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Abstract

This series of lectures reviews the remarkable feature of quantum
topology: There are unexpected direct relations among algebraic struc-
tures and the combinatorics of knots and manifolds. The 65 symbols,
Hopf algebras, triangulations of 3-manifolds, Temperley-Lieb algebra,
and braid groups are reviewed in the first three lectures. In the second
lecture, we discuss parentheses structures and 2-categories of surfaces in
3-space in relation to the Temperley-Lieb algebras. In the fourth lecture,
we give diagrammatics of 4 dimensional triangulations and their rela-
tions to the associahedron, a higher associativity condition. We prove
that the 4-dimensional Pachner moves can be decomposed in terms of
singular moves, and lower dimensional relations. In our last lecture, we
give a combinatorial description of knotted surfaces in 4-space and their
isotopies.

1. Introduction

This paper is the written version of the mini-course given by the first named
author at topx, Sao Carlos, 1996. In this series of talks, we discussed (1) how
certain algebraic relationships can be depicted and computed via diagrams,
(2) how diagrams lead to algebraic structures, (3) how singular diagrams yield
algebraic relationships, and (4) how diagrams can be used to anticipate certain

algbraic structures.
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Our first talk concentrated on the theory of representations of U(sl(2)).
The material presented here is a summary of that found in [12]. For a more
diagrammatical approach one should consult [31]. All of the material that is
presented in this talk carries over into the quantum case, and to see that analogy
one should consult [12]. Our second talk was concerned with the Temperley-
Lieb algebra and the diagrammatic depiction of the relations in the algebra. We
applied this analysis to analyse surfaces that are embedded in 3-dimensional
space. We showed how embedded surfaces lead to a notion of a 2-category,
and we describe the relations in that 2-category. Our third talk discussed the
Pachner Theorem in dimension 2 and 3, and how this theorem can be used
to relate algebraic structures to manifold invariants. In the fourth lecture, we
interpreted the 4-dimensional Pachner Theorem via a variety of geometric and
diagrammatic tricks. In the fifth lecture, we presented some new results on

knotted surfaces and the theory of knotted surface isotopies that appear in [13].

2. Representations of U(sl(2,C)) and Their Diagrams

In this section we review the representations of U(sl(2,C)) = U and their dia-
grammatics to start our discussion of deep relations between algebraic structures

and diagrammatics. See [12] for more details.

2.1. The fundamental representation and its tensor powers.

Suppose that j € {0,1/2,1,3/2,...}. Let V? denote the (25 +1)-dimensional
vector space over C of linear homogeneous polynomials of degree 27 4+ 1 in
commuting variables « and y. Thus elements of V¥ are linear combinations of
2"y® where r + s = 2§ + 1. In particular V'/2 is the 2-dimensional vector space
over C of linear polynomials in commuting variables = and y.

Let U = U(sl(2,C)) denote the algebra generated by E, F', and H subject
to the relations EF — FE =2H, HE — EH = E, HF — FH = —F. (This
is called the universal enveloping algebra of si(2,C), the Lie algebra of 2 x 2

. . 0 1
maftrices over complex numbers with trace zero. Note that F = < ) ,

00
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F:(OO),andH:(l/2 0

10 0 =i/

they satisfy the above relations.)

) are the generators of s/(2,C) and

This algebra acts on V¥ as differential operators:

a
E—l’a—y,

d
F:y%7

and
1 7] 7]
H=-l|lo——y=—
2 (x(?:v y8y>
as one can check by computations.

In fact it is known that V7, j € {0,1/2,1,3/2,...}, with these actions form

the set of irreducible U-modules (called irreducible representations).

2.1.1. The projectors. Let us consider the tensor product V1/2 @ V1/2 and
the permutation map X : ViRV 4, vty Vl/z, X(a®b)=(b®a). We
define +, by the formula

+, = %(X +1®1)

/2. The map + is an idempotent,

where | denotes the identity mapping on V
and it commutes with the action of /. (When a map commutes with the
action of U, it is said that the map is U-invariant.) The image consists of the
symmetric expressions spanned by z @ z, y @ y, and (z ® y + y ® x). This is
a 3-dimensional vector space isomomorphic (as a U-module) to V. Roughly
speaking, we took the averages of tensor products by permuting variables to
identify tensor products with monomials.

More generally, let us consider the n fold tensor product of V1/2,

wr=v"g ... g V2,

n tensor factors

Let X}, be the map defined by X; = |;—1 ® X ® |n—r—1 thus X} acts as the
identity on the first & — 1 and the last n — k — 1 tensor factors of W, and X
permutes the &k and the (k + 1)st tensor factors.
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A permutation o € ¥, acts on W” as follows. Represent ¢ € ¥, as a
sequence of transpositions of adjacent letters; that is, o is a product of per-
muations of the form o} = (k, k + 1); say 0;,0j, - 0j,,. Then o maps to the
operator X (o) = Xj, 0 Xj, o-+-0 X, . The action of the permutation group
commutes with the action of U and is said to be invariant under the U action.
Moreover, the permutation action is expressed as a planar diagram as indicated

in the following figure:

where the diagram represents the permutation o05.

We generalize the idempotent +, to act on W™ as follows:

$.- LX)

Tl
% sevy,

The image of +, consists of the symmetric expresssions in x and y and can
be identified with V7 via the map w1 @ - Q@ay) =1+ -+ - xp,, where each
xy is either x or y.

Each term X(o) can be represented as a planar diagram of intersecting
strings; the generic double points of those strings correspond to the transposi-

tions of adjacent tensor factors.

2.2. Clebsch-Gordan theory. The tensor product of two irreducible rep-
resentations can be decomposed as a direct sum of irreducible representations.
Suppose that a,b € {0,1/2,1,3/2,...}. The triple of half integers (a,b, ) is
said to be admissible if j € {a + b,a+b—1,...,la — b+ 1,]a — b|}. Thisis a
symmetric condition in a,b, and j.

Given an admissible triple (a,b, j) we define an U invariant map

ab

\( . (V1/2)®2j N (V1/2)®2a ® (V1/2)®2b
J
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as follows:

ab a+b—j
Y = (R ®F2) 0 (laj-t® U Blbpjma) 0F;

&

where the map

0: € — (v*/2))m
is defined inductively as the composition

7

n—1
U:C 2 vitg. . @vi2s
— e ——
Z(n—l)

ViIlg.. @V 2eCeV?g...@ V/?
——— —_— —————
(n—1) (n—1)

1®£>®1 (‘/1/2)®2n’

L1J= U:C = V2gVY2U(1) =i(z®@y—y®z) ), and |, represents the identity

mapping on n-tensor factors of V.

The submodule in (V1/2)®% spanned by the symmetric expressions in z and
y is isomorphic to V9. The image of this submodule under the map \i/ can
be identified with the tensor product of V¢ and V?°. For the Clebsch-Gordan

coefficients defined by these maps and particular basis elements, see [12].

2.3 The 6j-symbols. The space of U invariant maps V¥ — V@ V* @ V¢ can

be constructed as follows. First, we have the composition

=(| ® \/:C)o \(:j:

(V1/2)®2k i (V1/2)®2a ® (V1/2)®2b ® (V1/2)®2c

25
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for various values of j. Second, we have the composition

for various values of n.

Restrict the values of j and n so that the triples (b, ¢, j), (a, 7, k), (a,b,n), and
(n,c, k) are admissible. Alternatively, if one of these triples is not admissible,
then declare the corresponding map \( to be the zero map.

The content of Lemma 2.6.1 of [12] is that, the sets

and , as the indices 7 and n
range in such a way that (b, ¢, j), (a, j, k), (a,b,n), and (n, ¢, k) form admissible
triples, can be used to form bases for the vector space of U invariant linear maps
VE 5 Ve Vi@ Ve, by composing these maps on the right with the inclusion
of V* into the tensor product and on the left with the tensor product of the

multiplication maps.

The 65 symbol{ ff

b n |. . .
i ;L } is the change of basis matrix between these two
a b n

ko

(a,b,n), (n,c, k) is not admissible.

bases. By convention, } = 0 if any of the triples (b, ¢, 7), (a,J, k),

The 67-symbol satisfies many beautiful identities that have a variety of geo-
metric interpretations (see [4] for example.) Here we list the 2 most important
identities for topological applications.

2.3.1. Theorem (Orthogonality). Suppose that (a,b,n), (¢c,k,n), (a,b,m)

and (¢, k,m) are admissible triples. Then then 6j-symbols satisfy the following
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b ¢ g a b m | _
Z{k a n}{c k j}_(sm’n'

J

relation:

2.3.2. Theorem (Biedenharn-Elliott Identity). If(g,e,h) is an admissi-
ble triple, then the following relation holds among the 6j-symbols.

VR R
SRR

The proof of orthogonality can be carried out purely in terms of diagrams

as in [12]. We will need to discuss the Biedenharn-Elliott identity in detail, and

we reproduce the figure (2) from [12] that is used to prove this.

We include the figures from [12] that allow us to interpret orthogonality and

the Biedenharn-Elliott identity in terms of the dual spines to triangulations.
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Let us explain. In the definition of the 6j-symbol, we used tree diagrams to
represent maps involved. One of the trees is obtained from the other by moving
the middle edge through a vertex. Consider this happening continuously; then
such a continuous move of the middle edge sweeps out a 2-dimensional complex
shown in Figure 1. This figure also shows that it is dual to a tetrahedron. Thus
the 6j-symbol is assigned to a tetrahedron. Figs. 2 and 3 shows the complexes
corrsponding to the orthogonality and the Elliott-Biedenharn identity. The
algebraic relations that are satisfied, then, correspond to moves on the dual
spine of a triangulation. By passing to the quantum analogue of U at a root
of unity invariants of 3-manifolds can be constructed because the moves the
correspond to Biedenharn-Elliott and Orthogonality and one other move (that
corresponds to an identity among quantum integers) suffice to construct a set
of moves to triangulations.

To continue our discussion, we include the binor identity [43].

Define maps

n:v»72ev/? 5 C,

and

Uu:C—oviiigv'/?

by
ul) =iz @y) —i(y @ z),
Nz®z)=NYyQy) =0,
NzRy)=i=-N(y=z).

It is a straight forward computation to show that

where | denotes the identity map on V1/2,



DIAGRAMMATICS, SINGULARITIES, AND THEIR ALGEBRAIC 29



30

J.S. CARTER L. H. KAUFFMAN M. SAITO



DIAGRAMMATICS, SINGULARITIES, AND THEIR ALGEBRAIC 31



32 J.S. CARTER L. H. KAUFFMAN M. SAITO

The diagrammatic representation of this binor identity appears as follows:

Let us make some observations at this point.

First, the binor identity is an algebraic equation that relates a crossing to two
ways of smoothing it. That the equation holds algebraically is a consequence
of some very cleverly defined symbols. Its quantum analogue is the Kauffman
bracket that can be used to give a diagrammatic or skein theoretic definition
of the Jones polynomial. The efficacy of the binor identity and the bracket
are deep mysteries. Why should such elementary formulas have such profound
consequences?

The 67-symbol is associated to a singular diagram in the context of 3-valent
trees. The identities that it satisfies are also associated to some singular pic-
tures, and one can make the same observations about the Clebsch-Gordan maps

\’/ . The mystery that we want to penetrate is, “When are algebraic symbols
associated to singularities, and when are the identities among these symbols

associated to higher order singularities?”

2.4. How to Quantize. While we have sketched in these notes the use of the
recoupling theory for U(s/(2)) and have indicated its extension to the quantum
group U,(sl(2)), it is actually possible to proceed to just ¢g-deform the network
structure associated with U(sl(2)) in a way that incorporates the knot theory.
This method is very pleasing to the knot theorist and should (we believe) be
of interest to the algebraist as well. This “q-deformed spin network” viewpoint
is explained in [30] and worked out in detail in [31]. In the latter reference
the theory is detailed with regard to its behaviour at roots of unity (for ¢)
and applied to construct the Turaev-Viro and the Witten-Reshetikhin-Turaev

invariants of three-manifolds for U(sl(2)) A complement to these references is
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[12] where the recoupling theory is done for U,(sl(2)) in the algebraic context.

It is very worthwhile to use all these references to get a global view.

At this writing, U(sl(2)) is the only group that has a fully combinatorial
treatment for its recoupling theory. This combinatorial treatment can be ex-
pressed in many ways. The one we use originated in the theory of spin networks
of Roger Penrose [43]. Penrose devised his theory to give a specific model for a
speculation that space-time could be the observed result of a background quan-
tum process that was of a simple combinatorial nature. The Penrose spin nets
did not construct space-time, but they did implicate certain geometrical prop-
erties of Euclidean space in the limit of large networks (with certain stability
properties). This is an encouraging result. In these notes, we are continuing
to work with the Penrose program in that we are looking at the relationship
of generalized spin nets with both three and four manifold topology. We hope
that the four manifold topology will eventually interface with issues of space,

time, and quantum gravity.

2.4.1. g-spin nets. Here is a quick sketch of the construction of the g-deformed
spin nets. First of all we take A = ¢'/2 where A is the A of the bracket
polynomial. This is just a convention to make our ¢ match the usual ¢s used

by everyone else. Then we replace the binor identity by the bracket identity:

which will be discussed further in section 3 Note that the bracket identity
reduces to a binor identity when the value of A is 1 or —1. Of course, for all
other values of A the bracket identity is actually a definition of the action of
a knot-theoretic crossing. This means that we are lifting the ostensibly flat
theory of spin nets into a putative 3-space for the sake of knot theory. There
are two ways to look at this move. One way is to simply say that we are taking
over properties of spin nets for the sake of doing the topology of knots and links

in ordinary three-space. If we say this, then we abandon the Penrose idea of
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the construction of space from the nets at the outset. However, we can also
say that the extension to crossings is done in the spirit of the abstract category
of knot and link diagrams. These diagrams are 4-regular plane graphs with
extra structure at the vertices, and the plane is used to give these graphs a
“coherent” cyclic ordering at each 4-valent vertex. In this sense the nets we
are about to build are indeed an abstract structure and a purely combinatorial
structure that encodes certain aspects of the topology of three-space but does
not (strictly, logically) assume the prior existence of three dimensional space
or three dimensional manifolds. How much of three dimensional topology and
geometry can emerge from the nets?

In any case, the construction works as follows. We define the ¢-symmetrizer

by the formula

ooy

where

¢ is the braid diagram obtained from the permutation diagram by lifting each
crossings to a positive braid generator, and 7T'(¢) is the minimal number of
transpositions of the form (k, k + 1) that it takes to write the permutation o.
This formula replaces the factorial by a g-deformed factorial, the sign by an
algebra element raised to the least number of transpositions needed to return a
given permutation to the identity, and it replaces the permutation by a (posi-
tive) braid that projects to the given permutation. Thus the g-symmetrizer is
a sum over braids. Each braid can be expanded by the bracket identity into a
sum of elements in the Temperley-Lieb algebra (defined below 3), and in this
way the g-symmetrizer lives in the Temperley-Lieb algebra. It is easy to verify
that if 'I',f denotes the g-symmetrizer on n strands, then 'I'f has square equal
to itself and that '|'f11U = 0 for U any non-identity generator of the Temperley
Lieb algebra. This projector also satisfies a useful recursion formula of Hans

Wenzel. We refer to the references cited above for this formula.
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With the help of the ¢g-symmetrizer, we define a 3-vertex by the intercon-

nection formula shown below:

The collection of @ + b — j arcs that have a local minimum are g-deformed
versions of the map LnJ, which we will define in detail in the next section. We are
then prepared with a purely combinatorial definition of the networks. Recou-
pling theory works in this context, and the higher order knot and link invariants
obtained by taking g-symmetrized parallel strands can be worked out using this
recoupling theory. The results are specific g-deformed spin network formulas
for the Turaev and Witten-Reshetikhin-Turaev invariants of 3-manifolds. From
the point of view of spin net philosophy this is quite significant. We have suc-
ceeded in showing that certain small nets (those coming from knots and links)
capture subtle properties of specific three manifolds (those obtained by surgery
on those links). A similar method produces the Crane-Yetter invariant of 4-
manifolds [16]. The Crane-Yetter invariant of 4-manifolds obtains the signature
of the 4-manifold in terms of a partition function that is constucted from g¢-
deformed spin nets on the triangulation of the 4-manifold. One hopes for even

deeper relations of spin networks with the topology of 4-manifolds.



36 J.S. CARTER L. H. KAUFFMAN M. SAITO

3. The Temperley-Lieb Algebra and Associated Struc-
tures

3.1. Definition of Temperley-Lieb algebra. The Temperley-Lieb algebra
TL,(d) is an algebra over C multiplicatively generated by elements 1, hy, hy, .. .,

hn_1 that are subject to the realtions
2
h; = éhj,

hihj—1h; = hj,

forj=1,---,n—1,

hjhji1h; = h;,

fory=1,---,n—2,and
hjhk = hkhj

if [i — j| > 1, where § is a parameter that we set equal to —A% — A2 and A
is a complex number which we discuss later. In Section 3.5, we will show that
the dimension of T'L,(d) as a vector space over C is (2:)/(72 + 1) by giving a
correspondence between the products of generators and legitimate parentheses
structures.

As a preliminary step to this, we point out that there is a correspondence
between the basis elements in the algebra and certain diagrams. In particular
1 corresponds to the diagram of n vertical strings, and h; corresponds to the
diagram

1AL

j-1 n—j—1
for 1 < 7 < n — 1. The composition h;hy is represented by juxatposing the
diagram representing h; above the diagram representing hy. Then it is easy and
fun to observe that the relations in the algebra are represented by topologically
equivalent diagrams. The parameter value § is the value that is assigned to a

closed loop.
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3.2. Temperley-Lieb algebras and braid groups. As before, let 1/
denote the vector space of linear polynomials in variables x and y. We can let
the diagrams representing the basis elements of the algebra act on the n-fold
tensor power of V'/2, but now we assign the matrix values —(;A Zgl to U
and N where i2 = —1. Combining results of [12] and [25] one finds that the
representation of the Temperley-Lieb algebra as an algebra of automorphisms
on (VI/Q)®" is faithful for all values of A. (When A = £1 we are discussing
representations of U as in the preceding section.)

The bracket identity

o;— Ah; + A7Y @ |

provides a representation of the n-string braid group into the Temperley-Lieb
algebra from which the Jones polynomial can be constructed. Here the n-string
braid group is generated by o;, (j = 1,---,n—1) and is subject to the relations
004105 = 0410041, (j = 1,---,n — 1), and o0, = opo; if [j — k| > 1.
The braid group elements are represented by arcs monotonically going down
between parallel horizontal planes. See [30] for more details.

Analogues of the projections +, that were constructed in the preceding
section can be used to construct Clebsch-Gordan maps and 65-coefficients that
satisfy the Biedenharn-Elliot Identity and Orthogonality. When the parameter

A is set to be a 4rth root of unity, these can be used to define invariants of

3-manifolds — we will sketch the definition in Section 4.

3.3. An associated 2-category. The definition of a monoidal 2-category
occupies 3 pages in [33]; so we will not reproduce it here. Instead we will give
an example (based on the diagrams that represent the basis elements of the
Temperley-Lieb Algebra) of a monoidal 2-category and we will describe the
relations in that 2-category. The uninitiated have little to fear, not only are
2-categories rather natural classes to study, the 2-category that we present here
is a familiar one.

So let us summarize what is meant by a (small) 2-category. This consists of

three sets: Objects, (1-)morphisms from objects to objects, and 2-morphisms
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from 1-morphisms to I-morphisms. Explicitly, given any two objects A, B, there
is a set of 1-morphisms hom(A, B) between them; the object A is called the
source object, B is the target. Given any two l-morphisms fo, fi € hom(A, B)
there is a set of 2-morphism between them; fy is the source arrow, and f; is the
target arrow. The object A is the source object and the object B is the target
object.

The objects in the category are schematized as points, the morphism as
arrows, and the 2-morphism as cells whose boundaries are the arrows. There
are two ways to compose 2-morphisms: If the the source arrow (resp. object) of
a 2-morphism coincides with the target arrow (resp. object) of another, then the
2-morphisms can be composed by joining target to source. Both compositions
should be strictly associative, and the pair of compositions satisfies a relation

that ensures that the diagram:

is unambiguous. (The relation is called the 4-square relation.)

In our setting the objects correspond to non-negative integers. The 1-
morphisms are symbols Mj; (resp. Uj;) from the object (corresponding to)
(J+E+2) to(j+k) (resp. from (j + k) to (j + k + 2)). Diagrammatic in-
terpretations of these morphisms are as follows. The symbol N;; (resp. Ujx)
represent the tangle diagram from (j + k + 2) points to (j + k) points (resp.
from (j + k) points to (j + k 4 2) points) consisting of a single maximal point
(resp. minimal point) with j arcs to the left of the critical point and k arcs to
the right of the critical point. These left and right arcs have no critical points.
Any 1-morphism from m to n can be written as a composition of these basic
I-morphisms. (If m 4+ n is an odd number, then hom(m,n) is the empty set.)

Thus any 1-morphism can be identified with a word in the letters U; , N; 4.
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Here is a list of the generating 2-morphisms in the present 2-category. Im-

mediately below a geometric interpretation is given!

B:((+k) " (j+k)

—

u

((G+k) Z(G+E+2)

Nyk

= +8)
D:((5+k) 2% Grr+2) Y G+k)
=

(G +k) 2 (G +k))

HB: ((j+k+2) "5 (j + k+2))
—

Nk Uk

((G+k4+2) Z(G+E) B (G+E+2)

u

HD: ((j+k+2) 2 G+k) 2 (G+k+2)
—

[l 2) P8P (o 0

o

Ujt1,k Ny k41

A (G+HE+1) B G+E+3) B G+E+1)
==

(454 1) 5 1 B 1))
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6.
A=) (G +k+1) 75 G4k +3) "8 (4 k4 1))
=
((G+k+1) "5 (G +E+1)
7.
V() ((G+k+1) 8" (G +k+1))
=
(G+h+1) "8 G +Ek+3) "5 (+k+1))
8.
V(=) ((G+E+1) "5 G+ k+1)
=
((G+E+1) 5 G+E+3)"3* (+k+1))
9.
X)) : (GHE+E+4) ™ G k+e+2) "5 G+ k+0)
=
(G+E+L+4) "2 Grk+e0+2) "5 G+k+10)
10.
X(O)(=) : (G+k+E+4) "2 G4k+e+2) "8 G+k+10)
=
(G+h+0+4) " G k+04+2) "5 G+k+0)
1.

X)) : (G+E+0 " G+h+L+2) ™ (G+k+2+4)
=

u U

((G+k+0) X G+E+L+2) 7Y (j+k++4))
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12.
X)) (G+E+0) " G+E++2) 7% G+ k+£44))
=
(G+E+0) B Grhk+2+42) "2 G +k+1+4))
13.
X))t (GAE+L+2) 7E* Grk+044) 75 (G4 k+£+4))
=
(G+E+0+2) "B G+k+0 "5 G+k+£+2)
14.
X(NU)=): (G+hk+E+2) "5 G+k+0) "5 G+k+L0+2)
=
(GAHE+L+2) > G+hk+L+4) "5 G+k+L+4))
15.

XUN)(4)  (G+Ek+0+2) 752 Gk +0+4) " G+k+0+2)

=

Njtek u

((G+Ek+242) 2 G+k+8) B (+k+£+2)
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16.

XUN)(=): (G+Ek+0+2) ™8 G+k+0) "5 G+k+0+2)
—
(GHk+0+2) 752 Gk 044) " G4k +042)
Examine the figures depicted in Fig. 4. These represent maximal/minimal
points of surfaces, saddle points of surfaces, cusps, and the exchanges in the
heights of critical points. These critical phenomena represent the 2-morphisms
in the 2-category that were listed above. The 2-morphisms denoted by V repre-
sent the birth of a pair of max/min points via a cusp. The source 1-morphism
appears at the bottom of a diagram and the target 1-morphism apears at the
top. The 2-morphisms represented by A represent the death of such a pair.
The 2-morphisms HB and HD are saddle points. The 2-morphisms B and
D are the birth and death of a simple closed curve respectively. The various
2-morphisms denoted by X are the interchange of the heights of critical points

in the planar diagrams.
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A planar diagram of simple closed curves corresponds to a sequence of 1-
morphisms in our 2-category. The source and target of this sequence is the

object 0. For example, a circle is represented by the arrows
028228 ¢
If we write that composition in g(f(z)) notation, it will read

No,o(Uo,0(0)))-

And that composition is what we see when we read the diagram from top to
bottom.

The 2-category constructed represents surfaces embedded in 3-space as fol-
lows. Given a surface embedded in 3-dimensional space, project it to a plane
and choose a height function (called the vertical axis) in that plane. Then the
projection of the surface in the plane generically has cusp and fold singularities.
The critical points of the fold set with respect to the height function are the
birth (B), death (D), saddle (HB and HD), and cusp (V and A) singularities.
The crossing points of the fold set correspond to the 2-morphisms denoted by
X.



DIAGRAMMATICS, SINGULARITIES, AND THEIR ALGEBRAIC 45



46 J.S. CARTER L. H. KAUFFMAN M. SAITO

The preimage of any non-critical value on the vertical axis in 3-space is a
collection of embedded closed curves in space. By choosing a direction on the
horizontal axis (perpendicular to the vertical axis in the plane of projection),
this collection of closed curves defines a 1-morphism from 0 to 0 in the 2-
category. The sequence of critical points in the vertical direction defines a

2-morphism from the trivial 1-morphism to the trivial 1-morphism.

Now suppose that we are interested in surfaces embedded in 3-space up to
a relationship of ambient isotopy. Then we can define a collection of relations
among the 2-morphisms that generate this topological equivalence. In fact,
these relations are catalogued in Mancini and Ruas [38] as the set of codimen-
sion 1 singularities of planar projections of embedded surfaces. We can include
a height function to the plane into which the surface is projected and further
classify those singularities when the height function is fixed. The list of codi-

mension 1 singularities of planar projections of surfaces is compiled in Fig 5.

In order to interpret these singularities as relations among 2-morphisms, we
represent generating 2-morphisms as commutative diagrams. Then relations
among 2-morphisms are represented by 3-dimensional polytopes. In Figs. 9
and 8, we illustrate two of these polytopes. Fig. 6 and Fig. 7 illustrate two of

the chart moves found in Fig. 5

Now we can turn the 2-category into a purely combinatorial description
of isotopy classes of embedded surfaces in 3-space. Specifically, we define a
sentence to be a sequence of words in the letters U; ; and Ny, ,, where the sequence
starts and ends in the empty word and is subject to the following restrictions.
Each word in the sentence starts with Moo and ends in Uyg. Each letter in a
word represents a l-morphism and if @ and b are adjacent letters in a word (so
W = UabV'), then the target of A coincides with the source of B. The sequence
of words differ at most by the following;:

1. Cancellation or creation of a pair of adjacent symbols N, ,Up,, in the

word.
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3.4.

can

. Cancellation or creation of a pair of adjacent symbols U, ,Np , in the

word, for appropriate values on m,n.
. Cancellation or creation of a pair Ny, nUm+1,n-1 OF Nimg1,n—1Umn-

. A replacement of N; ;U » by UpnoNigj if 1 > m+2and n+m =1+,

or vice-versa.

. A replacement of N; jUpn by Up—2,,Nijg if t <m+4+2andn+m =147,

or vice-versa.

. A replacement of U; jUp, n, by Up ngoUigj if e > m+2and m+n =147,

or vice-versa.

. A replacement of Ny_2,Ni; by Nij2Nmy if 0 < myn+2 < g, and

m+n =1+ j, or vice-versa.

Sentence Equivalence. We define two sentences to be equivalent if we

get from one to the other by a sequence of the following moves.
(WV,W N U1 Ve WV) 0 (W),

. (W mm,n Um—].n-H V" VVV, VV mm,n Um—l,n+] V)

~ (W ﬂm,n Um—l,n+lv)-

. (Lvmm,nv7 I4fﬁ7’rb,nmm-l—?,nUm-l—l,’n-l—l‘/s Wﬂm,nﬂm,n+2um+l,n+l‘/y Wﬂm,nv)

& (W N, V).

(WYY Vs WYL, YoV, WYY V) & (WYY V)

itmm
where [i —m| > 1, [’ =m/| > 1 and i+ j = n+ m.

Here Y and Y’ denotes either N or U. The relations between subscripts
of Y and Y’ are not very strictly specified in the above relation, and
it is because they depend on the cases of N and U. See the generating
2-morphisms, Items (9) through (16), in Section 3.3 for the different sub-
script possibilities among Ns and Us. This fact was pointed out to us by L.
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Langford. Since the list becomes 4 times as lengthy, we give one specific

example of subscripts :
(W mi,j m’m.,n‘/v I/V mm—2,n mi,j+2‘/a W mi,j mm,nv) — (W mi,j mm,nv)
where t <m —2and ¢+ j = m + n.

The same remark applies in the rest of this list. The symbols Y, Y, Y,

7, Z represent N or U and subscripts are left unspecified in some cases.

(WY VieYomn Vs WYL Yis YV,

WY o YmnYiiV, WYL Y YY)

o (WY, Y0 YV, WYY YV,

WYt o ¥a 354V, WY Y%V )

where [t — k| > 1, i —m|>1, [k—=m|>1,and i+ j=k+L{=n+m.
(WYi;i Nmt1n—1 Umgo 2 Ve W Nmttn—1 Yij Unizm—2 V,

W Nimi1,n-1 Ungam—2Yi iV, WY ;V)

& (WY Nmg1n-1 Unmizn—2V, WYi;V)

where [i —m|>1and i+ j+2=m+n.

(VVY;’,jvv VVY;,]'Zm,an,nvv I/VZm,nY;,jZm,nV)

— (WY;,]K WZm,an,n}/i,j‘/; WZm,n)/i,jZm,nV)

where (Z, Z) is either of (N,U), or (U,N), [i —m| > 1 and i +j = m + n.
(W B Vs, W BB B Vs Wi ¥ ) %3 (W B V)

where the pair (Z, Z) was introduced and the pair (7, Z) was cancelled
in the left hand side, and (Z, Z) is either of (N, U), or (U,N).

(W mm-l—l,n ‘/a W mm+1,n Um,n+1 mm,n-‘—l Vvy W mm,n+1 ‘/)

& (W Nmt10 Ve WNmntt Untn Nt V, W Nt V).

(WZhZ,V, WZiZ,V, WZIZWV) « (WZ1Z,V, WZZV, WZZ,V)

where the changes 7Z; to Z! for 1 = 1,2 are any of our elementary moves.
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There are several variations to these moves that correspond to (a) changing
the direction of the height function in the plane, (b) changing the direction of
projection onto the plane, and (c) and changing the direction of the horizontal
axis in the plane of projection. We leave the reader to explicitly write down the

corresponding moves to sentences.

The relation between the above sentence equivalences and the chart moves
5 is as follows. As before we fix a height function on the plane of charts, and
cut along horizontal lines. When we read off the intersection of a horizontal line
and the dotted curves of the chart from left to right, we get a sequence of words
in Ns and Us. When we do this from the top horizontal line to the bottom one,
we get a sequence of words (a sentence). Then the LHS and the RHS of each

chart move gives each of the above equivalences between sentences.

Higher categories including the one defined above were defined and studied

by Baez and Dolan [2]. Here we included explicit relations among 2-morphisms.

3.4.1. Remark. In this setting we see that singularities naturally give rise
to a 2-category where the 1-morphisms, 2-morphisms, and relations among the
2-morphisms correspond to singularities of plane curves, surfaces, and the pro-

jections of surfaces in a plane respectively.

3.5. Catalan numbers. The dimension of the Temperley-Lieb Algebra T'L,
is the Catalan number (2:) /(n+1). One way to prove this is to notice that each
product of generators corresponds to a legitimate string of parentheses. The
correspondence is given as follows. Consider a product of generators as a planar
diagram in Us and Ns. Join the two horizontal arcs together by a point at infinity
on the right. Then bend this line down to a horizontal line in the plane to get
collection of arcs above the line joined to the line. Comb the arcs until each has
exactly one critical point, this diagram represents the associated parentheses
string. For example we have in T Lj the basis {1, hy, hy, hiha, hahi}. These
elements correspond respectively to the collection of parentheses strings ((())),

000, (O0), ()0, and ()(()). The correspondence between the collection of
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nested and juxtaposed Ns and parentheses is given by joining the top edges of
a matched pair of parenthesis together. Thus the first string above corresponds
to three nested Ns, the second string corresponds to N N N; the third string

corresponds to a pair of Ns nested under a third, and so forth.

It is not difficult to count the number of legitimate paretheses strings. One
way is to associate a string with a path from (0,0) to (2n,0) that stays above
the z-axis, and that consists of segments of length 1/2 that are of slope +1. An
upward sloping segment corresponds to left parenthesis; a downward sloping
segment to a right parenthesis. The total number of paths from (0, 0) to (2n,0)
(including those that dip below the z-axis) is (Znn) The number of paths that
do not correspond to legitimate parentheses is (T?_’:l) (One can count these paths
by finding the first time an illegal path touches the line y = —1, then reflecting
the initial segment of the path through that line. This gives a path from (0, —2)
to (2n,0); the number of these is (nz-:1) because it takes 2 steps up to get to the
z-axis. ) The difference between these numbers is (2:)/(11 +1).

The nth Catalan number occurs as the count of a number of different objects.
Three of those are important to the present discussion. The first is the number
of legitimate parentheses strings that we have just counted. The second is
the number of different ways of triangulating an (n + 2)-gon with no vertices
internal to the faces or edges of the polygon. The third is the number of ways
of composing n 4+ 1 symbols with a binary composition (Thus when n = 3,
we have (ab)(cd), ((ab)e)d, (a(be))d), a((bc)d), and (a(b(cd)).) Naturally, the
binary composites correspond to three valent trees, and by dualizing the trees
we obtain triangulations of polygons. A correspondence between the set of

naked parentheses and the set of binary composites is exemplified as follows.

000 ¢ a<b><c><d>+ ((ab)c)d

() ¢+ a<b><c<d>>¢ (ab)(cd)
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() @ a<b<c<d>>> a(bed))

(00) & a<b<e><d>>¢ al(be)d)

() @ a<b<e>><d> (albe))d

The correspondence between the naked parentheses and the expressions in
<> is given by inserting letters into the parenthetical expressions. The second
correspondence is given by thinking of a letter in brackets (e.g < d >) as an
operator acting on the right by multiplication. Thus in the top line we read
that b acts on a, and this product is acted upon by ¢; the resulting product is
acted upon by d.

3.5.1. Operations to parentheses. There are various products and operators
that can be defined on a string of parentheses. A full account of these can be
found in [32]. Here we mention a few of these operations:

First, strings of parentheses A and B can be juxataposed to form the string
AB.

Second, given strings A and B, we can write A = A’) and B = (B’ for some
strings B” and A’ that each have a single unmatched parenthesis. The product
[A, B] — A'B’ gives a legitimate parentheses string. The unmatched left ( of
A’ gets paired to the unmatched right ) in B'.

Third, if a string can be decomposed as a product AB we can map that
product to the product BA. Now strictly speaking this is not an operation, but
a method of obtaining one parenthesis string from another.

Another method of obtaining one string from another is the operation of
handle sliding. Given a string AB where A and B are legitimate paretheses,
we may assume that A = A’) where A’ has an unmatched (, and B = (B)B”
where B’ and B” are legitimate. (the strings B’ and B” may be empty. We map
AB = A)(B')B" to A'(B'))B". A given string may have several descendants
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from this process. Let us examine the easy cases:

and

The total number of descendants and antecedents on a string of parentheses
consisting of n matched pairs is n — 1. The arrows — can be used to arrange the
set of parentheses to be the vertices on a polytope called the associatahedron
or Stasheff polytope. The edges of the polytope are arrows — such as those
found above. The faces of the polytope are pentagons and quadrilaterals. The
higher dimensional cells can be defined inductively. We will give examples of
the Stasheff polytopes in Sections 4 and 5.

The operations on parentheses strings have other topological interpretations.
We can consider the cap form of a parentheses string as a planar surface. If there
are n matched pairs of parentheses, then the surface is a disk with n handles
and n + 1 boundary components. The handles correspond to the matched pairs
of parentheses, and so a given parentheses string represents a choice of ordered
basis for Hy(F') where F' is the planar surface.

The operation [A, B] = [A'),(B] — A'B’ corresponds to removing a 1-
handle, by connecting 2-boundary components. The operation AB = A')(B')B" —
A'(B"))B" corresponds to handle sliding, or on H; this represents a change of
basis by an elementary operation. The operation AB — B A represents reorder-

ing the basis by a cyclic permuation.

3.5.2. Remark. One can consider a set of abstract words in some alphabet

where the words are constructed according to some grammatical rules. Then



DIAGRAMMATICS, SINGULARITIES, AND THEIR ALGEBRAIC 53

sentences can be constructed as a sequence of transformation rules on the words.
A set of relations among the transformation rules allow us to define an equiva-
lence relation on sentences. When the abstract words represent some topological
phenomenon, the rules of grammar and the transformation rules often are gen-
erated by certain types of singularities. The goal of such investigations, then,
is to find other natural algebraic objects that obey the same grammar and

transformations.

4. The Pachner Theorem

The Pachner Theorem gives a set of moves to triangulations of n-dimensional
manifolds such that two triangulations of a given manifold are related by a se-
quence of moves taken from the Pachner list. One can use the Pachner Theorem
in low dimensions to construct invariants of manifolds that are related to alge-
braic structures. Here we describe in detail the Pachner Theorem in dimension
2 and 3 and outline the construction of invariants and the related algebraic

structures. In Section 5, we describe the situation in dimension 4 in detail.

Perhaps an easy way to understand the Pachner Theorem is to climb the
dimension ladder one rung at a time. To this end we begin by discussing moves

to triangulations of surfaces.

4.1. The 2 dimensional moves. Let a closed surface F' be given with
triangulations Ty and Ty. Then T, may be obtained from T} from the local moves
to triangulations illustrated in Fig. 10. Here is a description of these moves.
Two triangles glued along an edge form a quadrilateral with the common edge
forming the diagonal; they can be replaced by the two triangles formed by the
boundary of that quadrilateral and the opposite diagonal. A given triangle can
be barycentrally subdivided, or three triangles any two of which share an edge
containing a vertex common to all three can be replaced by a single triangle.

We call these moves the (2 & 2)-move and the (1 = 3)-move respectively.
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The moves can be given in purely combinatorial terms as follows:

2) : (012) U (023) = (013) U (123)
3) : (123) = (012) U (013) U (023)

%
—
—N
-

(
(1

where each integer represents a label on a vertex, and the triples themselves
represent triangles with those vertices.

Thus the 2D Pachner moves relate the faces of a tetrahedron. Specifically,
the (2 & 2)-move consists of two pairs of triangles and they together form a

tetrahedron (Figure 15). Meanwhile, the (1 & 3)-move relates three triangular
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faces of a tetrahedron to the remaining face. The three triangles form the central
projection of a tetrahedron.

In Fig. 11, we have indicated the relation between the (2 = 2)-move and
the associativity axiom in an algebra. We turn now to give algebraic axioms

that allow us to construct invariants of surfaces.

4.1.1. Semi-simple algebras and surfaces. Let A denote a finite dimen-
sional associative algebra over the complex numbers C. Let {¢|i = 1,---,n}
denote an ordered basis for A, and for z,y,z € {1,...,n}, let C7, denote the
structural constant of the algebra A. Thus the multiplication between basis

elements is given by the formula:
by - by = Z C;y()z.
z

Apply the associativity law, (ab)c = a(bc), to the basis elements as follows:

(¢a¢b)¢c
ba(Pobe)

(3 Clidi)pe = 3 CoClha
i g

3.(3_Choti) = > CLCs .
7 i,d

In this way, we obtain the equation
Z Ogbcjdc - Z Cjzcgc
al 1]

whose geometrical interpretation will be presented shortly.

For z,y € {1,2,...,n(= dimA)}, define
oy = Zozzcl’}uy

Then this is invertible precisely when the algebra A is semi-simple, and the
matrix inverse g*¥ of ¢,, defines a bilinear form on the algebra A. The geometric
interpretation of this bilinear form and that of the associativity identity will
allow us to define from a semi-simple associative algebra, an invariant of 2-

dimensional manifolds.
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We follow the definition in [21]. Let T be a triangulation of a closed 2D
manifold F. Let A" = {1,2,---,n}. This is called the set of spins. Let ET =
{(e, f)|e € [} be the set of all the pairs of an edge and a face of T" such that e is
an edge of f. A labelingis amap L : ET — N. Thus a labeling is an assignment
of spins to all the edges with respect to faces. Given a labeling, we assign
weightings to faces and edges as follows: Suppose that we are given functions
Cand g; C: N3 = C, C(z,y,2) = Cpysy and g : N? = C, g(z,y) = g*¥. If a
face has three edges labeled with spins x,y, z, then assign the complex number
Cyy to the face. The function C' possesses a cyclic symmetry; so Chy, = Clyan
= (lpy. If an edge is shared by two faces, and the edge with respect to these
faces receives spins x and y, then assign the complex number g™ to the edge.
Then define a partition function W(T') by Yp [1Cry.g** where the sum is taken
over all the labelings and the product is taken over all the faces and edges.

In order for the partition function to be topologically invariant, it cannot de-
pend on the choice of triangulation. So we intepret associativity and the bilinear
form in a semi-simple algebra over C in terms of the Pachner moves. Specifically,
the (2 = 2)-Pachner moves is related to the associativity law (ab)c = a(bc). The
relationship is depicted in Figure 11. The dual graphs, indicated in the Figure
by dotted segments, are sometimes useful for visualizing the relations between
triangulations and the algebraic structure. The diagram given in Figure 12 il-
lustrates the geometrical interpretation of the bilinear form g., = 32, C,Cy, -
Finally, this relationship together with the associativity identity can be used to
show that the partition function is invariant under the (1 & 3)-Pachner move.
The essence of the proof is indicated in Figure 13.

Having illustrated the the algebra axioms diagrammatically we turn to show
how the structure constants and the bilinear form of associative semi-simple
algebras solve the equations corresponding to the Pachner moves. Given, struc-
tural constants C7, and a non-degenerate bilinear form ¢"* with inverse g,.,

define Cyy, by the equation,

nyu = Guz Cj

v
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Then since
Jovd d i
Z Cabcjc - Z Caz'cbc
j 7

the partition function defined in this way is invariant under the (2 = 2)-move.

Furthermore, we have
a i ovd _ va o pvd i i
Cdecabcjc - Cdeca,icbc - giecbc - C&bm

and so the partition function is invariant under the (1 = 3)-move. In this way,
a semi-simple finite dimensional algebra defines an invariant of surfaces. On
the other hand, given a partition function one can define a semi-simple algebra
with these structure constants and that bilinear form. In [21], this is stated as
Theorem 3:

The set of all LTFTs is in one-to-one correspondence with the set of finite

dimensional semi-simple associative algebras.



58 J.S. CARTER L. H. KAUFFMAN M. SAITO

Here LTFT stands for a Lattice Topological Field Theory which is an in-

variant of manifolds satisfying certain axioms involving gluing and boundaries.

Observe that the (1 = 3)-move follows from the (2 & 2)-move and a certain
singular move for triangulations corresponding to a non-degeneracy condition.

In the sequel, we will see similar phenonema in dimension 3 and 4.

In general, the idea of defining a partition function to produce a manifold
invariant is (1) to assign spins to simplices of a triangulation, and (2) to find
weightings that satisfy equations corresponding to Pachner moves. This ap-
proach, of course, depends on finding such solutions to (often extremely overde-
termined) equations. Such solutions come from certain algebraic structures.
Thus one hopes to extract appropriate algebraic structures from the Pach-

ner moves in each dimension. This is the motivating philosophy of quantum

topology.
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4.2. Dimension 3. In this section we review the Pachner moves [42] of
triangulations of manifolds in dimension 3. In Figure 14 the Pachner moves
are depicted, these are called the (2 & 3)-move and the (1 & 4)-move.

The 3-dimensional Pachner moves are related to the 4-simplex in the same
way as the 2 dimenionsional moves are related to the tetrahedron. One side of
each 3-dimensional move is a union of the 3-dimensional faces of the boundary
of a 4-simplex, the other side of the move is the rest of the 3-dimensional faces,
and they together form the boundary of a 4-simplex. For example, the (1 = 4)
indicates two 3-balls on the boundary of a 4-simplex as they appear in a central

projection of the simplex.

4.2.1. Hopf algebras and 3-manifolds. In this section we review invariants
defined by Chung-Fukuma-Sharpere [14] and Kuperberg [36] (we follow the
description in [14]). We note that the invariants obtained in this section are
also very closely related to the invariants defined and studied by Hennings,

Kauffman, Radford and Otsuki (see [35] for example).
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4.2.2. Definition (Bialgebras). A bialgebra over a field k is a quintuple
(A,m,n, A, ¢) such that

1. (A,m,n) is an algebra where m : A®@ A — A is the multiplication and
n : k — Ais the unit. (i.e., these are k-linear maps such that m(1®@m) =
m(m® 1), m(l @) =1 = my® 1))

2. A: A— A® Ais an algebra homomorphism (called the comultiplication)
satisfying (id @ A)A = (A ® id)A,

3. ¢ : A — k is an algebra homomorphism called the counit, satisfying

(e®id)A = id = (id ® )A.
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4.2.3. Definition (Hopf algebras). An antipode is a map s : A — A such
that mo(s®1)oA=noe=mo(1®s)oA.

A Hopf algebra is a bialgebra with an antipode.

The image of the comultiplication is often written as A(a) = a; @ ay for
a € A. The image in fact is a linear combination of such tensors but the
coeflicients and the summation are abbreviated; this is the so-called Sweedler
notation [1].

The condition that the comultiplication be an algebra homomorphism is also
called the compatibility condition between multiplication and comultiplication.
This condition is written by A(ab) = A(a)A(b). More specifically, A om =
(m®@m)o Py30(A®A) where Py3 denotes the permutation of the second and
the third factor: Py3(2Q@y®@2z@w) = (2 @2Q@y®@w). In the Sweedler notation,
it is also written as (ab); ® (ab)z = a1by @ asbs.

4.2.4. Invariants. The definition of invariants defined in [14] is similar to the
2-dimensional case. Given a triangulation 7" of a 3-manifold M, give spins to
edges with respect to faces (triangles). The weights then are assigned to edges in
addition to faces. The structural constants Cyy. (resp. Agy.) of multiplication
(resp. comultiplication) are assigned as weights to faces (resp. edges). If an edge
is shared by more than three faces, then a composition of comultiplications are
used. For example for four faces sharing an edge, use the structural constant
for (A ® 1)A. The coassociativity ensures that the other choice (1 @ A)A
gives the same constant A, ., v, Thus the partition function takes the form
U(T) =31 T1 Coye Dy oo

In [14] the well defined-ness was proved by using singular triangulations
— these generalize triangulations by allowing certain cells as building blocks.
In this case the move called the cone move for singular triangulation plays an
essential role. This move is depicted in Figure 17 with a dual graph to illustrate
the relationship to the compatibility condition.

Let us now explain the relation of this move to the compatibility condition

verbally. In the left hand side of Fig. 17 there are parallel triangular faces
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sharing the edge (12) and (13); these triangles have different edges connecting
the vertices 2 and 3. One of these is shared by the face (234) while the other is
shared by the face (235).

The parallel faces (123) and (123)’ are collapsed to a single face to obtain
the right hand side of Fig. 17. Now there is a single face with edges (12), (23),
and (31), and the edge (23) is shared by three faces (123), (234), and (235).

The thick segments indicate part of the dual graph. Each segment is labeled
by Hopf algebra elements. Reading from bottom to top, one sees that the graphs
represent maps from A ® A to itself. The LHS of the Figure represents

(m@m)o(12P®1)o (AR A)(a®b)

=(m@m)o(l1® P ®1)(Aa® Ab)
=(m@m)(a1 @b ® az ® by) = (a1b1) @ (azby)

while the RHS represents
Aom(a®b) = A(ab) = (ab); @ (ab),

and these are equal by the consistency condition between multiplication and
comultiplication. This shows that the Hopf algebra structure gives solutions to
the equation that corresponds to the cone move.

That the partition function in this case does not depend on the choice of
triangulation is proved by showing that the Pachner moves follow from the
cone move and other singular moves. Figure 18 explains why the (2 & 3)-move
follows from singular moves (this Figure is similar to a Figure in [14]).

Let us explain the Figure. The first polyhedron is the RHS of the (2 & 3)-
move. There are three internal faces and three tetrahedra. Perform the cone
move along edge (25) thereby duplicating face (125). Internally, we have face
(125) glued to face (235) along edge (25) and face (125)" glued to face (245) along
edge (25)'. These faces are depicted in the second polyhedron. By associativity
these faces can be replaced by four faces parallel to four faces on the boundary;

(123), (135), (124), (145). This is the configuration in the third polyhedron.
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Then there are two 3-cells bounded by these parallel faces. Collapse these cells
and push the internal faces onto the boundary (this is done by singular moves).
The result is the fourth polytope which now is a single polytope without any
internal faces. This is the middle stage in the sense that we have proved that
the RHS of the (2 = 3)-move is in fact equivalent to this polytope.

Now introduce a pair of internal faces parallel to the faces (135) and (145)
to get the fifth polytope (the left bottom one). Perform associativity again to
change it to a pair of faces (134) and (345) to get the sixth polytope. Perform a
cone move along the pair of faces with vertices (345). (These faces share edges
(35) and (45); edge (34) is duplicated.)

The last picture results from this move, and this is the LHS of the (2 = 3)-

move.
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In summary, we perform cone moves and collapse some 3-cells to the bound-
ary and prove that both sides of the Pachner move are, in fact, equivalent to
the polyhedral 3-cell without internal faces. We give a generalization of this

Theorem to dimension 4 in Section 5.5.

4.2.5. Biedenharn-Elliott revisited: the Turaev-Viro invariants. One
way to view the Turaev-Viro invariants is to “categorify” the LTFT in dimension
2. In this process, the semi-simple algebra is replaced by a semi-simple monoidal
category — namely the category of representations of U,(sl(2)) where ¢ is a
primitive 4rth root of unity. First we review the definition of the Turaev-Viro
invariants, and then explain the view point mentioned above.

A triangulation of a 3-manifold is given. A coloring, f, is admissible if edges
with colors a,b,j bound a triangle, then the triple (a,b,j) is a g-admissible

triple in the sense that
1. a+ b+ j is an integer,
2.a+b—j3b+j—a,anda+j—bareall >0
3.a+b+j5<r—2.

If edges with labels a,b, ¢, j,k,n are the edges of a tetrahedron such that
each of (a,n,k), (b,c,n), (a,b,7), and (c,j,k) is a g-admissible triple, then
? } . This weight is a

a b
k

q
normalized quantum analogue of the 6j-symbol defined in Section 2. If any

the tetrahedron, T, receives a weight of Ty =

of these is not admissible, then the weight associated to a tetrahedron is, by
definition, 0.
For a fixed coloring f of the edges of the triangulation of a 3-manifold M,

the value

M= A" TTAm II Ty

is associated where ¢ is the number of vertices in the triangulation, the first
product is taken over all the edges in the triangulation, the second product is

over all the tetrahedra, the factor A is a normalization factor (= const.) and
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Ag(p) is a certain quantum integer associated to the color of the edge £. To

obtain an invariant of the manifold one forms the sum
|M| =M,
i

where the sum is taken over all colorings. Further details can be found in [53, 31]
or [12].

In Section 2.3 we reviewed the definition of 67-symbols which involved two
inclusions V¥ = V* ® V? @ V. These inclusions were constructed by taking
two different groupings: (V* ® Vb) ®@Veand V* ® (Vb ® V*). The pentagon
relation, then, is regarded as the next order associativity condition.

This situation can be seen as a categorification. In 2-dimensions the associa-
tivity law (ab)c = a(be) played a key role. In 3-dimensions the 65 symbols are
defined by comparing two different bracketings (V*@V®)@Veand Veg (Vi Ve).
Here the algebra elements became vector spaces as we increased the dimension
by one, and the symbol measuring the difference in associativity satisfies the

next order associativity, which in turn corresponds to the Pachner move.

4.3. Higher dimensions. In general, an n-dimensional Pachner move of
type (i = j), where i + j = n + 2, is obtained by decomposing the (spherical)
boundary of an (n+1)-simplex into the union of two n-balls such that one of the
balls is the union of 7 n-simplices, the other ball is the union of 7 n-simplices,
and the intersection of these balls is an (n — 1)-sphere. By labeling the vertices
of the (n 4 1)-simplex these moves are easily expressed. For example, the table

below indicates the lower dimensional Pachner moves:

(02) U (12)

n=1

n =

(0
(012) = (013) U (023) U (123)

1) =

(0
(012) U (023) = (013) U (123)
(0123) = (0134) U (0234) U (1234)
(0123) U (1234) = (0124) U (0134) U (0234)

(01234) = (01235) U (01245) U (01345) U (02345) U (12345)
(01234) U (01235) = (12345) U (01245) U (01345) U (02345)
(01234) U (01245) U (02345) = (01235) U (01345) U (12345)

11001 1 1 g A g

Qo W O W N WD
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5. The Pachner Theorem in Dimension 4

In this lecture we examine in detail the 4-dimensional Pachner Theorem. First

we give some movitation based on some constructions of Crane and Frenkel.

5.1. Crane-Frenkel invariants in dimension 4. Crane and Frenkel [15]
proposed a construction of invariants of 4-manifolds using triangulations. We
summarize their approach here before describing the Pachner moves in dimen-
sion 4 in detail. In fact theorems in the next section will be useful in studying
invariants proposed by Crane and Frenkel, and our motivation was to provide
a diagrammatic foundations for their approach, and other (yet to be found)

combinatorial formulas for 4-manifold invariants.

As we reviewed the invariants in dimensions 2 and 3, there are two ways to
go up from dimension 2 to 3. One way is to consider the algebras formed by
representations of quantum groups as in Turaev-Viro invariants. In this case
algebra elements are regarded as vector spaces (representations) and algebras
are replaced by such categories. This process is called categorification. The
second way is to include a comultiplication in addition to the multiplication of
an algebra as in Hopf algebra invariants and consider bialgebras (in fact Hopf

algebras) instead of algebras.

Let us explain these ideas in more detail. Recall that in dimension 2 a
Pachner move corresponds to associativity of algebras. If we consider a category
of representations, it behaves like an algebra. Specifically, tensor product and
direct sum together behave like multiplication and addition of an algebra. In
this context associativity is no longer an equality between elements, but it
is a homomorphism between vector spaces. Here we are replacing elements by
vector spaces. The 6j-symbol we discussed above is regarded as an associativity
homomorphism. This in turn can be assigned to the movie of tree diagrams,
the dual of which is exactly a Pachner move in dimension 3. Thus we see here

the idea that categorification corresponds to raising the dimension by one.
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On the other hand, by introducing comultiplication, we were able to obtain
new structural constants that can be assigned to edges of triangulations of 3-

manifolds. Thus new algebraic operations can be used to go up the dimensions.

Crane and Frenkel defined invariants in dimension 4 using these ideas. They
arrive at the idea of the algebraic structure called Hopf categories either by (1)
categorifying Hopf algebras, or (2) including comultiplications to categories of

representations. The following chart represents this idea.

2D |Associativc algebras|
s . Adding a co-
Categorification N N silifpReain
3D |TuraeV—Viro invariants‘ ’Hopf algebra invariants
Adding a co- . .
multiplication Ny N4 Categorification
4D Crane-I'renkel invaria,nts|

In the next section we study 4-dimensional Pachner moves in detail. Our
approach will provide combinatorial foundations for proving well-definedness
of Crane-Frenkel invariants diagrammatically. Moreover, dual diagrams will
provide a direct relation between categorical structures and moves on triangu-

lations.
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5.2. 4-dimensional Pachner Moves. One side of a 4-dimesional Pachner
move is the union of 4-faces of a 5-simplex (homeomorphic to a 4-ball), and the

other side of the move is the union of the remaining 4-faces.

In Figures 19, 20, and 21 the (3 = 3)-move, (2 = 4)-move, and (1 = 5)-
move are depicted, respectively. Recall here that each 3-dimensional Pachner
move represents a 4-simplex. Therefore the 3-dimensional Pachner move de-
picted in Figure 19 top left — the move represented by an arrow labeled (01234)
— represents the 4-simplex with vertices 0, 1, 2, 3 and 4. Then the left-hand side
of Figure 19 represents the union of three 4-simplices (01234)U(01245)U(02345).
Similarly, the right-hand side of figure 19 represents the union of the three 4-
simplices (01345) U (01235) U (12345).

5.3. The Stasheff Polytope. As we observed in Section 4, associativity
is related to the 2-dimensional Pachner moves, and the pentagon relation in-
volving parentheses structures among four letters is related to 3-dimensional
Pachner moves. The pentagon identity is regarded as a second order associa-
tivity relation. The next order, the third order, associativity relation involving
five letters is represented by a three dimensional polytope having vertices corre-
sponding to parenthesis structures among five letters. This polytope and higher
dimensional analogues were discovered by Jim Stasheff [50]. The 3-dimensional
polyhedron is called the Stasheff polytope or the associahedron. In this section
we give explicit correspondences between Pachner moves in dimension 4 and

the associahedron.
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The 3-dimensional polytope is depicted in Figure 22, and its central projec-
tion through a quadralateral face is shown in Figure 23. Figure 24 indicates
the labeling of the vertices by triangulations of hexagons and their dual trees
(indicated by dotted arcs).

The vertices of each in Figure 24 are labeled by triangulations of a hexagon.
Consider, for example, the bottom pentagonal face of the associahedron. Each
vertex of this pentagon is labeled by a hexagon in which the top triangle is
fixed. Similarly, the left most pentagon has the southeast triangle fixed at its
vertices. Thus each pentagon corresponds to a 4-face of the 5-simplex.

In Figure 25 the left-hand side of the (3 & 3) Pachner move is depicted
along the left column. The first row of the figure represents an edge path in
the Stashefl polytope that starts from the middle-left vertex of Figure 24 and
ends on the middle right vertex. To move to the next row, the edge path passes
through the pentagonal face on the lower left of the center of Figure 24. This
pentagon corresponds to the 4-face (01234). To get to the next row, the edge
path slides over the quadralateral on the lower right. Both of these edge paths
represent the polytope on the second row of Figure 25; the homotopy between
them represents the fact that the two tetrahedra (1234) and (0145) are glued
along the edge (24), and they can be added to the polytope in either order.
The edge path represented on the third row of Figure 25 has two edges on
the bottom pentagon of Figure 24. The fourth row then is obtained from the
third row by sliding across the bottom pentagon which corresponds to the 4-face
(01245). The fifth row of Figure 24 is obtained from the fourth row by sliding
the edge path across the left pentagon which corresponds to the 4-face (02345).
The last row is obtained by sliding across the outside quadralateral face.

The right side of the (3 = 3)-move can be obtained similarly, by sliding the
initial (zig-zag) edge path first across the upper-right center pentagon (01345),
then across the upper left quadralateral, across the upper penatgon (01235),
and finally across the right pentagon (12345).

We can depict these sequences of edge paths as follows. First, number the

vertices of the hexagons in Fig. 24 so that the bottom most vertex of each
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hexagon is labeled 0 and the labels increase in a counter-clock wise direction.
The edges of the figure can then be labeled with quadruples of integers that
indicate the quadralateral on which the change in association is made. For
example, the vertical edges on the outside of the figure are labeled (2345) while
the horizontals are labeled (0125). The edge path described two paragraphs

above is the following:

=\

The right hand side of the (3 & 3)-move is the following sequence of edge
paths.

Each triangulated polytope of Figure 20 21 also corresponds to an edge path
in the associahedron. Specifically, the LHS of (2 = 4) , (01234)U(01235), corre-
sponds to the homotopy of edge paths starting at the vertex of the associahedron

labeled by the parenthesis ((a(bc)d)e and ending at a((be)(de))

(0345)7(0234)(0124)(1234)(0134) " (0345)(0135)
— (0345)77(0123)(0345)(0135)
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— (0123)(0135)
— (0235)(0125)(1235)

Here, we have to travel some edges against their orientation (in the above
example (0345)) and such case is denoted by the inverse ((0345)~'). If an
edge and its inverse appear in a sequence, then the corresponding tetrahedron
does not appear in the polytope in Figure 20. This convention also applies to
Figure 21.

The RHS of (2 & 4)-move is represented by the sequence of edge paths:

)

— (0345)~ (0734)

— (0235)(2345)(0245)
— (0235)(2345)(0245) I
)1
~1(1235)

— (0235)(0125)(1235)

1345
1345

The two sides of the (1 & 5)-move are sequences of edge paths from (((ab)c)d)e
o (ab)(c(de)), are respectively

(0123)(0134) — (0234)(0124)(1234)

and

— (0345)(0123)(0345)~
— (0345)(0235)(0125)(1235)(0135)~"(
— (0345)(0235)(0125)(1235)(1345
(

— (0234)(0245)(2345) 7" (0125)(1235) (1345

0345)~

vv\_/
—_
o
—_
=
Ut
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— (0234)(0245)(0125)(2345) ™" (1235)(1345)(0145) "

— (0234)(0124)(0145)(1245) 7" (2345) 71 (1235)(1345)(0145) "
— (0234)(0124)(0145)(1234)(0145)~*

— (0234)(0124)(1234)

Thus we see that the low dimensional Pachner moves are, in the sense that

we have described, encoded by the low dimensional polytopes.

This correspondence between Stashefl polytopes and the Pachner moves also
holds in all higher dimensions. Here we sketch the relationship; the reader is
refered to [44], [22], and [23] for further details. In this paper we gave dia-
grams of 4D Pachner moves and more explicit and direct relations between the
associahedron and the Pachner moves.

The vertices of the n-dimensional Stashefl polytope can be labeled by the
triangulations of an (n 4 3)-gon where there are no internal vertices in the poly-
gon. (As is well known, these triangulations are in one-to-one correspondence

with parenthesized strings of letters ay, ..., an42.) We think of a vertex of the
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Stashefl polytope as a 2-dimensional (asphericial) subcomplex of the (n + 2)-
simplex. Each edge in the polytope can be labeled by a tetrahedron since each
edge is a Pachner move of type (2 & 2). So the edges correspond to tetrahedra.

This pattern continues: The pentagonal faces correspond to 4-faces, ete.

5.3.1. Remark. Markl and Stashefl [39] used the associahedron for the study
of obstruction cocycles to deformations of quasi Hopf algebras. In the light of
Dijkgraal and Witten [17] invariants, such cocycles might be useful in defining
invariants in dimension 4 using the relation between the associahedron and the

4-dimensional Pachner moves presented here.
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5.4. Movies in the shadow world. The shadow method has been an effec-
tive means to understand and compute invariants of 3-dimensional manifolds.
The shadow of the dual spine to a tetrahedron is a planar diagram that consists
of either a 3-valent vertex or a classical crossing from a knot diagram (thus a
4-valent vertex with crossing information). The shadow is the projection of the
dual spine onto a union of 2-faces of the spine (see [52] for details). Figure 26
indicates the relationship among the terahedra, the spine, and its shadow. In
the shadow model for the Turaev-Viro invariant, the colors are indicated on the
edges and faces of the planar graphs. Thus the 6j-symbol that is associated to
a colored tetrahedron in the Tureav-Viro model is denoted by a labeled planar
diagram and many of the identities among 6j-symbols correspond to regular
isotopies of these diagrams.

Since the 3D Pachner moves correspond to regular isotopies of planar graphs
in the shadow world, the 4D Pachner moves correspond to relations between
sequences of regular isotopies (we call these shadow movies) of planar graphs.
In this section we present such sequences in the shadow world.

Figure 26 shows the labeling of planar graphs and regular isotopy of graphs
corresponding to a Pachner move. In Figure 27 shadow movies are shown.
Each of the vertices corresponds to some edge in the Stashefl polytope, each
still in the shadow movie corresponds to an edge path, and each transformation
between stills corresponds to sliding an edge path across one of the pentagonal
faces of the polytope. We could include slides across the square faces as well,
by including a height function on each still, and requiring that each vertex of
a still lies at a different vertical level. The “shadow movie move” corresponds
to the commutation of the Stasheff polytope: A sequence of edge paths are
related by sliding across faces of the polytope. Another sequence slides across

the remaining faces.
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One interpretation of these shadow movie moves is as follows. Imagine that
the Y vertices in the stills represent a binary composition rule. Imagine further
that the X represents a permutation. Then the top still in Fig. 27 represents

the following sequence:
[a,b,c,d] — [ab, cd] — [cd, ab].

The left hand side of the movie move represents the following sequence of trans-

formations:

[a,b,¢,d] — [ab,cd] — [cd, ab] =
[a,b,¢,d] = [a,b,cd] = [a, cd, b] = [cd, a,b] — [cd, ab] =
la,b,c,d] — [a,c,b,d] — [a,c,d,b] = [a,cd,b] — [ed,a,b] — [cd, ab] =
[a,b,c,d] = [a,c,b,d] = [¢,a,d,b] = [c,d,a,b] — [cd, ab]

The right hand side represents the following sequence of transformations:

[a,b, ¢, d] = [ab, cd] — [cd, ab] =
la,b,c,d] — [ab, ¢, d] — [¢,ab,d] — [¢,d, ab] — [cd, ab] =
[a,b,¢,d] = [a,c,b,d] = [¢,a,b,d] — [c,ab,d] — [c,d,ab] — [ed, ab] =
[a,b,¢,d] = [a,¢,b,d] = [¢,a,d,b] = [c,d, a,b] — [ed, ab].

This case is reminiscent of the case of embedded surfaces. We have a se-
quence of words connected by a set of rules, and transformation rules between
these sequences. The syzygies among the transformation rules require an alge-

braic interpretation.

5.5. Singular moves and Pachner moves. In dimension 4, the Pachner
moves can be decomposed as singular moves and lower dimensional moves.
Here we define a 4-dimensional cone move, and show how the Pachner moves

follow.
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5.5.1. Definition (cone move). The cone move for CW-complexes for 4-

manifolds is defined as follows.

Suppose there is a pair of tetrahedra (1234); and (1234), sharing the same
faces (123), (124) and (134), but have different faces (234); and (234),, such
that (1) (234), and (234), bound a 3-ball B in the 4-manifold, (2) the union of
B, (1234); and (1234), is diffeomorphic to the 3-sphere bounding a 4-ball W

in the 4-manifold.

The situation is depicted in Figure 28 which we now explain. The LHS of
the Figure has two copies of tetrahedra with vertices 1, 2, 3, and 4. They share
the same faces (123), (124), and (134) but have two different faces with vertices
2, 3, and 4.

The face (234); is coincident to the tetrahedron (2348) while the face (234),
is coincident to (2349). The face (123) (resp. (124), (134)) is shared by (1234),,
(1234),, and the tetrahedron (1237) (resp. (1246), (1345)). Thus these faces
are shared by three tetrahedra.
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Collapse these two tetrahedra to a single tetrahedra to get the RHS of the
Figure. Now we have a single tetrahedron with vertices 1, 2, 3, and 4. The face
(234) now is shared by three tetrahedra (1234), (2348), and (2349) while three
faces (123), (124), and (134) are shared by two tetrahedra.

5.5.2. Definition (taco move). Suppose we have a C'W-complex such that
there is a pair of tetrahedra (0123); and (0123); that share two faces (012)
and (013) but have different faces (023);, (023), and (123);, (123), (of (0123),,
(0123), respectively). Suppose further that (023);, (023),, (123);, and (123),
together bound a 3-cell B and (0123);, (0123),, and B bounds a 4-cell. Then
collapse this 4-cell to get a single tetrahedron (0123). As a result (023); (resp.
(123)1) and (023), (resp. (123)) are identified. This move is called the taco

move.

5.5.3. Definition (pillow move). Suppose we have a CW-complex such that
there is a pair of tetrahedra sharing all four faces cobounding a 4-cell. Then
collapse these tetrahedra to a single tetrahedron. This move is called the pillow

move.

5.5.4. Lemma. The (3 = 3) Pachner move is described as a sequence of cone

moves, pillow moves, taco moves and 3-dimensional Pachner moves.

Proof. Before the proof we mention that the following arguments are obtained
by looking at Fig. 19. We invite the reader to look at the Figure as s/he
follows the proof. The left hand side of the (3 & 3)-move consists of three
4-simplices (01234) U (01245) U (02345). Denote this polytope by P. The 4-
simplex (01245) has the tetrahedron (0245) as a 3-face. Split (0245) into two
tetrahedra (0245); and (0245); by a cone move. Thus (0245); and (0245), share
the same faces (025), (045) and (245) but have different faces (024); and (024).
The face (024); is shared with (0124) and the face (024), is shared with (0234)

respectively.
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After the splitting P consists of three 4-polytopes, le, 7 =1,2,3. Here the
polytope 7! is bounded by tetrahedra (0123), (0134), (0124), (0234), (1234),
(0245)1, and (0245);. The polytope 75 is bounded by tetrahedra (0124), (0145),
(0245)1, (0125), and (1245). The polytope 73 is bounded by tetrahedra (0234),
(0245), (0235), (0345), and (2345). (The polytope 7 (resp. 73, 74 ) corresponds
to the 4-simplex (01234) (resp. (01245), (02345) before the splitting.)

Next perform a Pachner move to the pair of tetrahedra (0234) U (0245),
sharing the face (024),. Note that these two tetrahedra are shared by 7| and 75
so that the Pachner move we perform does not affect 7). Thus we get three 4-
cells 77, j = 1,2,3, where 7§ = 7}, and 77 is bounded by (0123), (0134), (0124),
(1234), (0245);, (0235)", (0345)’, and (2345)". Here (0235), (0345)’, and (2345)’
denote new tetrahedra obtained as a result of performing a Pachner move to
(0234) U (0245),. Then the last polytope 73 is bounded by (0235)', (0345)’, and
(2345)" that are explained above, and (0235), (0345), (2345) that used to be

faces of 7.
Then we can collapse 73 to the tetrahedra (0235), (0345), (2345) as follows.

Now 72 is a 4-cell bounded by (0235), (0345), (2345), (0235)", (0345)’, and
(2345)". The faces are shared by these tetrahedra as follows. The faces (023)
and (025) (resp. (034) and (045), (234) and (245)) are shared by (0235) and
(0235)" (resp. (0345) and (0345)’, (2345) and (2345)"). The face (035) (resp.
(345), (235)) is shared by (0235) and (0345) (resp. (0345) and (2345), (0235)
and (2345)). The face (035) (resp. (345)", (235)) is shared by (0235)" and
(0345)" (resp. (0345)" and (2345)’, (0235)" and (2345)").

Then perform the taco move to the pair (2345) and (2345)" that share two
faces (234) and (245). Then the faces (235) and (235)’, (345) and (345)" are
identified after the move respectively. The result is a 4-cell bounded by (0235),
(0345), (0235)', and (0345)". (Precisely speaking these faces have new sharing
faces so that we should use the different labelings but no confusion will occur
here, so we continue to use the same labelings.) The faces (023), (025), and

(235) (resp. (034), (045), and (345)) are shared by (0235) and (0235)" (resp.



DIAGRAMMATICS, SINGULARITIES, AND THEIR ALGEBRAIC 87

(0345) and (0345)'). The face (035) (resp. (035)") is shared by (0235) and
(0235)" (resp. (0345) and (0345)").

The cone move to (0345) and (0345)" followed by the pillow move to (0235)
and (0235)’ collapses 72 to (0235) U (0345) U (2345) as claimed.

Thus we get two polytopes ¢ and 77. Next perform a Pachner move to
(0124) U (0245); which shares (024);. As a result we get three new tetrahedra
(0145)" U (0125)" U (1245)".

Thus we obtain 7 bounded by (0123), (0134), (1234), (0235), (0345), (2345),
(0145)', (0125, and (1245Y, and 73 bounded by (0145), (0125), (1245), and
(0145)" U (0125)" U (1245)".

Hence we now can collapse 7 to the tetrahedra (0145), (0125), and (1245)

4 resulted

in the same manner as we did to 7:2. The result is a single polytope 7
from 77 which has the same boundary tetrahedra as those of the left hand
side of the 4D Pachner move. The same argument applies to the right hand
side (because of symmetry) to get the same single polytope. This proves that
(3 = 3)-move is described as a sequence of singular moves (cone moves) and

Pachner moves. a

5.5.5. Lemma. The (2 & 4)-move is described as a sequence of cone moves,

pillow moves, taco moves, and 3-dimensional Pachner mouves.

Proof. We use the following labeling for the (2 = 4)-move in this proof:

(01234) U (01245) = (01235) U (01345) U (02345) U (12345).

Perform (3 = 3)-move (which was proved to be a sequence of the singu-
lar moves in the preceeding Lemma) to (01235) U (01345) U (02345) to get
(01234)" U (01245)" U (02345)’. Then the polytope now consists of (01234)’,
(01245, (02345)’, and (02345).

Perform a Pachner move to the tetrahedra (0235) U (0345) U (2345), that are
shared by (02345)" and (02345), to get (0234)" U (0245)".



88 J.S. CARTER L. H. KAUFFMAN M. SAITO

This changes (02345)" U (02345) to a 4-cell bounded by (0234), (0234),
(0245), and (0245)’. The cone move followed by the pillow move collapses
this polytope yielding (01234) U (01245), the LHS of the (2 & 4)-move.

O

5.5.6. Lemma. The (1 = 5)-move is described as a sequence of cone moves,

pillow moves, taco moves, and 3-dimensional Pachner moves.

Proof. We use the following labelings:

(01234) = (01235) U (01245) U (01345) U (02345) U (12345).

Perform the (2 & 4)-move to (01235) U (01345) U (12345) to get (01234) U
(01245)" U (02345).

The 4-simplices (02345) and (02345)" share all the face tetrahedra except
(0345) (and (0345)"). Perform a (1 = 3)-move to these tetrahedra shared
to get 4-cells bounded by copies of (0345) sharing all the 2-faces. Thus the
pillow moves will collapse (02345) and (02345)’. The same argument collapses

(01245) U (01245)" to get the LHS of the (1 = 5)-move.
O

5.5.7. Remark. In [15] Crane and Frenkel proposed constructions of 4-
manifold quantum invariants using Hopf categories. Hopf categories generalize
the definition of Hopf algebra to a categorical setting in the same way that
modular categories generalize modules. One of the conditions in their defini-
tion is called the coherence cube which generalizes the compatibility condition
of Hopf algebras between mutiplication and comutiplication. They showed that
this condition corresponds to the cone move. Thus Lemmas in this section can
be used to prove the well-definedness of invariants they proposed by showing

that their definition is invariant under Pachner moves.

5.6. Conclusion. In dimension 4, we have various analogues of the 2-and 3-

dimensional structures occurring at the topological level. The topology suggests
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the content of the next order algebraic structure. For example, in the movies
of the shadow world we were able to interpret the moves to spines as relations
among the operations on parentheses. Alternatively, these are homotopies of
paths in the Stashefl polyhedron, and all of the Pachner moves are interpreted
thus. Moreover we can recover the polyhedron by means of the movies of the
tree diagrams, and the singularities in these movies correspond to the faces of
the polytope. Also, the concept of singular triangulations allows us to interpret
the Pachner moves in terms of a lower dimensional move, and a collection of
singular moves. This phenomenon occurs in the lower dimensions. The (2 = 3)-
move follows from associativity and a cone move; the (1 = 3)-move follows from
the associativity law and the 2-dimensional bubble move. These singular moves
give rise to other algebraic structures, and so one expects the cone moves in

dimension 4 to give rise to new more esoteric structures as well.

6. Knotted Surfaces

The purpose of this lecture is to review algebraic and categorical interpretations

of knot diagrams in dimension 4 recently developed in [13].

6.1. Knotted surface diagrams. Recall in Section 4, we discussed the charts
of embedded surfaces in 3-space. In this section, we will generalize to consider
the diagrams of knotted surfaces in 4-space. First, we review the definition of

a knotted surface diagram and its chart.

6.1.1. Defintion. Recall that a generic map from a 2-manifold to 3-space has
embedded points, double point curves, isolated triple points, and branch points.
A knotted surface diagram consists of a generic projection of the surface into
3-space together with crossing information (defined in the next two sentences)
included along the image of the double and triple point manifolds. The sheet
of the diagram that is further from the hyper-plane onto which the surface is
projected is broken; that is, a small tubular neighborhood of the image of one

of the sheets of the double decker manifold is removed from the surface F.
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At a triple point, this will mean that there is an indication of a top, middle,
and bottom sheet. Knotted surface diagrams of surfaces are also called broken
surface diagrams. See [11] for more details. The local pictures of knotted surface
diagrams are depicted in Fig. 29. We may abuse notation and not make the
distinction between the diagram and the projection of the knotted surface. In

particular, the moves to diagrams will be drawn as moves to projections.

6.1.2. Definition. Let F' be an embedded surface in 4-space, project I
generically into 3-space and consider a further generic projection onto a plane
called the retinal plane. The situation is an analogue of that for embedded
surfaces, but now we also consider the double points, triple points, and branch
points of the projection of the surface. As in the case considered in Section 3,
we pick a vertical and horizontal direction in the retinal plane. The retinal plane
is chosen so that it does not intersect the image of the surface F'. The critical
points in the vertical direction, cusps, and crossings of folds of the surface are
those illustrated in Fig. 4. The multiple point sets also have critical points
and these can also intersect the fold singularities; these critical phenomena are
illustrated in Fig. 30.

For each non-critical value y € R, the inverse image of y in R? intersects
the broken surface diagram in a classsical knot diagram. The horizontal axis
in the retinal plane provides a height function for this diagram. For example,

such a diagram is illustrated in Fig. 31.
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6.2. A combinatorial description of knotted surfaces. Next we study
the planar projections of knotted surfaces diagrams to obtain a combinatorial

description of knotted surfaces in terms of sequences of symbols.

6.2.1. Definition. Consider the image 7 = mopo K (F) of a generic projection
of a given knotted surface in the retinal plane. Let D denote the projections
of the double points, triple points, and branch points considered as subsets of
T. Assume without loss of generality that the map m o p o K is generic. Let §
denote the image of the fold lines and cusps of the generic map mopo K in Z.

Without loss of generality assume that D and S are in general position.

Let the chart, C = C(K,p, ), of K with respect to p and m, be the planar
graph DU S considered as a subset of Z which is further contained in the retinal

plane. We label the the chart C' according to the following rules.

The image D is depicted by a collection of solid arcs while the image S is
depicted by a collection of dotted arcs in our figures. In the figures a thick

dotted arc can be either an arc in D or an arc in S.

There are seven types of vertices in the chart C; these vertices correspond

to isolated stable singularities of codimension 0.

(1) The projection of a triple point gives rise to a 6-valent vertex. Every

edge among the six coming into the vertex is colored solidly.

(2) Each branch point in the projection of the knotted surface K(F') cor-
responds to a 3-valent vertex. Two of the edges at the vertex are colored as
dotted arcs (the fold lines); the other edge is solidly colored (the double arc
that ends at the branch point).

(3) Each cusp of the projection 7 gives rise to a 2-valent vertex in which

both edges are colored as dotted arcs.

(4) The projection of a point at which an arc of double point crosses a fold
is a 4-valent vertex. Two of the edges at this vertex are solid; the other two are
dotted. A circle in the retinal plane that encompasses such a vertex encounters

the edges in the cyclic order (solid, solid, dotted, dotted).
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(5) The points of the retinal plane at which the double points cross are
4-valent vertices at which all of the incoming edges are solid.

(6) The points of the retinal plane at which the fold lines cross are 4-valent
vertices at which all of the incoming edges are dotted.

(7) The points of the retinal plane at which an arc of D crosses an arc of S
are 4-valent vertices at which there are two solid edges and two dotted edges.
A circle encompassing the vertex encounters the edges in cycle order (dotted,

solid, dotted, solid).
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We use the projection of the knotted surface K in 3-space to label the edges
of the chart as follows. Consider a ray R that is perpendicular to the retinal
plane. Assume that R is in general position with p(K(F')), and assume that
the end of the ray lies on an edge E. The edge F is the image of the double
point arc or a fold line of p(K(F')). Let E’ be the preimage (either the double
point arc or a fold line). Let m (resp. n) be the number of sheets of p(K(F))
that are farther away (resp. closer to) from the retinal plane than E’ along the
ray. Then the pair of the integers (m,n) is assigned to the edge E as a label.
The label does not depend on the choice of point along the edge near which the
ray R starts.

6.2.2. Extending the 2-category. We can use the height function in the
horizontal direction to express each non-critical cross-sectional knot diagram
as diagram as word in symbols Up, , Niny Xon s, and Xmn. For example, the

diagram of the trefoil in Fig. 31 corresponds to the sequence of symbols
Mo,o No,2 X1,1X71,1X71,1 Uo,2 Uo,o-

By cutting the knotted surface diagram with non-critical slices we get a
sequence of such symbols, and these can be interpreted in 2-categorical language
as in Section 3. In fact for the categorical interpretation we need to include
1-morphisms corresponding to the braidings X, Xj,k Jtk+2 o5+ k42
Moreover, we will generalize the notion of a sentence to one in which additional
transitions between words are allowed. These transitions are codifed by the
critical values, crossings, and cusps in the vertical direction of the retinal plane.
Each such critical value corresponds to one of the elementary changes that are

illustrated in either Fig. 4 or in Fig. 30.

6.2.3. Definition. Let a set of symbols X,, ,, X’m,n, N OF Uy, be given.
Define the initial number of a symbol, «(Y,, ), and the terminal number of a
symbol, (Y, ), (where Y, ,, in one of the above symbols) as follows: (X, ) =

(Kmp) = 7(Xmpn) = 7(Xmn) = m4n+2, (N ) = m4n, 7(Nm ) = m+n+2,
L(Um,n) =m-+n-+ 2, T(ﬂmm) =m-+n.
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A word is a sequence Yy -+ Yy in symbols Y; = X, .. Xo, 0y O o Upy
where m and n are non-negative integers such that 7(Y;) = «(Yj41).

For a word W = Yj---Yj with Yy and Yj non-empty, 7(W) is defined by
7(Y%) and (W) is defined by «(Yp).

The empty word is allowed as a word, and any given word need not involve
all of the symbols. If a word is non-empty, then its first (resp. last) letter will
be Ngo (resp. Ugo).

A sentence is a sequence (Wy, Wy, -+ W) of words such that Wy and W,
are the empty words, and for any ¢ = 0,---, f — 1, W4, is obtained from W;

by performing one of the following changes.

1. Cancellation or creation of a pair of adjacent symbols Ny, Uy, in the

word.

2. Cancellation or creation of a pair of adjacent symbols Uy, ,Np,n in the

word, for appropriate values on m,n.

3. A replacement of N, Xy, by Ny, or vice versa; a replacement of
NmnXmn DY Nmn, Or vice versa; a replacement of Koialmm by Unin,

or vice versa; and a replacement of X, ,Up, » by Up, 5, or vice versa.
4. Cancellation or creation of a pair X, , X, or Xy o X

5. A replacement of one of the following:
X nXmt+1,0-1Xmn bY Xmt1,n-1XmnXmt1,n—1 OF Vice versa,
Xmme_,_Ln_lem by :m+1,n—1Xm,nXm+1,n—1 or vice versa,
van)?mﬂyn_l men by )’(m%n_l)’(m,nxm%n_l or vice versa,
Xmme_,_Ln_lem by Xm+1,n—1Xm,nXm+1,n—1 or vice versa,
menXmﬂyn_lem by Xm+1,n—1Xm,nXm+l,n—l or vice versa, or
Xm,nXm+l,n—1Xm,n by Xm+l,n—1Xm,nXm+l,n—l-

Note that these correspond to various crossing types of Reidemeister type

IIT move.
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6. A replacement of Ny, Xpg1,n-1 BY Ning1,n-1 Xonom, Vice versa, or a replace-

ment of Ny Ximt1.n—1 BY Nimt1,n—1Xim n, OF Vice versa.

A replacement of X, 11,,Umn by Xpng1Ung1,n—1, Vice versa, or a replace-

ment of Xm-H,nUm,n by X n41Um41,n-1, OF Vice versa.
7. Cancellation or creation of a pair Ny pUmt1,n-1 08 U Nt 1,n-1-

8. A replacement of Y, ,,Y; ; by Y;;Y, ., where Y, ,, denotes either X, ,, or
X e

9. A replacement of Y, ,,Y/; by Y/, Y, » where Y and Y" are N or U. This in
fact means the Items (9) through (16) in the generating 2-morphisms in
Section 3.3. See also the remark in the Item (4) of the sentence equiva-

lences in Section 3.4.

Thus any knotted surface diagram (with projection onto the vertical axis
in the retinal plane) gives rise to a sentence. Conversely, given a sentence we
can construct a knotted surface diagram: Each word gives a knot diagram, and

each successive pair of words gives rise to a FESI. In summary we have proved

6.2.4. Theorem. To any knotted surface diagram a sentence is assigned. For
any sentence there is a knotted surface whose corresponding sentence is the given
one.

The question of when two sentences represent isotopic knotted surfaces can
be answered by combinatorially interpreting codimension 1-singularities of map-
pings of surfaces into the plane. A complete statement of that combinatorial
equivalence is found in [13]. The moves to sentences that generate knotted sur-
face isotopies are analogous to, and include, the moves listed in Section 3.4.
The charts of the unfoldings of the codimension 1 singularities in this case are

illustrated in Figs. 33, 34, 35, and 36.

6.2.5. Theorem. Two charts with fized height function of isotopic knotted
surfaces are related by the moves depicted in Figure 33 through 36.
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In the illustrations, the dotted curves represent fold lines, and the solid
curves represent the projection of double point arcs. The thick dotted lines are
either double point arcs or fold lines. Strictly speaking, all of these arcs should
be labeled as indicated in Fig. 32, for without labels the moves are ambiguous.

Here we give some examples of how the chart moves correspond to “movie
moves.” In the sequel we will use many of these to show a certain example is

un-knotted.
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6.3. Example. It was shown by Livingston and Boyle [37] [5] that the
following example is unknotted. The example is known as the 1/3-turned trefoil.
It is a torus embedded in 4-space in which there is a cross section consisting
of a left hand a right hand trefoil. Here we indicate a movie of the surface, a
chart, and a sequence of moves to charts that can be used to show the surface
is unknotted. The charts can be expanded into film strips, and the entire
calculation laid bare. The importance of this calculation is that it indicates
that although one is manipulating diagrams, these diagrams could represent
an algebraic expression. Moreover, once the appropriate algebraic expression is
found that represents such diagrams, it seems clear that algebraic computation

will be no more easy than diagrammatic manipulations.

6.4. Concluding remarks. In this paper we explored a remarkable feature of
quantum topology: unexpected relations between diagrammatics and algebraic
structures. We emphasized the viewpoint of identifying singularities with the
relations in algebraic structures. We also presented new results on relations be-
tween the associahedron and the 4D Pachner moves given explicitly. We proved
that the 4D Pachner moves follow from singular moves, utilizing our diagrams
of 4D Pachner moves. We gave a review of new results on diagrammatics of
knotted surfaces. Higher algebraic structues and 4D knots and manifolds de-
serve more study and we hope that our diagrammatic results will provide the

fundamental machinery for the study.
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Figure 25: Paths in the associahedron and a 4-dimensional Pachner move



