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RECENT PROGRESS IN THE TOPOLOGY OF
PROJECTIVE STIEFEL MANIFOLDS

Peter Zvengrowski *

Abstract

In the past two to three years there has been a substantial amount of
progress in understanding the topology of projective Stiefel manifolds.
This note attempts to describe the main results and techniques involved.
In particular, new work (much of it still unpublished) on K-theory, em-
beddings and immersions, span, almost complex and complex structures,
and the order of the canonical line bundle, all pertaining to the projective
Stiefel manifolds, will be described.

1. Earlier work on projective Stiefel manifolds

The projective Stiefel manifolds X, ., 1 <r <n —1, were first studied in 1965
by Baum and Browder [6] as well as in 1968 by Gitler and Handel [8], Gitler [9].
For the basic definitions and notations the reader is referred to these papers or
to Korbas and Zvengrowski [13], §3.2. In the pioneering works the cohomology
algebra H*(X,,;Z/2) was computed and the action of the Steenrod algebra
A(2) partially found. The tangent bundle of X, , was first determined in 1975
by K.Y. Lam [16] and in 1976 by the author [22]. It will be useful to recall their

formula.

Lemma 1.1. 7,, & (rgl) e~ nré,,, where 7,,., ke, &, are respectively the
tangent bundle, the rank k trivial bundle, and the canonical (or Hopf) line bun-
dle over X, .
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This formula gives the stable tangent bundle and hence also the stable nor-
mal bundle as suitable multiples of the canonical line bundle.

In 1977 Antoniano [2] completely determined the A(2) action. One of the
original reasons for studying these manifolds was their relation to immersions
of real projective spaces P™, and this is discussed in a paper of Smith [20] in
1980. We shall need the following result of Smith, which also appears in the

earlier paper [8].

Theorem 1.2. Let & be a line bundle over a finite CW-complex Y. Then
né admits r linearly independent sections if and only if there exists a map

[ Y = X, suchthat [*(,,) = E.

The 1986 paper of Antoniano, Gitler, Ucci, and the author [3] initiated the
computation of the complex K-theory of these spaces, at least for the case n
divisible by 4. One immediate application, in the same paper, was the determi-
nation of all parallelizable (or stably parallelizable) projective Stiefel manifolds,
namely X, 1, Xom om—1,Xa,r, Xsr, and Xigg with the single case Xo5 re-
maining undecided. In the much more difficult problem of finding the span
of X, (excluding of course the already solved cases X, = P! by Adams
[1], and the above mentioned parallelizable cases), some progress was achieved
in a 1991 preprint of Korbas, Sankaran, and the author [12]. However, much
stronger results on span(X,, ) will be described in §4, §5 below. This brief sum-
mary does not touch upon some of the interesting applications of this family of
manifolds, we will simply cite as examples [2], [17], and [7], which deal respec-
tively with the generalized vector field problem, skewness of r-fields on spheres,

and the immersion conjecture.

2. K*(X,,) and applications

The ring K*(X4,) was computed in [3]. It is beyond the scope of this note
to go into the details of this calculation, but we will try to point out the salient

features. The main idea is to represent the space as a homogeneous space, i.e.
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X, =2 G/H, where G is a connected Lie group with (@) torsion free, H a
closed subgroup, and then apply the Hodgkin spectral sequence with Fy term
given by

B} = Torye(R(H),Z).

Here R(G), R(H) denote the complex representation rings, RH is an RG-
module by restriction, and Z is the trivial RG-module. In the case at hand
Xoy & O(n)/O(n —r) x (Z/2), where Z/2 = {£I,}, but O(n) is not
connected and has a fundamental group Z/2 with torsion. For n even one
has X,, = SO(n)/SO(n —r) x (Z/2) which can be lifted, using the double
cover Spin(n) — SO(n), to X, , = Spin(n)/H for asuitable closed subgroup
H of Spin(r). For n = 4m, it turns out that H =~ Spin(4dm — r) x (Z/2).
This fact makes the computation of RH ~ RSpin(4dm —r) ® R(Z/2) triv-
ial, which in turn simplifies the calculation of the restriction homomorphism
RH — RSpin(n).

As announced in [4], Barufatti and Hacon have recently determined the com-
plex K-theory of all X, ,. Presumably, their method involves first expressing
X, as a homogeneous space X, , = Spin(n)/H , where H is no longer a
simple direct product when n % 0(mod4), calculating the restriction homo-
morphism, and then proceeding along the lines of [3]. One important conse-
quence of this work is the determination of the (additive) order of the class of
the complexified canonical line bundle ¢, over X, (cf.[4], formulae (3), (4)).
We point out here that there is a minor error in (3), where the first term should
be 2[m=D/2 (as usual, [] denotes the integer part of z). In any case, we now
describe this result with slightly different notation. For any integer t > 1, 15(t)
denotes the exponent of the highest power of 2 dividing ¢, e.g. 15(48) = 4. For
any X, ,,let n =2morn =2m+1 and let k = [(n —r)/2].

Definition 2.1.

(a) For n even or r even, ai(n,r) := min{2j — 1 + 1, (’7) ck+1 <j},

(b) For n,r both odd, ai(n,r) := min{2k + v (TZ),Z] — 1+ (7]”) ck+1<j},
(¢) Forany n,r, a(n,r):=min{[(n —1)/2],a:(n,r)}.
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Theorem 2.2. The additive order of c£,, equals 20",

A well known corollary of this is that in real K-theory (i.e. in KO*(X,,,)),
the additive order of &,, willbe 2™ where b(n,r) = a(n,r)+¢ and ¢ is
either 0 or 1. In §5 we shall have a great deal more to say about ¢.

Of course the classical method of finding the Stiefel-Whitney classes of the
stable normal bundle (cf.[18]) can be used to find upper bounds for immersions
and embeddings of X, ., since the stable normal bundle is —nr¢,, (and thus
the Stiefel-Whitney classes of the normal or tangent bundles are readily found).
In addition, Barufatti applies the v-operations in K O-theory and the informa-
tion on b(n,r) given above to obtain K O-theoretic upper bounds for immersion
and embedding dimensions. For details cf. [4], Prop. 3 and Prop. 4. Finally,
the results on b(n,r) are applied in this paper to give a somewhat simpler proof

of the parallelizability theorem found in [3].

3. Almost complex structures on X, ,

In the preprint [11] Korbas and Sankaran have completely determined all X, ,
admitting almost complex structures, and also found many that admit complex
structures. Their methods, for the almost complex structures, are elementary
and based on the descriptions of the tangent bundle found in [17], [22]. To
further obtain that some of these admit complex structures, results of Wang

[21] are applied. The main theorems are as follows.

Theorem 3.1. Let 2 < r < n —2. The manifold X, , is almost complex if
and only if r = 0(mod4), orn is even and r = 3(mod4). Furthermore no
Xo1 = P* s almost complex, and X,y is almost complex if and only if

n=0,1(mod4).

It is easy to check that the conclusions of this theorem are equivalent

to the following more perspicuous statement (also given in [11]): X, ., for
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1 <r <n-—1, admits an almost complex structure if and only if it is both

orientable and even-dimensional.

Theorem 3.2. The manifolds X, (k > 1, n — 4k > 1) and Xs3 admit
complex structures, and any even-dimensional product of a finite number of

Xnos (for possibly different s > 1) admits a complex structure.

4. The span of X, ,

In this section it will be useful to use the notation d = d,, = dim(X,,) =
nr — (rfgl). It will also be useful to recall the notion of stable span, written
span’ (for a definition cf. [13]), and the basic property span< span®. It is not

difficult, using 1.1 and 1.2 above, to prove the following result.

Lemma 4.1. One has span®(X,.) > d—k if and only if there exists a map
f : Xn,r = an,nr—k such that f*(gnr,nr—k,) ~ {.n,r-

This lemma, or more precisely its contrapositive, can then be used together
with any suitable cohomology theory to obtain upper bounds for span®(X,.,),
and hence also for span(X,,). As in the work in §2 on immersions and
embeddings, both H*(X,,;Z/2) and K*(X,,) can be used in this way to
furnish good upper bounds. For example, just using the height of the one-
dimensional cohomology class = € H'(X,,,;Z/2) is already equivalent to the
use of the Stiefel-Whitney classes to obtain upper bounds for the span.

Obtaining good lower bounds for the span appears to be more difficult. The

lower bound span(X, ) > (;) is obvious from the isomorphism (cf.[16],[22])

T’fly"” ~ T(ﬁn,r ® fn,r) @ (;) 67

where (3, is the evident "orthogonal complement” bundle of rank n — r. How-

ever this lower bound is generally too weak to be of interest. On the other hand,
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there is an excellent lower bound &, , := 7(7"42'1)_1_ span(nré, ;) for the stable
span, as is easily proved using 1.1 and the fibre map p: X,, — X, = P"!
(noting that p*(&,,1) & &,»). This lower bound is both strong and computable,
thanks to the work of K.Y. Lam [15] (and others) on the generalized vector
field problem. Unfortunately it is a priori only a lower bound for span®, but J.

Korbas and the author have succeeded in showing that it is also a lower bound

for span [14].

Theorem 4.2. For any projective Stiefel manifold X, ., one has
span(X,, ) > ky., with the possible exception of Xomy12, m > 4.

The proof of this theorem is surprisingly easy in most cases, and uses the sta-
bility properties of vector bundles together with explicit bundle isomorphisms.
This portion of the proof can be found in [14] ,p.100, and the cases X529, X7
n [12]. The undecided cases in Theorem 4.2 can be settled by the computation
of a suitable Browder-Dupont invariant, but thus far attempts to carry out this
calculation have not succeeded. The following examples will give some idea of

the power of the above methods. They are selected more or less at random.

Examples 4.3.

(a) span(Xis4) = 38,

(b) span(Xiss) = 58,

(c) 1,618 <span(Xsssi) < 1,625,

(d) 36,897 <span(Xsi4,159) < 37,056.

5. The real order of the line bundle ¢, ,

As we have seen in §2, the (real) additive order of the canonical line bundle &, ,
is 221 where b(n,r) = a(n,r)+e, a(n,r) is given by Definition 2.1, and
¢ can equal 0 or 1. This determines b(n,r) completely except for the small
but somewhat annoying €. However, finding the value of ¢ can be a highly

non-trivial task. For example, such a problem occurred as part of the Adams
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conjecture (cf. [10] ,p.227). P. Sankaran and the author (cf. [19]) have given
two rather different proofs of a theorem which determines ¢ in about 70% of all
cases (in an asymptotic sense). Before stating the theorem it will be necessary
to make a definition. Noticing from Definition 2.1 that as r increases from
1 to n — 1, the minimum in 2.1 (c) starts at [(n — 1)/2] for low values of r
but eventually is given by a(n,r) once r gets large enough (roughly n/2), we

proceed as follows.

Definition 5.1. For a given n, we say that r is in the upper range when

a(n,r) = ai(n,r), and otherwise that r is in the lower range.

Theorem 5.2. Whenever r is in the upper range, or n = 0,41 (mod8),

one has b(n,r) = a(n,r) or equivalently ¢ = 0.

It is worth noting that e = 1 is certainly possible, indeed it follows from [1]
that b(n,1) = a(n,1) + 1 whenever n =2,3,4,5,6 (mod8). This and other

evidence suggest the following.

Lower Range Conjecture 5.3. For n = 2,3,4,5,6 (mod8) and r in the
lower range, ¢ = 1.

We close with the observation that Theorem 5.2 and the Lower Range Con-
jecture have implications for multiples of a line bundle £ over any finite CW-
complex Y, because of Theorem 1.2. Indeed, using this theorem it is clear that
if n¢ admits r linearly independent sections, then the additive order of £ must
be a divisor of 2°(*"). Similarly, Theorem 5.2 gives an immediate sharpening of

the results of Barufatti (in particular [4], Proposition 3.3).
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