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ON THE CUP PRODUCT ON SEIFERT MANIFOLDS

Claude Hayat-Legrand Heiner Zieschang

1. Introduction

For the computation of the cohomology ring of a manifold, there are several
classical approaches, for instance: a) using a chain approximation of the diag-
onal, b) translating the problem into the intersection theory of chains utilizing
the Poincaré duality, or ¢) applying the cohomological properties of fiber bun-
dles. The explicitly calculation for given manifolds may be quite cumbersome,
even if the cohomology groups are easily determined. In this paper we give a
survey on the cohomology rings of orientable Seifert manifolds with orientable
base space, refering to results in [3], [4], [1], and illustrate the first two methods
of calculation.

The first and main motivation of this work is a question of Peter Zvengrowski
and Jeff Williams. In relativity theory one is interested in the homotopy classifi-
cation of Lorentzian metrics over the space-time manifold M x R where M is an
orientable closed connected 3-manifold. Steenrod’s classical results show that
the set of homotopy classes of Lorentzian metrics is equivalent to [M, SO(3)],
which is isomorphic to the homotopy classes of pointed maps from M to RP?.
From the universal cover S* — RP? and the inclusion RP® — K(Zj,1) one

obtains a short exact sequence of groups:
(%) 0 — [M,S% — [M,RP?*] - H'(M,Z,) — 0.

Shastri, Williams and Zvengrowski [9] proved that [M, RP?] is an abelian group
and remarked that the calculation of [M, RP?] depends only on the homology
of M and on whether or not this exact sequence splits. Let H'(M;Z,) = Z7.


http://doi.org/10.21711/231766361997/rmc135

160 C. HAYAT-LEGRAND H. ZIESCHANG

Then [M,RP?] = Z @ Z7~" if the exact sequence (x) does not split, otherwise
[M,RP?] = Z & Z7'. Tn the first case we say that M has type 1: type(M) = 1,
in the second type(M) = 2. By a theorem of Shastri, Williams, Zvengrowski [9]
type(M) = 1 if and only if there is an o € H'(M;Z,) such that o Ua Ua # 0.
Hence, if the ring structure of H*(M;Z,) is known the set of homotopy classes
of Lorentzian metrics on M is determined. Collecting the results of [9], [11], [7]

and others, we get the following theorem:

Theorem 1.1. Let M be a closed orientable 3-manifold. The following four
assertions are equivalent:

(a) The exact sequence (x) does not split.

(b) There exists a degree-one map f: M — RP®.

(¢) There exists an embedded closed surface Fin M with odd FEuler charac-

leristic.
(d) There exists ¢ € H'(M;Z3) with (UCUC #0.
Shastri and Zvengrowski [9] have shown that for a connected sum M;§M,,

one has
type(M1My) = min(type(My), type(Ms));

hence, it suffices to determine the type of irreducible 3-manifolds. Translated
into terms of embedded surfaces this result is close to the result of Bredon and
Wood [2, th. 5.1] for non-orientable embedded closed surfaces.

All our considerations will be based on cellular homology and cohomology.
In section 2 we describe a classical cell decomposition of an orientable Seifert
manifold M with orientable basis. In section 3 we formulate the main results,
namely we give the cohomology groups and the cup products. Using this we
determine type(M). In section 4 we explicitly calculate the cup products using
Poincaré duality and the intersections of chains. We restrict ourselves to some
special Seifert manifolds to avoid too many case considerations. In section 5 we
write down a chain approximation to the diagonal and show how to calculate cup
products. Finally, in section 6, we consider cup products of cohomology classes

which ”vanish on parts of M” and apply this to determine the cohomology ring
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for Seifert manifolds with finite fundamental group.
With great pleasure we thank Kerstin Aaslepp, John Bryden, Derek Hacon,
and Peter Zvengrowski for common work. The results mentioned in this survey

are mostly from [1], [3], [4], new proofs are given in sections 4 and 6.

2. A cell complex of a Seifert manifold.
We use the following description of a Seifert manifold
M = SF(g;e;m: (a1,b1), ..., (am,bn)).

The manifold consists of m + 1 solid tori Vg, Vi,..., V.., and a central part
M’ = F] x 5" where F; = F,\ (D§U...D2) is the closure of the orientable

surface F}; of genus ¢ minus m + 1 disks, the boundaries of which are denoted

by pgs ...y ph. We call F, the base-surface. The images of the S'-factor are
called (normal) fibers. The fibers of the extension from the boundaries to the
solid tori Vj are also called fibers. The solid tori V}, for 1 < 7 < m, are regular
neighborhoods of the m exceptional fibers with characteristic numbers (a;, b;)
and V4 is a regular neighborhood of a normal fiber with characteristic numbers
(1,€). On each boundary torus we take a fiber i} intersecting p} exactly once.
In addition we take pairwise disjoint simple arcs o}, ..., a} in ¥, C M" where
o} goes from the j-th torus to the O-th one. Together we obtain the following

cell complex:

(Go) dim0: of,...,0% vertices in Fy;

(G11) diml: of,...,0. arcs in I;

(G12) Pos-- s PY boundary curves of F};

(GL3) 77(1)7 wimy 7771n ﬁbers;

(G4) vhwl .. l/gl,wgl closed curves in F;

(Ga1) dim2: of,...,02% from the annuli over (rjl-

(Ga2) P, . P2 from the boundary tori of F) x S*;
(Gay3) s ey 2 from the meridian disks in V};
(Ga,4) vy Wiy, vg,wi o from the annuli in F) x S%; 5
(Ga5) 82 from F;

(G31) dim3: o3,... 02 from the solid tori;

(Gs2) I from F; x S*.
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The boundary maps are given by

(Ri11) 50}- = ()’;-) -0y, 1<j<m
(Ry2) 8,0]1‘ =0, 0<y<my
(R1,3) =0, 0<j<my
(R1,4) 81/} = awjl‘ =0, 1<5<g;
(Ra1) 80? = 776 - 77;'7 1 <5 <m;
(R22) aP?:(L 0<7<m;
(R23) 98 =3 pl;
7=0

(R24) ou? = ajp} + b}, 0<j<m
(Ras5) 61/]2 — Bwf-, 0<j<g;
(Rs.1) 30? = P?a 0<j<m;
<R3,2) 853 = — E ,0;

7=0

3. The cohomology ring of a Seifert manifold.

In this section we will give the main result on the cohomology ring of a Seifert
manifold and determine the type. For the cochains we take the bases dual to
those for the chains and denote the corresponding elements by adding a hat,

for example, ij1 is defined by
(Bis k) = iy (Bjs o) = (Bjom;) = (B)vj) = (B}, wj) = 0.

Here and in the following d;; denotes the Kronecker symbol. The (co)homology

class of a (co)cycle a is denoted by [a].

Theorem 3.1. Let M = SF(g;e;m = (a1,by),...,(an, b)) be an orientable

Seifert fibered 3-manifold with orientable base-surface.

Case (A): Letay,...,a, =0mod 2, 1 <n <m, and ap41,...

,am = 1 mod 2.
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Then

Hi (M;Z,) =

Moreover, generators are

- [E
3=0

I

163

Z, §=0,3
B, =2
0, i>3

dimension 0;

aj = [pt+ 4], O 1= (03], 04 = [0],
2<;<n,1<k<g,

B =[] = [63], er =13,
2<;<n, 1<k<yg,

v = [53]:[&8]:...:

dimension 1;

dimension 2;

dimension 3.

Case (B): Assume that n = 0 and b; = 0 mod 2 for 1 <i <r, b; =1 mod 2

forr+1<i<m. Then

Z, for 1=0,3;
, Z2t for i=1,2
Hz (AM’ Zz) &~ 9 i
Z?  for i=1,2
0 for ©>3.
In this case generators are:
l= o
j=0
RS R T
7=0 j=r+1
0 =[wx], 1<k <y,
O :[AALOL = [“A'Jllc]a 1<k<yg,
E . [82]7 = Pk :[A]z]a i = ‘:)]2;]7
1<k<g
“Pk:_[Alz]a 5‘02 :[‘:}I% 3 1<k<gv
7= (%]

Let us now give the cup products.

if m—r+e=0mod 2,
if m—r+e=1mod?2;

in dimension 0;

in dimension 1 and

ifm—r+e=0mod 2,
ifm—r+e=1mod 2;

ifm—r+e=0mod 2 in dim 2,
ifm—r+e=1mod 2 in dim 2;

in dimension 3.
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Theorem 3.2. Let M = SF(g;e;m = (a1,by),...,(am,by)) be an orientable
Seifert manifold with orientable base-surface F, and let §;;, denote the Kronecker

delta.
Case (A): For 2 < j,k <n, the cup products in H*(M;Z;) are given by:

aq G,j
a;Uay = " B+ 0 5 B; and ;U By = Sy,
where 81 = By + ... + Bn. Furthermore, for 1 <Il,m <g,
0, Upm =01Up =y

Moreover, for 2 <i,5,k <n

ay L . . ay a;
o U Uay = g v, ifi £ jorj £k, U Ua; = 5 + 5 ~.

The remaining cup products in H*(M;Z,) are zero.

Case (B): Ifn =0, then
(1) when m —r 4 e =1 mod 2

0; Ul =0;Upr=1;
(2) when m —r+ e =0 mod 2
aUby =pp, aUb, =, 0;U0; =¢;
alf =7, 0;Ug;=0Up;=1.

The remaining cup products are zero.

Different proofs of this theorem or parts of it will be considered in the
following sections. From theorem 3.2 we directly obtain the calculation of the

type of Seifert manifolds.

Theorem 3.3. With the above notation, if n > 2, then type(M) = 1 exactly
when <a21) + ((;j) = 1 mod 2 for some i, 7, 1 < 1,5 <n. Ifn =1, then
type (M) = 2. Finally, if n =0, then type(M) =1 if and only if m —r + e =
0 mod 2 and e —2p + f: a;b; = 2 mod 4.

j=r+1
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4. Computing cup products using Poincaré duality and
intersections of chains.

Following a suggestion of Derek Hacon, we compute explicitly the cup products
using Poincaré duality and the intersection theory of chains. Merely to avoid
repetitions, we will restrict ourselves to the case of an orientable Seifert manifold
with base-surface S? where all a;, 1 < j < m, are even and hence all b; are odd.
We recall (see notations of the paragraph 2) that ap = 1 and by = e. We will
calculate Hy(M;Zs) and Hy(M;Z4) and realize bases of these Zy-vector spaces

by curves and surfaces in M. In the following we calculate mod 2

4.1. Basis of the homology groups. By (R 3) from section 2 we know that
77]‘. is a cycle for 0 < j < m, by (R34) we obtain (with the hypothesis on the a;)
that 7]]1- is a boundary for j # 0. By (Ry1) and (Ra4), 4 and p} are boundaries.
By (Ripz), p} is a cycle. Therefore it suffices to determine the solutions of

ﬁ: Zka —I—Zkao

w11h VdIld.b](—‘S k; € Z,. Hence k; = O, 1 <7 < m. From (R;3) we obtain

ij ij ~ 0; hence:

j=1

Proposition 4.1.1. H,(M;Z,) = Z7". A basis is {[p}],...,[p} ]}
To calculate Hy(M; Z4) observe that p? is a cycle representing the torus BVJ-S,
but at the same time also a boundary, namely that of the solid torus VJ»S. By

dropping the p? we get rid of all boundaries and we have only to decide which

expressions Z kjajz +dé* + Z Zj,uf- are cycles. But

j=1 j=0

(Zk o} +dé* + Zﬁj,u]) ij -7, —I—de +Y ~ €imi+lopy+loeng

J=1 ] J=0 J=1
implies

d=1{4y,=0, kafjforlgjgm,z:kaﬂl,

i=2
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It is enough to choose ky = k; =1 and kj = 0 for 2 <: < m and 7 # .

Proposition 4.1.2. Hy(M;Z;) = Z57". A basis is {[o?+o2+p2+p2], ... [0?+
o+ 13+ pm]}-

4.2. Dual bases. Since for j € {1,...,m}

(P}, > lkok + > nipp + Y mypi + £8%) =

k=2 k=1 k=1

(P 22 bkl —m) + Y muagpy + bemg) + €D pr) = mja; +£ = L mod 2
k=2

k=1 k=1

we obtain that p} + pi is a cocycle. From

<f3; + /A)}’Zflpb = EJ'

i=2
it follows that the cohomology classes ([p3 + pil,-.., [P, + Ai]) give the bases
dual to ([p3],.--,[p),]) under the duality

H,(M;Zy) — Hom(Hy(M;Zy),72) = H' (M;Zy).
In dimension 2 we have
(5,01 +of +pi +pi) =08 for2<ji<m
and
(62,07 + ol +pi+ i) =8 for2<i<m.

Hence ([43] = [63],...,[42]) = [64]) is the Hom-dual (in the sense of homology
classes) of ([0F + i + i3], ..., [0, + pi + pn])-

4.3. Intersection properties. The curves pl,... pl represent a free system
of generators of Hi(M;Z,). Next we construct surfaces Fy,...,F2 C M as
follows: multiplying 011- by S! gives the annulus 0’]2 such that 80]2 consists of two
curves on anS and 0V}, respectively. Let F]-2 be the union of 0]2, /J? and p?.
Now 8F]-2 = 0 mod 2. The surfaces F}, ..., F2 represent the basis of Hy(M;Z3)

from above.
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Direct consequences of the construction are the following equations on in-

tersection numbers:

pjopr=0, 2<jk<m,

p;Osz: ik ZSJ,ICSTH,
here the operator o denotes the intersection of the two arguments. Next we
want to determine the intersection 7o FZ. Of course, first one has to bring the
surfaces into general position (what postulates only some deformations in Vf’).
Since f)Vjsﬂ F]-2 is the fiber, F]-2 intersects a; times the meridian 8/1,? = ajp}—l—bjn]l-.
Hence, ,u?ﬁFj2 is like the star consisting of the a; segments joining 0 with €7/
0 <r < a; —1. Taking a; points near to the above a; ones, a point near 0

and joining them in a similar form by curves near the segments, we obtain

B
exactly ( ]) intersection points between the two stars. A consequence is that
2

-~
: ’ . . . AN
the intersection of two such copies consists of a curve which runs ( ) times

parallel to the core of V]-3 and, thus, is mod 2 parallel to p}. This argument can

also be done in V>, The result now is:

ay N (lj

4.4. Cup products. Let K be a cell complex associated to M and DK the
dual complex obtained from K after a barycentric subdivision. The cup product
is obtained by composition of the following homomorphisms:
HY(K)® H'(K)-5H,(K) ® Hi(K)-5Hy(DK) ® Hy(DK)-—>+H,(DK)-%»
Hy(K)5H?*(K)
where the maps Ly and -2 are given by the Hom-dual, the maps 24 and
S by the barycentric dual, the map 13 by the intersection of the surfaces.
To calculate [} + p1]U[p3 4 pil, 2 < J, k < m we take the Hom-duals p} and
pi of p} and pi, resp. By Poincaré duality (in a homological form via a dual

complex, for example) we take the duals FJZ, F? and look at their intersection

ay (l]'
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Again, by Poincaré duality (in the homological form) we have the 2-cycle
a a;
( 1) F]2+5jk< j) F? where F? = FZ + ...+ F2.
2 2 '
Going to the Hom-dual, we obtain
ay R a; . R R R
(2>u?+5ﬂc ( 2)#? where fif = i3 +... 4%,
Finally we recover a result of theorem 3.2, Case(A): for 2 < j, k < m,
AL | A ALy ary ., LGN a
o+ 1+t = () i+ () ) )

similarly:

[} + A1V 3] = [p}] o [FR] = .

5. A chain approximation to the diagonal for infinite fun-
damental group.

If an irreducible 3-manifold M has an infinite fundamental group then it is
an Eilenberg-MacLane space K (II,1); thus H*(M;A) = H*(II; A) and the
computation of the cup products in H*(M; A) can be transformed into a purely
algebraic calculation in group cohomology. Our method to effect this calculation
depends on finding a free R-resolution of Z where R = ZII is the integral group
ring of II and then determining an appropriate chain approximation to the
diagonal. One such resolution is the equivariant chain complex, that is, the
chains of the universal cover M. Since there most arguments are in M we drop

in this section the tilde for cells of M and underline cells from the base M.

5.1. Equivariant chain complex on the solid torus V = D? x S'. Let
p! = 09D* x {1} and Al = {1} x S" be, respectively, the standard meridian and
longitude of V' (on the boundary 9V of V). Let Bi, ﬁi be a pair of simple closed
curves on 0V which cut the torus into a disk with base point ¢° = Bi N ﬁi =
Hi N AL Then Ei ~ agi + bﬂi, A~ cgi + dﬂi on JV for suitable integers
a,b,c,d with ad — be = 1. Assume that ad — be = 1, then there exists a map
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@:D? — V such that | restricted to the interior of D? is an embedding of
the interior of the disk into the interior of V. Furthermore, p(0D?) C ﬁi U Qi
and p|@p2) ~ ap! + by on OV. This defines a 2-cell p*: = Im(p) C V and the
complement of y* in the interior of V' is an open 3-cell, denoted by o°.

Let V' be the universal cover of V. For every cell lk €V fix acell ¥* €
V' over '_yk. Let ¢ be the generator of m;(V) and define s = [pl] = ¢7%,
and h = [gl] = t*. Then V has a cell decomposition consisting of the cells
thaO, tkpl 1kt t*p? t*Fu? 1703 for k € Z, which are the coverings of the cells
of V. After puncturing dV we obtain a free group I' of rank 2 with free
generators s, h corresponding to the curves pl, nl. The class of the sim-
ple closed curve du? is represented by some word W, (s, h) of the free group
(s, k) which is uniquely determined up to conjugacy ([5], [6]). Thus do° = 0,
9p' = (s—1)0°, On' = (h—1)0°, 9p* = (1 —s)n' + (h—1)p', Op* = Fp' + G,
0o = p? + (1 — t)p®. Here F and G are polynomials in ¢,¢~'; of course, they
depend on the map used to attach p? to 9V. The coefficients F and G can
be found, for instance, using the fundamental formula of the Fox calculus [5]:
Wop(s,h)—1= %(s -1+ 82/}‘;‘?’(}7,— 1). This is a consequence of the geometric
interpretation of W, ;(s, h) as the class of the boundary of a disk (cf. [6, 2.3]);
this gives the solution F' = 4 41, G=1t""4 ...+ 17t For all possi-

ble attaching maps these have the smallest differences between the highest and
lowest powers of ¢ appearing in the coefficients of p! and n'; these differences
are a and |b], respectively for F' and G.

Below we will give an augmented ZII-equivariant chain complex for an ori-
entable Seifert manifold M with infinite fundamental group and orientable
base-surface. Notice that the augmented R = Zll-equivariant chain complex
C = (Cu«(M;Z),0) is isomorphic to (C.(M; ZII), d), however this isomorphism
is not natural and depends on the choice of generators. C is a free resolu-
tion and this suffices to find the additive structure of H*(M; A). However,
to determine the ring structure (i.e. the cup products), we make C ® C into
a R-chain complex by setting d(z ® y) = dz @ y + (=1)*@z ® Jy, and
(nu + mv)(z @ y) = n(uz @ uy) + m(ve @ vy) for m, n € Z, u, v € 11, z,
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y € C. Then we seek a diagonal approximation A : C — C ® C such that A is a
R-chain map and preserves augmentation. That such a diagonal map A exists
is a consequence of the acyclic model theory, but it must be found explicitly (it
is not unique). Of course, it suffices to know A on the (free) generators of the

complex C.

5.2. The equivariant chain complex for Seifert manifolds. The equiv-
ariant chain complex C for the universal cover M consists of free R—modules

C; in dimensions 0,1,2,3 with free generators

(Go) dim0: o3,...,0%;

(Gy) i) & O ymnn s O By s =3 Pl P 5e =5 Vg 180 Tl 5 = 3 Tl
(G2) dim?2: rf%,...,Ufn;pg,...,pzn;l/f,wf,...,V;,wj;ug,...,uzn;52;
(Gs) dim3: o3,...,02;8.

The definition of the boundary map @ of the chain complex C requires the
following conventions and definitions in the group ring R. First of all, in addition

to the list of generators given in (G1), (G) adopt the notation o} = 0,03 = 0.

Next let r; = sps1...5; for =1 < j < m and rp4j == s0... 55 H{c:l[vk,wk] for

1 < j < g Observe that r,+, = 1. Given relatively prime integers a; > 0,
. b

b; > 0, choose integers ¢; > 0, d; > 0 so that K d] =1andlet t; = s;]hdf.
¢ i

Then s; = tj_b] and h = t;]. When j = 0 set ap = 1, by = ¢, so that sg = h™°.

Now define the Laurent polynomials

; god 1

fig =l++...+47, 121, faji = Fj =+,
—b
- - _1l 1—t; 7
g; =51+t U2, 9.0 =Gi = <1

P =146 4 5
Q; =148 +... 4+,
In particular, Fy =1 and Gy = (1 — h=°)/(h — 1). Finally, define the chains:

L s w. 1 A g |
T, =T ((f]-—l—pj) Ti0;,

1 — : — v~ - - Y ol
Tmtj *= Tmti—1 (1 YjW;iY; )Vj + (Pmtj-10j = Tmaj) @5 5
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71';g = —Tj_1 (a —I—pj) +r 0']1,
7T72n+j = Pmii (vjwjvj_l - 1) I/j + Pty — Pmjo1 vj)w; .

The free resolution C is given by the exact sequence

(G 0—)6’3&02&01& '()L>Z—>0
and the differentials are defined by
Ry,) Ooj=0}—05, 1<j<m,
Ry 3,0} (3] )U;)y 0<7<m,
RI,S 877]1 (h )0-;)7 0 S] S m,
dvj = (v; = 1)ag, Owj = (w;—Nog, 1<j<yg,

AAA/_\A,_\/_\
—

w E

P s S S R i s

Ryy) 0ol =ng—nj+(h—1)oj, 1<j<m,
Ryp) 0pf=(1—sj)nj+(h—1)p;, 0<j<m,
Ry 3 81/12 = (1 ) (h 1)’/;3 aw; = (1 - wj)’lé
1<j5<y,
(R24) 08% = Z Jl + Zﬂ-mﬂ’
7=0
(Res) Opj =Fj- P]+G n 0<j<m,
(Bsp) 007 =pi+(1—tj)pi, 0<j<m,
g
(Rs2) 06°=(1—h)é?— 2752 — > Tyt
=0 j=1
Observe that my = pg, 75 = —p§, and dn} =
37rm+] =(r;—rj—) g+ —=h)n} m+], 0 < j <m+g. For the central result we

introduce the 1-chain 7']- = Pjpj + t]' Pici Qj’?;"

+ (h— 1w}

77

1

171

(ijrj—])a(())a 0 S.] S m+ga

5.3. Diagonal Approximation Theorem. A diagonal approzimation to the

equivariant chain complex ts defined on the generators of the chain complex C
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as follows:

A(O’;) 0? (? 0'?,1 ) . A(U}l) = 0; g@ 0;] 1+ 08 1® (r},o
A(PJI‘) = SJin ®OPJ' +Pj0® Uj17 A(ml) = hUlj ®770j +7; (%Ujv )
A(V];Z) = v 0® o 2+ vj0'01® uj], ) OA(wjl) = w1j ® ag + wjog ® w}
Mo = hien e Bn e Sotnes
Alp7) = pi®0a]+s;n; ®p; — hp; @ nj + hsjo} @ p]
A(Vj) = 1/]2 ®Q 08 e vjn(l) ® 1/]1 = hl/]1 ® T](l) + hvjag ® l/JZ
A(w?) = wjz» ® o) + wjné ® w} — hw} @nd+ hwjag ® w;‘v’
2y _ 2 =b; o a;=bj o )
Alpf) =uj®@t; 70 +1;7 70} ® p;
a;—1 k—1 aj—1a;—b;—1
— Z Z fkpj ®t T - Z Z tk’i’] ®t]p]
k=0 1=—b; 1=0 k=l—b,
-1 k-1 -1 a;+1-1
=2 Xtmetn > 3 griety
k:l—b] I=—b; I=1-b; k‘:u‘]—bJ
a;—1
7G]Ztr 1®f7‘] th_r7-1®gr]1
A(8*) =A+B
where
A =6® 8000+ Trm10g @ 62+ 1), @ T 4 95 ® po + T @ po
m—1j—1
7r]1®7r —Zﬂ' ®TJ 10 —I—ZTJO' ®1°J 1/)]
7=24=1 j=1
and
! R — 1 1 - 1 1
B =2 Mt ®P0+ D2 3 Mgk ® Ty + 3 Tmjm1¥ ® My

J=i j=1k=0 7=1

g
1 1
E: Pm+4j-1Y;T; ®7Tm+] Zrmﬂ'—l”ﬂ'j & Tmtj—1V;
3=1 j=1
9
1
E,\ Tm4j-1V;W;5U; ’/ @ Tt T;

. aj—b : —b aj—b
Alo?) = U]- ® aj- + t]-’ ]O'j ®a?— L @t Tt — ]T]-l ® tj,ujz-

J
—b
+tiul ® Gt} — pi @ Gj7j — 177 Pyt ® (p; + GiT})
=t (p} + Gi7}) @ Pipi?
A8 =A'+ B
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where

A" =8 Q5003 + rm_1hod ® 63 — hé% @ song — rm_1nh ® 62 — pE @ p
+hpy @ pa 4+ 72 @wh — hrl @ w2 4 w2 @ ph + hwl @ pd

m—17-1 m—1j—1
7T]2®7TZ]+ZZ}I7T ®7r —Zﬂ' ® rj_ 10
§=2 =1 J=2 i=1
—Zhﬂ' ®rj- 10 era ®r;— 1pJ—|—erhU ®rj_ lp]
#=1

and

g j-1
Z 7Tm+J ® pO + Z Z 7rm+k ® 7Tm+J Z Z hﬂ'rln+k ® 7Tr2n+j

j=1k=0 j=1k=0
9 g g
=D Tmtim1V] ® My = D Tmajmtht] @My = 3 rmyjrhvjw; @ w7
j=1 j=1 j=1
9

g
) i 1 ) 2 L 1
= D TV © i+ D Ty 100 @ T Vg
i=1 ji=1
g
_Zrmﬂ 1v]hw ® Tm4j— 11/ ZT"”“H 11)]101) 1/ ®rm+J
=il

g
SO PR o2 1 2
+ Z Pt j—1V;W07 hv; @ T jwy + Zhﬁm+j ® pg-

j=1 j=1

Sketch of the proof of theorem 3.2. By definition a; = [} + pi]. Tt follows
that for any z € Cy a; U ag = [(p} + p1) —= (pi + p1)], where:

(6L + 5D = ok + 1) (2) = x ((pL @ ph+ pL @ ph + 4} @ o + p1® = 1) (Az))

and X : Z/2® Z/2 — Z/2 is the multiplication map. Then for some &, &7, k!,
kY € Z/2,

(3 +51) < (ph+5Y) = w87 + o707 + Do wtpE + 30wt
i=0 ] ]
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It is clear that the coefficients

k7 =x((PLep+p@p+p @k +pl@p)) (Ac?)) and

k0 =x((PLop+p0p+5 @k +p @p) (Ap?)
are zero, since the expressions for Ac? and Ap?, given in the Diagonal Approx-
imation Theorem, do not involve any terms of the form p} @ pi, p} @ pi, pi @ pj,
or pi @ p;. Furthermore, since 6> ~ 0 € H? (M;Z/2), the coefficient x of §? is

immaterial.

Finally, consider £}’ = x (/3J1 ® /3;{ + /3; ® /A)i + /3% ® /311c + /3% ® f)%) (Au?). Ob-
serve that the only terms of Ay} which contribute to & are of the form p] ® p]
(for j = k = 1) and pj @ pj (for all j, k). To complete the calculation of
a; U ay, it suffices to count the number of terms of the form p} @ p} in Ap} for
1 <j=%Fk=1<n,modulo 2. Thus, when 1 <[ < n, the number of terms of
the form p} ® p} in Au} is

a;—1 i—1 a;—1 a;—b;—1 a;—1 by
XY@+ Y @b (rd) +a} (re)
1=0 j=-—b 7=0 1=j-b; r=1 r=1

= . i ’ ap b +1
:cz[Z(Hrbl)-l-Z(az—J)-l-bzcz(Q)-l—a,cl( ) )

i=0 =0

Since b = ¢; = 1 mod 2, and a; = 0 mod 2 it follows that

a; ) a a; b +1 a;
1o +aib +a;f — + b + a = mod 2.
2 2 2 2 2

6. Extension of the previous results when the fundamental
group is finite.

In this section we describe results of Kerstin Aaslepp [1]. Heuristically her
method is the following. Assume that there are two spaces X, Y such that the
intersection is 'nice‘ and that there are given two cohomology classes ® ¥ €

H*(X) and 9, U’ € H*(Y') which can be represented by cocycles which vanish
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on the complements of X NY in X and Y, respectively, and are the same on
X NY. Then one expects that the cup product ® U ¥ can be calculated if
&’ U ¥’ is known. Following this line K. Aaslepp proves some results on the
cup product for cellular cohomology on the level of cocycles. For the extension
of the results on the cohomology of Seifert manifolds with infinite fundamental
group to those with finite fundamental group we formulate and prove her main
tool using only cohomology classes and groups. We thank T. Birk, M. Drawe,
C. Sczesny and S. Skaberna who find a mistake in the proof of the theorem 6.2
in our first version and adapt the lemma 6.1 below.

For simplicity we consider cellular cohomology. Let A, A’, B be cell com-
plexes such that AN B = A’ N B is a subcomplex of each of them. Then
M = BUA and M' = B U A’ are also cell complexes; let i: B — M,
JM = (M,A) "B — M' and j:M' — (M',A’) be the inclusions. We
say that a cellular cochain ¢ € CP(M) vanishes on A if p(e?) = 0 for every
p-cell e of A; if a cohomology class ® € HP(M) contains a representative ¢
vanishing on A then we also say that ® vanishes on A. Clearly, if a cocycle of
M vanishes on A it also is a cocycle of (M, A); hence, to every & € HP(M)
vanishing on A there is a uniquely determined element of H?(AM, A) which is

mapped by 7 to ®. We also denote it by .

Lemma 6.1. Let A, A’, B, M, M’ be as above. Assume that

(1) either exd(Ker j™) = exce(Ker j*) and j™ is surjective or j'™ injective,
and

(2) ™ HY(M') — Im ¢ is surjective. Let ® € HY(M), UV € HI(M) be
cohomology classes such that ® vanishes on A. Following the maps described
in the commutative diagram below, we get two elements ® € HP(M'), W' €
HY(M'). Then ® U W € HPT(M) is equal to the image of ® U W' € HPTI(M')

obtained by the maps described in the commutative diagram below.
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H? (M) x HI(M') — HPH(M') (@®,v) — oUW
] I= o i 0
HP(M', A" x HY(M') —  HPTI(M' A (@,v) — oUW
exc’lg wl@) exc’JVE i ik
H?(B,BNA) x HYB) — H!MY(B,BNA) (®B,VY|B) — ®BUY|B
I l I l l
H?(B,BNA) x HIB) — HP(B,BNA) (®|B,¥|B) — ®BUYIB

o] o] s " 4

H?(M,A) x HIY(M) —  HPYI(M,A) (®,¥) — UV
| [ | ) v
H?(M) x HI(M) — HP+I(M) (®,¥) — oUWV

here exc and exc’ are the excision isomorphisms.

We will apply this lemma to the case of Seifert manifolds with finite funda-
mental group. The genus of such a space vanishes and the number of exceptional
fibers is smaller than 4. For to have a non-trivial first Z;-cohomology there must
be two exceptional fibers with even order. (These properties are well know, see
[8, 6.2], or can be verified by an easy computation.) We will now show that
the result about the cup product quoted in theorem 3.2 is also valid for Seifert
manifolds with finite fundamental group.

If there are two exceptional fibers the fundamental group is cyclic and the
manifold is a lens space L(p,q) with Hy(L(p, q)) = Z,, Hy(L(p,q)) = 0. If none
of the orders of the exceptional fibers is divisible by 2 then ged(2, p) = 1. Thus,
by the universal coefficient theorems, H'(L(p,q),Zy) = H*(L(p,q),= Z3) = 0
and there are only trivial cup products. If there are three exceptional fibers and
the fundamental group is finite then at least one of them has order 2 because
otherwise, factoring by the element representing the normal fiber, we obtain a
crystallographic group with compact fundamental domain of the euclidean or

hyperbolic plane which, thus, has infinite order.

Theorem 6.2. Let M be an orientable Seifert manifold M with finite funda-
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mental group and H'(M,Z3) # 0 for j =1 or j = 2. Then M has 2 or 3
exceptional fibers where at least two of them have even order. Assume that the

exceplional fibers are of type (a1,b1),. .., (am,by) such that
a; =0mod 2for1 <j<n, a;=1mod2forn<j<m;

here 2 < n < m < 3. For2 < j,k < n, the cup products in H*(M;Z,) are

given by:
ay a;
a; Uap = . /31 — (Sjk 9 /3j and Qa; U /6k = 0jk7,

where 31 = Ba+ ...+ Bn. Moreover, if 2 < i < n as well, then
ay g : : ap a;
o U Uy = ) v, ifi £ jorj £k, aUa; Ua; = g + j v.

Proof. In M we take a regular closed neighborhood of a normal fiber A; let B
be the closure of the complement, now M = AUB, ANB = A = 0B = §'x 51,
where [3'] is the generator of H'(0B) from the base-surface. Let A’ be a Seifert
fiber space with A’N B = A’ = 0B and assume that on 0B the fibrations of
B and of A’ coincide. Moreover we assume that the fibration of A" admits 4 —r
exceptional fibers of type (a,41,br41),...,(a4,bs) where a,41,...,a4 > 3 are
odd, while b.41,...,b, are even, ged(a;,b;) = 1. Now M’ = AU B is a Seifert
manifold with four exceptional fibers and genus 0; hence, H*(M’) is given in
theorem 3.2. To elements of H*(M') we add a ' (like o).

For the computation of none-trivial cup-products it is sufficient to consider
p,qg =1 or 2 and p+ ¢ = 2 respectively 3. The generators as,...,a, and
B2, ..., By vanish on A since the representatives given in theorem 3.1 do so (i.e.
for k: A — M we have k*(H?(M)) = 0 for p = 1 or 2; hence j*: H*(M,A) —
HP(M) is surjective.) Moreover HPY7(A’) = 0 for p+q = 2 or 3 and H*(A) = 0.
Hence, j™: HPY1(M', A’) — HPYI(M') is surjective, and Ker j™ = Ker j* =0
for p+qg =3. For p+q =2 Ker j™ is generated by 3] = [/l;-z](MM:),

Ker j* respectively. Now we have exd(8]) = [fi]s,pnay = [i3]B,80a) =
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exc((}1). Moreover H*(M', B) & H3(M') = Z;, implies i"*: H*(M') — H*(B) is
surjective. H'(M') is generated by o4, ..., o, H'(M) respectively. H'(B) is
generated by [p} +pi]s,j = 2,...,n and [8' + j}]p. Hence, i": H'(M') — Im i*
is surjective as [8' + pl|p & Im i~

In the diagram of Lemma 6.1 we obtain that the elements of bases of H?(M)
are mapped to the elements of the base of H?(M’) having the same letter, for

example:

(4 o (exc’) "t oexco (7)) (ar), ((#7)7" 0i*) (ar))
((5™ o (exc) ™ o exco ()7 )([Pk+91]) (™)~ oi*) (22 + pil))
= ([ + Al [ + pil)

(
and

-1 1

[77oexctoexc o ()7 (B) = [*oexc™! oexc o (7)1 ([43])

= [i3lm = By;

hence, a; U ap = ( , ) Br+ O < ) B

Using similar arguments we obtain the required formulae for the other cup

products in H*(M) from those of H*(M’).

Remark. Based on results like 6.2 Kerstin Aaslepp [1] also determines the cup
product for the Seifert manifolds with a base of positive genus and exceptional
fibers amalgamating the cohomology rings of locally trivial S'-bundles over
surfaces and Seifert manifolds with a base of genus 0 and she obtains the same

results as Bryden-Zvengrowski [4].
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