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ON THE ACTION OF SEMIGROUPS IN FIBER
BUNDLES
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Abstract

This paper studies the behavior of control sets for semigroup actions
on principal bundles and their associated bundles. The emphasis is put
on the description of those sets from their projections onto the base space
and their intersections with the fibers.

Resumo

O objetivo deste artigo é estudar os conjuntos controldveis para a agdo
de um semigrupo em um fibrado principal e em seus fibrados associados,
enfatizando a descricdo desses conjuntos através de suas projecdes no
espaco de base e de suas intersegoes com as fibras.

1. Introduction

Semigroup actions on homogeneous spaces and fiber bundles have received quite
some attention lately. This is in part due to the envisaged applications of this
theory in dynamical systems, control theory or spectral theory of flows on vector
bundles. One of the central ideas in these applications is the study of transitivity
of the semigroup action, that is to say, the analysis of the control sets.

The present paper studies the control sets of semigroups acting of fiber
bundles using topological methodology. The main object to be considered are
the control sets for this action (see Definition 2.1 below). Our purpose is to
describe these sets from their projections onto the base space and their inter-
sections with the fibers. More specifically, let @) (M, &) be a principal bundle
with base space M, total space () and structure group GG, and E (M, F,G, Q) a
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fiber bundle associated to @ with typical fiber F. Let also Sg be a semigroup
of automorphisms of . Then Sg induces semigroups Sg and Sy acting on
and M respectively. We study here the control sets for the Sg-action on F.
We first check that the projection onto M of the Sg-control sets are control
sets for the Sys-action so that we are led to the analysis of the Sg-action over
a control set. For this we suppose that the orbits Sgq, ¢ € @ have nonempty
interior. With this assumption, the intersection of Sgq with the fiber through ¢
identifies with a semigroup, say 5;, which has nonvoid interior in the structure
group (. Roughly speaking, the intersection with a fiber of a control set for Sg
is shown to be a control set for the action of S; on the typical fiber F. So that
we get a description of the control sets on E as soon as we have a procedure
of bunching together the control sets on the different fibers. We present such
a procedure for the invariant control sets, obtaining these sets as the union of

invariant control sets on the fibers (see Theorem 4.4 below).

2. Preliminaries on control sets

In this section we recall the definition of control sets for semigroup actions and
present the results that will be used throughout the paper. We refer to [1], [3],
for results on control sets for control systems and [4], [9], [10], [11], for control
sets for semigroup actions.

Let S be a semigroup of diffeomorphisms acting on a manifold M.

Definition 2.1 A control set for S on M is a subset D C M satisfying
1. int D # 0,
2. D Ccl(Sz) forallz € D, and
3. D is mazimal salisfying these two properties.

An invariant control set is a control set D which besides of 2) satisfies
cl(Sz) = clD for all z € D. We note that the term invariant here is not

properly used in the sense that invariant control sets are not always S-invariant
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(see [8] for an example of an invariant control set which is not S-invariant).
However, in the context we work here, namely with the assumption that S has

the accessibility property (i.e., int S (z) # @ for all z € M) invariant control

sets are indeed S-invariant and closed subsets (see [2], [5]).

Suppose that both S and S=' = {g7' : g € S} satisly the accessibility
property. Let D be a control set for S and define

Do ={z € D:zeint(Sz)Nint (S 'z)}.

Then we have the following result which is a slight extension of Proposition 2.2

of [10].
Proposition 2.2. Suppose Do # (). Then

1. D Cint(S™'z) for every x € Dy.

2. Do =int (S~'z) Nint (Sx) for every x € Dy

3. For every x,y € Dy there exist g € S with gz = y.
4. Dy is dense in D

5. Dg is S-invariant on D, in the sense that hx € Dy if h € S, x € Dy and
hx € D.

Proof.

1. Take y € D and z € Dy. Since x € int (S~'z) N D there exists g € S such
that gy € int (S~'z). Thus y € g7 int (S~'2) C int (S~ 'z).

2. Suppose = € Dy and y € int (Sz) Nint (S~'z). We have that int (Sz) =
int (Sy) and int (S~'z) = int (S~'y) . Therefore y € Dy. On the other
hand, if z,y € Dy we have by 1), y € int(S7'z) and = € int (S~ 'y).
Thus, there exists g € S such that gz = y. Since # € int (Sz) we have

that y = gz € gint (Sz) C int (Sz). Therefore y € int (Sz) Nint (S~'=z).
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3. Follows immediately from Dy C int (Sz) Nint (S~ '=).
4. Take x € Dy. Since int (Sz) and int (S~'x) are open we have
cl Dy = cl(int (Sz)) Nint (S~'x).
Now, D C int (S~'z) by 1). On the other hand
D C cl(Sz) C cl(Sint (Sz)) C cl(int (Sz)).
Therefore D C ¢l Dy and Dy is dense in D.

5. Take h € S, 2 € Dy and suppose that hz € D. Since z € int (Sz) we have
hx € int (Sz). We also have by 1) that hz € int (S™'z), and therefore
hx € Do.

O

We say that Dy is the set of transitivity in D, and D is named an effective
control set if Dy # (.

It is not difficult to show that Dy = {2 € D : ¢ € (intS)z} if S is a
subsemigroup of a Lie group G with interior points in G and M is a homogeneous
manifold of G. So that the above proposition implies [10 Prop.2.2].

As a complement to the above proposition we have the following statement

which ensures the existence of effective control sets.

Proposition 2.3. Let x € M be such that
x € int (Sz)Nint (S_I.T) .
Then there exists a unique control set D such that x € Dy, which is effective.

Proof. The subset int (Sz) Nint (S~ z) satisfies properties 1) and 2) of Defi-
nition 2.1. Therefore if we apply the Principle of Maximality of Hausdorfl to
the subsets satislying these properties and containing =, we get a maximal one,

say D, which is a control set. This control set clearly contains x in its set of
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transitivity. Also, the uniqueness follows from the fact that different control
sets do not overlap.

O

At this point we mention that for semigroups generated by families of vector

fields, which appear in the literature of control theory, there are more precise

statements than the above ones: Let £ be a family of vector fields on M and

put
So={X}o---0X} : X' €Q,t; >0}

where X; stands for the flow of the vector field X. Then Sg is a semigroup of
(local) diffeomorphisms on M. Under the well known Lie algebra rank condition
both Sq and Sg' are accessible, and if this holds, property 2) of the definition
of a control set imply that D is effective if it has nonempty interior (see e.g.

[3] ). In this case we have that Dy = int D.

3. Fiber bundles

In this section we study the control sets for semigroup actions on principal
bundles and their associated bundles.

For the theory of principal bundles and their associated bundles we follow
[6], and adhere to its notations. In particular, we consider here only locally
trivial bundles.

Let Q(M, G) be a principal bundle having total space @, base space M and
structure group (G. We denote by 7 : ) — M the canonical projection, and the
right action of G on @ is denoted by R,, or simpler by g.a or qa, g € Q, a € G.
This action is free and transitive on the fibers, so that if we fix ¢ € 77! (z) = Q,,

in the fiber over & € M, this fiber identifies with G' by
ita€Gr—rqacn(x). (1)

We remark that since @ is supposed to be locally trivial, it follows that this

identification is actually a diffeomorphism.
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Suppose that GG acts on the left on a manifold F' and consider the associated
bundle to the principal bundle Q(M, G) with typical fiber F. This bundle will
be denoted by E(M, F,G,Q), or simpler by £, the total space of the bundle.

We recall that the elements of E are equivalence classes with respect to the
relation on @ x F given by (g,v) ~ (g.a,a™v) for @ € . We use the notation
q-v, q € Q,v € I for the equivalence class of (q,v).

The canonical projection m : £ — M of the associated bundle is related to
that of the principal bundle by 7(q - v) = m(q).

There are the following mappings: A fixed ¢ € @ induces a bijection v €
Fr— q-v € E, where E, = 77 (z) and = = 7(q), between the fiber over  and
the typical fiber. Sometimes we also denote this mapping by ¢. Note that since
the principal bundle @ is locally trivial it follows that this bijection between F
and F, is actually a diffeomorphism. On the other hand, a fixed v € F' defines
amap v : Q — E by v'(¢) = ¢-v. If the action of G on F is transitive this
map is an onto submersion.

Let Sg be a semigroup of local diffeomorphisms of () commuting with the
right action, that is, if ¢ € Sg then ¢(q.a) = ¢(g).a for all a € G. We suppose
that the elements of Sg are defined in subsets of the form 7~'(U/), with U an
open set of M. Then Sg induces a semigroup Sy of local diffeomorphisms of
M. We use the same symbol ¢ to denote the diffeomorphism of M induced by
¢ € Sg. It is given by

¢(m(q)) = m(¢(q))-

Similarly, ¢ € Sg induces a local diffeomorphism, also denoted by ¢, of the
associated bundle E. It is given by the formula

b(q-v)=¢(q) v

The corresponding semigroup of diffeomorphisms acting in F is denoted by Sg.
In case the semigroup Sq is generated by a family Q of vector fields on @,
its elements commute with the right action if and only if the vector fields are

right invariant, i.e., Ry (X) = X for all X € @ and a € GG, where R,. stands
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for the differential of the right action. In this situation, the vector fields in
are projectable onto M and Sys is generated by these projections.

By the very definitions, the accessibility of Sg imply that Sy is also acces-
sible. On the other hand, we remark that if Sg is generated by a family of right
invariant vector fields, its accessibility is a consequence of the accessibility of
Sy and S3}', and the transitivity on @ of the group Gg generated by Sq (see
[7]). In the sequel our basic assumption is that both Sg and S5 are accessible.
However, since we wish to work over control sets of Sy, the following stronger

version of accessibility is needed.

Definition 3.1. Let D be an effective control set for Sy. The semigroup Sg
is said to be accessible over D if for some, and hence for all, ¢ € 7= (Dy),
int (Sgq) N 7= (D) # 0. Similarly, Sk is accessible over D if int (Sgu) N
71 (Dy) # 0.

Given g € @, the intersection Sg (¢) N @, * = 7 (g) can be seen as subset
of G by putting

Sy={aeG:3¢p€ Sq,¢(q) =q.a}. (2)

It is readily seen that S, is a subsemigroup of G if S, # (). The subset
T,={a€G:3¢ € 5,q.a=¢(q) €int (Sgq)} (3)

which is identifies to int (Spq) N @, is also a semigroup in G. Since the identi-

fication (1) is a diffeomorphism we have that T, C int S,, where the interior of

g
Sy 1s taken in . The following lemma ensures that in presence of accessibility

T, is not empty.

Lemma 3.2. Let D C M be an effective control set for Sy and suppose that
Sg is accessible over D. Let q € 7' (Dy). Then T, # 0 so that int (S,) # 0.

Proof. Take ¢ € Sg such that ¢ (q) € int (Sgq)Na~" (D). Sincexz = 7(q) € Dy,
there exists ¢ € Sg such that the corresponding diffeomorphism of M takes

m(¢(q)) back into z, so that ¢¢(g) belongs to the same fiber as g. By the
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choice of ¢ we have that ¢¥¢ (¢) € int (Spq) showing that 7, has interior points
as claimed.
O
An immediate consequence of this lemma is that the accessibility of Sg over
D implies that S5" is also accessible over D. In fact, T;' = {a™" : a € T}}
identifies with int (Sélq) N @, so that int (Sélq) is not empty if T, # 0.
Before proceeding we mention that if ¢ and ¢’ = g.a are in the same fiber

then the semigroups Sy and S, are related by
Y

In fact, take ¢ € S, and let ¢ € Sy be such that ¢(¢') = ¢’.c. Then ¢(q).a =
¢ (q.a) = q.ac, that is, ¢(q) = g.aca™. This shows that aca™ € S,, and hence
that Sy C a™'S,a. The reverse inclusion is shown the same way by writing
q = q.a”'. With the same arguments it follows that T,y = a='Tja.

Given a fiber bundle £ (M, F, (, Q) associated to () we have that Sg induces
a semigroup Sg of diffeomorphisms of E. We shall assume in the sequel that
the action of (G on the typical fiber is transitive. In this case, the map ¢ — ¢q-v
mentioned above is an onto submersion so that the accessibility of Sg implies
that of Sg.

We are interested in the control sets for Sg. For this we note that for each
q € @, the semigroup S, acts on the typical fiber F. So the idea for studying
control sets on F is by breaking down the action of Sg into the action of Sy on
the base space and the action of S; on F' with ¢ running through the different
fibers of ). We start by looking at the behavior of the control sets under

projections.

Proposition 3.3. Let E be the above fiber bundle with projection m : £ — M
and S, Sg and Sy the above semigroups. Let D C F be a control set for Sg.
Then

1. there exists a unique control set C C M for Sy and such that m(D) C C'.

If D is tnvariant then C' is also invariant.
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2. If D is effective then C is also effective and w(Dy) C Cy.

Proof.

1. Let z,y € m(D), and take u,v € D such that m(u) = 2z and 7(v) = y. By
definition there is a sequence ¢, € Sg such that ¢,(u) — v. Therefore
T(Pn(u)) = dn(m(u)) — 7(v) = y. Hence y € cl(Syz). Since z and y were
arbitrary this shows that 7 (D) satisfies the second condition for a control
set. Moreover, 7 is an open map hence 7 (D) has nonempty interior so
that it is contained in a control C for Sy;. The uniqueness of C' is due to
the fact that the intersection of different control sets is empty and if D
is invariant then the invariance of C follows form m(¢(u)) = ¢(n(u)) for

every u € .

2. Take v € Dy. Then v € int (Spv) Nint (5’;711)). This implies that 7 (v) €
int (S (v)) Nint (S]\_/[lTF (v)) which shows that 7 (v) € Cy. Hence Cy is

not empty and C' is effective.

O

This proposition defines a mapping D — C' from the control sets in F into
the control sets in M. We show next that in the case £ is compact and in
presence of accessibility every effective control set in M is in the image of this

mapping.

Proposition 3.4. Let C C M be an effective control set for Syr. Suppose that
the typical fiber F is compact and that Sq is accessible over C'. Then there
exists an effective control set D C E for Sg with 7(D) C C and 7 (Dy) C C.

Proof. Take z € Cy and ¢ € (),. By Lemma 3.2 T, is an open and nonvoid
semigroup in G. On the other hand, the compactness of F implies that there
exists an effective control set for T, on F (see e.g. Section 2 of [9]). Hence there
are ¢ € Ty and v € F such that av = v. Of course g.a € int (Sgq), and since

the map ¢ € Q — ¢-v € E is open we have that ga - v € int (Sg(¢-v)). But
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ga-v=gq-av=q-vsothat ¢-v € int (Sg(q-v)). Arguing the same way with

Sél instead of Sg, we conclude that

q-ve€int (Sg(g-v))Nint (SEI (q- v)) ;

Therefore Proposition 2.3 implies that ¢ - v belongs to an effective control set,
say D, for Sg. Since the projection of ¢ - v is x € Cy we get from the previous

proposition that = (D) C C and 7 (Do) C Co.

Concerning the intersection of a control set with a fiber, we have

Theorem 3.5. Let D C E be an effective control set for Sg. Take v € M such
that Do N E,. # 0 and let ¢ € Q.. Then there exists an effective control sel A
for Sy in F' such that

DoNE,=q- Ao

Proof. Define the subset By C F by Dy N E, = ¢q- By. We have that By is
open in I because Dy is open in F and ¢ defines a diffeomorphism between F
and F,. Take vi,vy € B and put v = ¢- vy and w = g - vy with u,w € Dy N FE,.
Since u,w € Dy we have by Proposition 2.2 that there is ¢ € Sg such that
&(q-v1) = q-vq. Clearly, this map fixes the fiber over x so that in the principal
bundle level, ¢ (¢q) = g.a for some a € G. Since ¢ is in the semigroup we have
that @ € S,. However ¢(q-v1) = ¢(q) - v1 = (g.a) - v1 = q - avy, hence avy = v,.
This shows that By C Sy for all 2 € B. Therefore there is a control set A for
Sy such that By C A, i.e., DoNE, C q- A.

We have that A is effective and that Dy N E, C g+ Ap. In fact, take v € By.
Then v € A and for every v; € By there are ¢ € int Sg and ¢ € int S5 such
that ¢(q-v) = q- vy and ¢ (q-v) = q-vi. Each one of these maps fixes the
fiber over z. Hence we can write ¢ (q) = ¢q.a and ¢ (¢) = ¢.b with a € T, and
b€ T;'. Clearly, both ¢ and b map v into vy so that By C int Syv Nint S, v
and

v € int (S,v) Nint (Sq_lv) ;

Hence A is effective and By C ¢q - Ao.
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The reverse inclusion follows if we prove that for any z € ¢ - Ag there exists

u € Dy such that z € Sgu and v € Sgz. In fact in this case we have that
D C clSgu C clSgz

because u € Sgz, and reciprocally, for any w € D, u C cl Sgw so that
z € Sgu C cl Sgw.

Therefore the maximality property in the definition of a control set ensures that
z € D. Furthermore, the fact that z € Sgu, u € Dy implies, by Proposition
2.2, that z € Dj.

Now, given z = q-v € q-Ap take u € DyNE,. Then u € q-Ag so that u = g-v;
with v; € Ap. Hence there are a,b € S, such that av = vy and bvy = v. By the
definition of S;, we have that ¢(q) = q.a and ¢ (¢) = ¢.b for some ¢, € Sg.

Therefore if we consider the corresponding mappings ¢, ¥ € Sg, we have

p(z)=¢(qg-v)=¢(q)-v=q-av=q-vi =u

and
¢’(u):1/’(Q'Ul) :1/)((1)'121 =q-buy=q-v==2
concluding the proof.
]
Joining together the previous results we can show that control sets for T},

on the fibers are contained in control sets in the bundle.

Proposition 3.6. Let E be the above fiber bundle and suppose that for q € @,
T, # 0. Let also B be an affective control set for T, in F. Then there exists an
effective control set D for Sg in E such that q- By = Dy N E,.

Proof. Take ¢q-v € By and put u = g-v. Then as in the proof of Proposition 3.4
there exists a control set, say D, for Sg such that v € Dy. The above theorem

ensures then that Dy N E, = ¢ - By.
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Remark: In the above proposition we are assuming the existence of a control
set for the semigroup T, on the fiber F' so we do not require compactness of
the fibre, as in Proposition 3.4, where this assumption is made to ensure the
existence of a control set. Also, it is not clear that effective control sets for S,
are contained in effective control sets in the bundle. This is because the interior
of S; may contain boundary points of Sp, i.e., int .S, may be larger than 7.
With the above proposition we conclude our results about general control
sets on fiber bundles. Later on we shall get more precise statements about
invariant control sets. In order to finish this section we consider the case where
one of the semigroups S, acts transitively on the typical fiber, or equivalently,
the intersection of a control set with the fiber is the whole fiber. In this case

we get transitivity of the semigroup above the control sets.

Proposition 3.7. Assume that Sy is accessible, let C C M be an effective
control set, and suppose that for some x € Cy there exists g € () such that S,
acts transitively on F. Then for any p € Q such that @ (p) € Co we have that
S, is transitive on F. Moreover, Sg is accessible over C, D = 771 (C) is an

effective control set on F and Sg is transitive above Cy.

Proof. Pick y € Co. Then there are ¢, ¢ € Sy such that ¢(z) = y and
¥ (y) = . By considering the corresponding actions on the principal bundle @
put p = ¢(q). Then + (p) is in the fiber of ¢ so that there is @ € ¢ such that
¥ (p) = g.a. Let us show that S, is also transitive on F. Take vy, vy € F. Then
there exists b € S, such that bav, = vy, because .S, is transitive. This element

of S, is given by 6 (q) = q.b. We have that ¢0¢ belongs to Sg. But

0 (p) = $0 (q.a) = ¢ (q.ba) = p.ba

so that ba € S,. Hence vy € Spv; showing the transitivity of this semigroup.
Since y € Coy was arbitrary and S,, = a~'S,a we have the first part of the
proposition. From this we get immediately that Sg is transitive on 7~ (Cy),
that is, 772 (Co) C Spu for all u € 771 (Cp). In particular, Sg is accessible
over C. Taking closures and using the equalities clC' = clCy and 77! (cl Cp) =
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clm= (Cy) we have
7 (C) C a1 (clC) C cla (Cy) C cl Sgu

for all u € 7' (Cp). On the other hand, if 7 (v) € C' then Spv N7~ (Co) # 0
so the above inclusion implies that #=! (C') C ¢l Sgv. This shows that ="' (C)
is an eflective control set, say D', for Sg. However, the previous proposition
ensures the existence of a control set D such that £, C Dy and 7 (D) C C,
that is, D C 7' (C). Hence we have that

Dca'(C)cD

which shows that D = 7' (C).
O
This proposition applies in particular to principal bundles, in which case
the assumption that S, is transitive amounts to say that S, coincides with the
structure group . In case G is compact and connected this assumption is
automatic because in such a group G itself is the only of its semigroups with

nonempty interior. Hence we have

Corollary 3.8. Let () be such that its structure group G is compact and con-
nected. Let C be an effective control set on the base M and assume that Sq is
accessible over C. Then m=1(C) is an effective control sel for Sg on @ and Sg
1s transitive above Cy.

In this corollary it is not needed to require that G is connected as soon as

we know that the total space of the bundle is itself connected. In fact, we have

Proposition 3.9. With the set up as in the above corollary, suppose that
m=1(Cy) is connected instead of assuming that G is connected. Then the same

resull holds.

Proof. Let ¢ € @ be such that 7 (¢q) € Co. We have that T, is a semigroup
with nonvoid interior in the compact group . Hence Gy C T, where G stands

for the component of the identity of . This implies that 1 € T, so that
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q € int (Sgq). Since q € 7' (Cy) was arbitrary we have that Sop N 7! (Cy)
is open for every p € 7=! (Cy). Therefore if we take into account that == ()
is connected a standard argument shows that Sgp N7~ (Co) = 7~ (Cy) for all
p € 71 (Cy). Hence Sg is transitive over C and the result follows as above.

O

4. Invariant control sets

For the invariant control sets the results of the previous section can be highly
improved so we can get a clear picture of the construction of the invariant
control sets on F from those on the base space and on the fibers.

We consider as above a semigroup Sg acting on the principal bundle @,
which induces semigroups Sg acting on an associated bundle and Sys acting on
the base space.

Any invariant control set for Sg projects down onto an invariant control set
on M. So in order to get the invariant control sets on F it remains to analyze
the structure of the invariant control sets over a given control set C' C M. We
shall do this with the further assumption that the typical fiber is compact.

Given such a set, we assume that Sg is accessible over C'. At this regard, it is
convenient to mention that accessibility over C' is equivalent to the accessibility
of Sg from the points above €, because of the invariance of this set. Also, this
accessibility implies that C is closed.

The semigroup S, C G given by the intersection of Sgq with the fiber
through ¢ € @ has nonempty interior in (G. Let us assume that there are a
finite number of invariant control sets for S; on the typical fiber F. Denote
this number by ic (S;) and enumerate the invariant control sets by Cg, ] =
1,...,ic(.S;). These subsets are contained in F'. However by applying ¢ we can

map them into the fiber F, over + = m (q) and obtain the subsets
q-Cl C By j=1,...,1c(8y).

These subsets will be the building blocks for the construction of the invariant

control sets over C. We first point out that ¢- C’g is actually independent of the
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specific ¢ € @ in the fiber over z. Indeed, if ¢ = ga then S, = a™'S,a. Hence

the invariant control sets for Sy on F' are the subsets Cg, = a,_l(fg. So that
q - C’j, = q’-a_]Cg = q-Cg.
Therefore we are allowed to put
G =g, =1y dall].

We have now the following lemmas, which we state with the assumption

that the fiber F' is compact, although this condition is not always required.

Lemma 4.1. For z,y € Cy take ¢ € Sg such that $(Q,) = Q,, and given
Gz € Qu pul qy = ¢(qy). Let ng be an invariant control set for S, . Then for
every v € CJ , we have that Ci_ C cl (qu (v))

Proof. Pick an arbitrary w € C,,. We wish to find a sequence (by)g>1 in S,
with byv — w as k — oo. Since Sy is transitive on Cy there exists ¥» € Sp
such that ¢ o ¢(¢,) € Q. Let a € G defined by v 0 é(q,) = g,a. Then a € S,,
so that av € C7 . Since w € CJ , there exists a sequence (ag)r»1 in Sy, with
arav — w. Let by = ara and let us show that by € S,,. We have that a; is
defined by ¥1(qs) = guwar with ¢ € Sg. Now
poro(q) = ¢oroyod(q)=¢o(qa)
= Pgrara) = qyara
so that ara € 5,, proving the lemma.

O

Lemma 4.2. With the notations as in the lemma above, ng is contained in

an tnvariant control set for S, .

Proof. Let v € C'gl. The assumption that F'is compact ensures the existence
of an invariant control set for S, contained in cl(S,,(v)) (see Lemma 3.1 in
[2]). Denote it by C,,. Since S,, has interior points in G, C,, has nonempty
interior, hence Cy, N S, (v) # 0 and there exists b € S, with bv € C,,. We
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claim that there exists 6" € S, with b'bv € C’gz. In fact, let ¢' € Sg be such
that ¢'(q,) = g,b and take ¥» € Sp that maps @, into Q.. Then ¢poti(q,) = ¢,b’
with &' € S,,. Also,

oot (qy) = qb'b= d(g:)b'b = H(q.b'D),

so that ¢ 0 ¢’ 0 ¢(qs) = ¢,b'b and b'b € S,,. Hence b'bv € CJ because v € Cj .
This proves the claim. From it and the choice of b it follows that &'b-v € C’gz NGy,

Putting w = b'b - v the previous lemma implies that
ng - cl (Sflyw) = qu

proving the existence of the invariant control set. The uniqueness follows from
the fact that the intersection of different invariant control sets for S, is empty.
O
Recall that we are using the same notation for the @-bundle map and the
induced E-bundle map. They are related by ¥ (¢-v) = ¢ (q) - v for ¢ € Q,
v € F and ¢-v € F. With this notation in mind we translate the statement of
the above lemma, in terms of the subsets CJ, as follows:
Put CI = ¢, - ng and Cy = g, - Cy, with C,, the S, -invariant control set

ensured by the lemma. If ¢ is as in the proof then

$(CY) = ¢(4s - C.) = $(ds) - Cor C ay - Cop-

Therefore ¢ maps the subset € inside one of the subsets €} = ¢, - C;y for
i=1,...,ic(S,,). We show now that this C’é C E, is the same for every ¢’ that

maps F, into F,.

Lemma 4.3. Let ¢ be as before with g, = ¢(qx), take C3 and suppose that C’g
is such that ¢(C1) C C. Then

i) If ¥ € Sg maps E, into I, then 1,[)(05) C Ci.

i) If ¢' € Sg maps E, into E, then ¢'(C2) C OZ.
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Proof. As above we take ¢, and g, in the fiber over 2 and y respectively such
that ¢ (g,) = q,. If ¥ is as in ii) then it maps the fiber over y into the fiber over
z so that ¢ o ¢ maps the fiber over z into itself. Since both maps are in Sg we
have that there exists a € S, such that ¥ 0 ¢(¢,) = ¢y.a. Now, take w € ng.

Then
P(qy-w) =U(gy) - w=1v0¢(q) w=q-aw.
Therefore ¢ (g, - w) € CZ. However g, - w € Cg because ¢, - w = ¢ (¢, - w) and
by assumption ¢ (C7) C €. Hence ¢ (C’;) NCY # ( and i) follows from Lemma
4.2 (and the above comments) applied to ¢.
Concerning ii), we note that it is just a rephrasing of i) with ¢ in place of ¢

and ¢’ instead of .

O

As a consequence of the above lemmas we get the following description of

the invariant control sets over C'.

Theorem 4.4. Let C C M be an invariant control set for Syr, and assume

that Sq ts accessible over C'. Assume also that the fiber F' is compact. Then
1. ic(S,) is constant as a function of q € 7' (Cy).

2. There are invariant control sets for Sy over C and its number equals

ic(Sy).
3. For every invariant control set D C 7=' (C') for Sg and q € Q,

CNE,=q-B,

where © = w(q) and B is an invariant control set for S, in F.

Proof. Lemma 4.3 implies that ic(S,,) = ic(S,,) so 1) follows from the transi-
tivity of Sy on Cp and the invariance of ic(.S;) with g varying in a fixed fiber.

Now, pick z € Cy and some CZ C E,. If ¢-v € Ci then by Lemma 4.3 ii)
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there is defined for each y € Cy a unique C’g with C; N Sg(q-v) # 0. Put
¢i= | ci
y€Co
Then C¥ is Sg-invariant as follows from Lemma 4.3 i). Hence ¢l C7 is also Sp-
invariant and a fortiori cl(Sg(u)) = clC? for every u € clC?. This shows that
clC7 is an invariant control set. By Theorem 3.5 its intersection with a fiber
E,, x € Cy 1s the image under v — ¢ - v of a control set for S,. However, by

construction, C7 is contained in ¢l C7 if € C. Hence
dE? rB, = 0L

We have thus constructed ic(S,) different control sets for Sg.

To see that these are the only possibilities, let D be an invariant control set
for Sg such that 7 (D) C C. The invariance of D implies that 7 (D) = C. Take
u € D such that 7 (u) € Co, and put v = ¢-v, v € F and g € ). Then the
compactness of F' ensures the existence of an invariant control set for S, which
meets S,v. But ¢S,v C Sg(g- v), which implies that for some CY as above
Sg(q-v)NCI #0,ie,CNCI#Pso that C = CI. This proves 2), 3) and the

theorem.
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