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BOUNDS ON THE DIMENSION OF MANIFOLDS
WITH CERTAIN Z, FIXED SETS

Pedro Luiz Queiroz Pergher*®

Abstract

In this paper we prove that if a smooth involution defined on a smooth
closed (2n + k)-dimensional manifold fixes the disjoint union of a 2n-
dimensional manifold and a point with n odd, then £ is less than or
equal to n + 3.

Resumo

Neste artigo provamos que, se uma involu¢cdo C'*° definida em uma
variedade fechada e '™ de dimensio 2n+ k fixa a unido disjunta de uma
variedade fechada de dimensdo 2n com um ponto, onde n é impar, entdo
k é menor que ou igual a n + 3.

1. Introduction

Suppose M™ is a smooth closed m-dimensional manifold and 7' : M™ — M™ is
a smooth involution defined on M™. The fixed set of T, F', is a disjoint union of
closed manifolds, F' = U Fi, where F’ denotes the union of those components
of F having dnnenslon 7. It is well-known from equivariant bordism theory that
if (T, M™) is non-bounding then F' cannot be too low dimensional. The best
result in this direction is the famous 5/2-theorem of Boardman ([2] and [3]),
which establishes that if M™ is non-bounding then m < 5/2dim(F); by dim(F)

we mean the dimension of the highest dimensional non-empty component of
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F. A strengthened version of this fact was obtained by Kosniowski and Stong
in [6], namely, that if (7, M™) is a non-bounding involution then m < 5/2n.
In particular, if F' = LTJ Fi is non-bounding and if (7, M™) is an involution
fixing F', then m < 5/J2_n0; this follows from the fact that the bordism class of
(T, M™) is determined by the bordism class of its fixed data. This result allows
the possibility that fixed components of all dimensions 7, 0 < 7 < n, occur. In
this way, it is a interesting question to ask whether there exists a better upper
bound for m when we omit some components of F. For example, Kosniowski and
Stong proved that if F = F" is of constant dimension n and non-bounding, then
m < 2n (see the first proposition of Section 6 of [6]). Certainly this is the best
upper bound for this particular situation; to see this, it is sufficient to consider
the involution (S, RP(2r) x RP(2r)), where RP(2r) is the 2r-dimensional real
projective space and S switches coordinates. So, by considering fixed sets of
non-constant dimension, the next case of interest will be F' = F™ U {p}, where
p=point and n > 0 (which evidently does not bound). In this case, Royster
proved that if n is odd then m = n + 1 (see Theorem 2.3 of [7]). This result
is not true for n even; in fact, the involution defined on the complex projective
plane C'P(2) by [z0, 21, 22] = [—20, 71, 72] fixes the disjoint union of a 2-sphere
and a point. Our interest is looking closer at this question; specifically, we prove

in this note the following

Theorem. If (T, M****) is an involution firing F? U {p} with n odd, then
kE<n4+3.

We remark that this result is not valid for n even. In fact, consider the
involution (7, RP(3)) given by 7[zg, z1,22] = [0, 21, ¥2], which fixes RP(2) U
{p}. Denoting by N.?2 the unrestricted bordism group of smooth manifolds with
involution, consider the standard endomorphism of degree one T : N7z — /\fnz_f_l,
introduced by J. Alexander in [1] and which is given by I'[T, M™] = [, M],
where ~ identifies (m,r) with (T'm,—r) and S[m,r] = [m,7], the bar denoting
complex conjugation. By computing characteristic numbers and using Theorem

24.2 of [5], one can prove that I'*[7, RP(3)] contains an involution (u, V?) fixing
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RP(2)U{p}, and (p x p, V® x V) is bordant to an involution defined on a 10-
dimensional manifold whose fixed set is (RP(2) x RP(2)) U {p} (actually, the
product involutions (1, (V*)*), r € N, which are bordant to involutions fixing

(RP(2))? U {p}, provide examples where the Boardman’s limit is attained).

Proof of Theorem. We establish first some facts and notations. Denote by
n —s F?" the normal bundle of F'2* in M?"*t* and by W(n) = 14vi4uve+...+vp
and W(F™) =14 w; + wy + ... + wy, the total Stiefel-Whitney classes of n
and 7(F?"), respectively; here 7(F?") — F?" is the tangent bundle of F2".
Let A — RP(n) be the usual line bundle over the projective space bundle
associated to n, and let ¢ € H'(RP(n), Z;) be the first characteristic class of \.

Write W(RP(n)) =14+ Wi+ Wy + ... + Wapyg—1; from [4], one has that
k
W(RP(n)) = (14w +ws+ ... + way) Z +¢) }” Jv]
j=0

That is,

T
W, = Z ( p) wyvpc?,

t4prg=r \ 4
(k;p) denoting the binomial coefficient taken mod 2 (here we are suppressing
all bundle maps, and shall continue to do so throughout of this paper).
Write W(RP(2n+k—1)) = 1460, +602+...4+ 02,41, and let « € H'(RP(2n+
k — 1), Z5) be the generator; one knows that

W(RP(2n+k—-1))=(1+ a)2"+k =(1+ oz)Q"(l + a)k

.= > <2n> <k) o't
itj=r \ ! J

Denoting by ¢ — RP(2n 4+ k — 1) the canonical line bundle, one has

That is,

from [5;28.1] that the bordism classes of A and ¢ are equal as elements of
Nanyi—1(BO(1)), the bordism group of 1-dimensional vector bundles over smooth
closed (2n + k — 1)-dimensional manifolds; on the other hand, by [5;23.1], these
classes are determined by their characteristic numbers. This is the key which

will allow us to obtain our theorem.
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Suppose for a moment that we can find a homogeneous polynomial over
Zy of degree three involving ¢, Wi, Wy and W3, which we denote by P; =

Ps(c, W1, Wy, W5), such that:

1) P; can be expressed as P3 = p3+ cp2, where py and p3 are homogeneous poly-
nomials of degree two and three, respectively, with p, involving only vq, vq, wy
and wy, and p3 involving only vq, vy, v3, wy, we and ws;
i) Ps(a,by,0,,05) = o

Assuming this, suppose first that & is odd. Then 2n 4+ k£ — 1 is even and
hence #; = a. Now write 2n + k —1 = 3z + ¢, where t = 0,1 or 2. Then

Wi Ps(c, Wy, Wy, W3)"[RP(n)]
is a characteristic number of A, and the corresponding number of ¢ is
0 Py, 0, 04,05)" [RP(2n + k — 1)],
which by ii) is
' [RP(2n 4+ k —1)] = " RP2n 4+ k—1)] =

Together with i), this yields the fact that (p3+cp2)” is an element of H3*(RP(n), Zs)
different from zero. But
. x r—1 __ . TN wei i i
(st ep2)” =20 |palepa)™™ =30 | papy
i=0 i=0 \!
Therefore there is some 0 < i < z so that pip3~* is different from zero. Looking
at the description of p; and p; and because the projection p : RP(n) — F*"

induces monomorphisms on the Z3-cohomology groups, one has that the element

pipt~" can be considered as belonging to H*(F?", Z;). It follows that
Ji+2z—1)=2z+1<2n

Since ¢ > 0, this implies @ < n, that is,

2n—|—k717t<
—3 =

n,
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thus n > k — 1 — ¢, and finally
E<n+1+1<n+3

We assume now that k is even. Then 2n + &k — 1 is odd and so 8; + a = a.

Hence, by replacing the characteristic number W{ Ps(c, Wy, W, W3)”[RP(n)] by
(W + )" Ps(c, Wy, Wo, Wa)"[RP ()]

in the above argument, we can prove in a completely similar fashion that also
k < n + 3 in this case.

To finalize the proof, all that remains is then to exhibit the polynomials Ps.
To do this, we will handle the previously presented formulae for 8, and W, using
extensively the known fact that (‘Z) =1 (mod 2) if and only if every power of 2
occuring in the dyadic expression of b also occurs in the dyadic expression of a.
To understand our considerations we remark that the dyadic expression of 2n
does contain 2, since n is odd by hypothesis. We divide the construction into

several cases:

Case 1) k is odd and its dyadic expression contains 2: it is an easy computation
to show in this case that §; = a and 03 = 0. On the other hand, a tedious
computation shows that Wi = ¢+ vy + w; and Wy = & + c*v; + cvy + v3 +

02w1 + cwy + vowy + viw, + ws. Hence

P3(C, Wl, WQ, Wvg) = W3 + CW? + W13 + C3 =

= v3 + vow; + Viwz + w3 + v§ + wivy + viw; + w4 c(vy + wy)
satisfies the required conditions.
Case 2) k is odd and its dyadic expression does not contain 2: in this case,
05 = o and W3 = v + vowy + 1wy + w3 + c(vy + ws), so

Ps(c, Wy, Wa.W3) = Ws

is the desired polynomial.

Case 3) k is even and its dyadic expression contains 2: in this case, one has
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0, =0, 0, = 0 and 03 = 0; on the other hand, W; = v; + wy, Wy = ¢ 4+ cvq +
vy + vywy + wy and Wi = vs + c?wy + corwy + vewy + viw, + ws. Therefore
PB(C, I/Vl, VVQ, I/Vg) = VV3 —+ CW2 + C2VV] -+ C3 =
= v3 + vaw; + viwy + w3 + ¢(vy + wo)

is as required.

Case 4) k is even and its dyadic expression does not contain 2: in this case 8y =
ao?, 05 =0, Wy = cv1+vytviw; +w, and Wi = 2oy +vs+cogw Fvow; +v1we+ws.
Hence we can take
P3(C, Wl, WQ, Wd) = I/V:j + CI/VQ =
= v3 + vawy + v1wz + w3 + ¢(vy + w2)
O

By introducing a slight modification which is suggested by the above method,

we can shorten the proof presented by Royster of the result mentioned in the
introduction, namely, that if (T, M"**) fixes F™ U {p} with n odd, then k = 1.
We present this proof: by [5;27.2] one has xy(M™*) = x(F" U {p}) = 1 (mod
2), where x denotes the Euler characteristic. Thus, n + k£ must be even and so

k must be odd, which implies that W) = v; + w; + ¢ and #; = 0. Therefore
(Wrte)"H*HRP()] = (viw))" P RP(n)] = (01+a)" ™ [RP(nt+k—1)] = 1

So (vy +wy)" =1 € HrHE-1(F Z,) is different from zero, which implies that
n+k—1<n,that is, k£ < 1.
Despite this simplification, we emphasize that the argument used in this

paper was inspired by the method developed by Royster.
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