
if each 42 is oriented, as usual, according the sign of det(DF), which is the
same as the orientation induced by the sense of folding in ;. Thus,
deg(F)=" 3. (o(S)(12))-
unbounded §
On the other hand, we have, by Lemma 3.2,
T(v%) =pr+dr+ Y 7(6;)
1<5<e8

and thus our formula for deg(F'), since for each j the term 7(/3) appears twice
with opposite signs.

In order to count the number of pre-images of a point p, we again consider

73 as above. The number of pre-images of p in a bounded tile S is given by the
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sum of w(F'(;), p) over all boundary components v; of S (each +; being oriented,
as usual, by sense of folding), as the sign of det(DF) inside S is constant equal
to 5. Similarly, the number of pre-images of p in an unbounded tile S is given
by the sum of all w(F(v;),p) (again over all bounded boundary components)

with w(F(v3),p). We have, however,
w(F(35),p) = pr+dr+ 30 (w(F(B;),p) —1/2);
1<j<t5

the proof of this identity is similar to that of Lemma 3.2 and is left to the
reader. By adding all these terms, we get the desired formula for the number

of pre-images of a regular point.

Let £ be the total number of cusps of F' and 7(C) be the sum of all 7(3;)
and 7(y;). For T as above, we define x(7') to be the number of cusps which
are in the interior of T or are effective in the unbounded tile of T'. Similarly,
let 7(T') = 3_,,cr 7(7:); notice that only bounded critical curves are taken into

account.

Theorem 4.3. The topological degree of F is

deg(F) = ZT: o(T)(&(T)=27(T)+ 1)

and the number of pre-images of an arbitrary regular value p is
#F ' (p)=1+k—-27(C) + 22 w(F(8;),p) + QZ w(F (i), p)
j i
where T ranges over all connected components of IR* — |, <j<t Bi-

Proof. Let T be a component of IR* — Ui<j<e B; and S be the unbounded tile
contained in 7. With the notation of Theorem 4.2, we prove that

r(73) = w(T) = 27(T) + 1.
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From Lemma 3.2 and Theorem 4.1,
(1) = X(S) + £(S) = D2 7(3).
1<i<kS
On the other hand, for an arbitrary bounded tile S’ contained in 7" we have,

again from Theorem 4.1,
0=x(8)+x(5)—- 3 (+7).
1<i<kS’
Adding all these equations,
T(Yeo) = X(5) + £(S5) — ISSS ( w(S) - X2 T(’Vf))-
1<i<kS SICT 1<i<ks’
Notice that

S)+ D x(8) =x(T) =

s'CT
and observe that for each bounded critical curve v C T, 7(v) appears twice
in the above expression. Finally, each cusp is counted exactly once since it is
effective in one tile only. Thus, the above identity reduces to 7(v2) = &(T) —
27(T) + 1, as desired, yielding the degree formula.
For the other formula, by Theorem 4.2,

#F ' (p) —1+Z (pr +dr — 1) +22w (8i),p) +2Zw (73),p)
snd by Thesrem 4.1,
ps+ds—1=x(5)—7(5)+r(S) -1,
for the unbounded tile S contained in T and
0= x(5) —(5) + &(5)

for bounded tiles S’ contained in 7. Adding the identity for S and the identities

for all S’ we have

pr+dr —1==377(87) =23 () + x(T)

i
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whence

S (pr+dr — 1) = =27(C) + &,
T

yielding our theorem.

Figure 4.4

We now return to the example in Figure 4.1. Figure 4.4(a) shows F~1(F(C)),
the flower of F'. It is easy to see ([MST1], [MST2]) that the restriction of F to a
tile for the flower is covering map for a tile for F'(C'). Five of the six tiles for F'(C')
are simply connected and the restrictions are thus diffeomorphisms from tiles
for the flower to such tiles for F/(C'). Notice that the tile for F'(C') surrounding
F(71) has three pre-images restricted to which F' is a diffeomorphism and one
additional connected pre-image in which F' is a five-fold covering map. The
flower, thus, provides an explicit, geometric representation of a nice function F

with the prescribed behaviour on the critical set.
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