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Abstract

In this article we use the Newton polyhedron of an ideal in the ring
of complex holomorphic germs (or real analytic germs) to calculate the
integral closure of such an ideal.

Applying these results, we follow the algebraic approach used by Teissier
to characterize the Whitney equisingularity of hypersurfaces
through the integral closure of ideals to show when the stratification
of a real or complex hypersurface X = X¢ in k" X k(k R ou C) along
the parameter space 0 X k at zero satisfies the Whitney conditions a and
b(X = Xg is defined by G71(0), where G : k" x k,0 — k,0 is a one
parameter deformation of a germ g which has an algebraically isolated
singularity at 0).

We consider the Newton polyhedron of the ideal I = <rz(%"7, L,j=1,.., n>
to characterise the integral closure of this ideal. '

We also give necessary and sufficient conditions for the Whitney equisin-
gularity of the pair {X¢, 0 x k} in terms of integral closure of this ideal.

Resumo

Neste artigo nés consideramos o poliedro de Newton de um ideal com
codimensdo finita no anel dos germes de fung¢oes holomorfas (ou germes
de fungoes analiticas reais) para calcular o fecho integral deste ideal.
Como aplicacdo, seguindo a abordagem algébrica de Teissier que carac-
teriza a equisingularidade de Whitney para hipersuperficies em termos
do fecho integral de ideais, mostramos quando a estratificagdo de uma
hipersuperficie real ou complexa X = Xg em k" X k(k = R ou C) ao
longo do espaco de pardmetros 0 X k satisfaz as condi¢oes a e b de Whit-
ney (X = Xg é definida como G71(0), onde G : k*,0 — k,0 é uma
deformagao a um parametro de um germe g com singularidade algebri-
camente isolada na origem.
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Considerando o poliedro de Newton do ideal I = <xi§%; 257 = L v n>
caracterizamos o fecho integral deste ideal.

Além disto sdo dadas condicoes necessarias e suficientes para a equisin-
gularidade de Whitney do par {Xg,0 X k} em termos do fecho integral
do ideal I.

The link between the integral dependence relations of ideals and some al-
gebraic geometrical incidence relations is very interesting, as we can see in the
works of Teissier, [T1], [T2] and Gaffney [G].

On the other side, it is well known that the Newton polyhedron of an arbi-
trary germ of function contains much useful information, for example, Kouch-
nirenko gives in [5] a formula for the Milnor number of Newton non-degenerate
germs, Damon-Gaffney in [2] and Yoshinaga in [11] give conditions for the topo-
logical triviality of families of isolated singularity deformations, Varchenco in
[10] shows a formula for the index of singularity of oscillatory integrals.

In this article we use the Newton polyhedron of an ideal in the ring of com-
plex holomorphic germs (or real analytic germs) to calculate the integral closure
of such an ideal. We showed in [7] that the integral closure of an ideal of holo-
morphic germs which has Newton non-degenerate polyhedrom is determined
precisely by the set of elements that are in this Newton polyhedron.

Here, extending the results of [7], we show how to characterize the monomials
™ which are in the integral closure of any ideal of finite codimension in these
rings.

In the second part of this article we are interested in the problem of to find
a stratification of an hypersurface which satisfies the Whitney conditions a and
b of equisingularity.

We shall consider a real or complex hypersurface X = Xgin k" x k (k=R
or C), defined by G7'(0), where G : K x k,0 — k,0 is a one parameter
deformation of a germ ¢ which has an algebraically isolated singularity at 0, we
shall show when the stratification of X along the parameter space 0 X k at zero
satisfies the Whitney conditions.

Following the algebraic approach used by Teissier to characterize the Whit-

ney equisingularity through the integral closure of ideals, we defined in [6] the



THE INTEGRAL CLOSURE OF IDEALS AND WHITNEY 185

polyhedron of equisingularity of a germ g, denoted by £(g) and characterized
a convex subset of the Newton polyhedron of a commode germ g which is a
subset of £(g).

Here we consider this problem for any germ g which has an algebraically
isolated singularity at 0 and any deformation G of g. We consider the Newton
polyhedron of the ideal I = <m,a—lg7,z,] =1,...,n) instead of the Newton
polyhedron of the germ g, considered in [6].

Applying the results of the first part of this article, we calculate the integral
closure of the ideal I and show precisely how to characterise the polyhedron
Eg)-

We also give necessary and sufficient conditions for the Whitney equisingu-

larity of the pair {Xg,0 % £} in terms of the polyhedron £(g).

1. The Integral closure of ideals

We fix a system of local coordinates x of K™ and consider germs g : k*,0 — k,0
which are real analytic when £ = R or holomorphic when k& = C.

We denote by K, (in the appropriate category), the ring K[[z]] of convergent
power series.

Let I be an ideal in a ring A, an element h € A is said to be integral over [
if it satisfies an integral dependence relation A™ + a;h"~' 4+ ...+ a, = 0 with
a; € I

The set of such elements form an ideal called the integral closure of I.

We shall denote this set by 1.

When A = Ox 4, , the local ring of a complex analytic set, Teissier gives in

[8] various notions equivalent to the above concept.

Proposition 1.1. Let [ be an ideal in Ox . The following statements are

equivalent:

) ohel
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ii) Growth condition: For each choice of generators {g;} of I there exists

a neighbourhood U of x¢ and a constant € > 0 such that for all x € U:

| h(z) | < &€ supi |gi(x)|

iii) Valuative criterion: For each analytic curve ¢: (C,0) — (X, x0), hoy
lies in (¢*(I)) K.

iv) There exists a faithful Ox zo-module L of finite type such that h-L C I-L.

The real case: When X is real analytic, this algebraic definition of the integral
closure is not adequate, Gaffney adopted in [3] the Valuative criterion as the
definition for the real integral closure of an ideal, this definition coincides with
Robson’s notion of the complete hull of the ideal I, see [1].

We shall consider here Gaffney’s definition for the real integral closure of
an ideal. In this case, the equivalence between the Growth condition and the
Valuative criterion remains true.

For each germ g(z) = 3" ayz*, we define supp g = {k € Z" : a;, # 0}.
Definition 1.2. Let [ be an ideal in K,,, we define: supp I = U{supp g : g€ I}.

Definition 1.3. The Newton polyhedron of I, denoted by U'y(I), is the convex
hull in R, of the set U {k +v: k€supp I, ve Rz} .
We shall denote by I'(I), the union of all compact faces of T+(1).

In the sequel we shall consider I = (g1, 92,...,9s) an ideal of finite codi-
mension in K,.

For any ideal I we describe, with respect to I'y([), a partition into convex
cones of the positive octant in a space R™ which is dual to R".

Let (ai,... ,a,) be dual coordinates in R™. For each a = (a1,... ,a,) € R}

we define:
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Definition 1.4.

(a) L(a) = min{{a, k) : k€T (1)}, where {a, k)= Zaik’i.

=1
(b) Aa) = {k €T4(T) : () = £(@)}.
(¢) Two vectors a,a’ € R} are said to be equivalent if A(a) = A(a').
The vector a is called a primitive integer vector if a is the vector with

minimum length in C(a) N (Z} — {0}), where C(a) is the half ray emanating
from 0 passing through a.

It is easy to see that each n — 1-dimensional face A in I'({) is associated to

a primitive integer a € R}* such that A = A(a). Given an £ € Ry, we call
Ag(a)={m eT (I): <m,a><[1}.

Given a finite subset A C T4 (I), for any germ g(z) = Y azz*® we call
gan = Z (I,kl'k.
kEA
If A is a face of I'y (1), C(A) denotes the cone of half-rays emanating from
0 and passing through A. Since [ is an ideal of finite codimension in K, and
I'; (1) is a convex polyhedron in R, the collection of all C(A) gives a polyhedral

decomposition for RZ.

Definition 1.5. A subset A C I'y(I) is Newton non-degenerate if the ideal

generated by gi,,Gans--- s sx has finite codimension in C[[A]].

Definition 1.6. An ideal [ is Newton non-degenerate if all compact faces

A C T(I) are Newton non-degenerate.

The above definition is equivalent to the following.
I is Newton non-degenerate if for each compact face A C I'(I), the equations

g1, (2) = gop(2) = ... = gso (x) = 0 have no common solution in (K — {0})".

Definition 1.7. For each n — 1-dimensional compact face A(a’) C T'(I) we let

Q; = min.{¢: Ay(a’) is non-degenerate}.
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Definition 1.8. We denote by C(I) the convex hull in R” of the set
U{m : 2™ e T}

We showed in [7] the following results.
Lemma 1.9. C(I) C Ty (I).

Theorem 1.10. Let I be an ideal of finite codimension in K, .

Then I is Newton non-degenerate if and only if U (I) = C(I).

When the Newton polyhedron of an ideal I has compact faces which are
degenerate, for each n — 1-dimensional compact face A(a’) of I'(), the number

Q; is the key to compute C(7)

Theorem 1.11. Let [ be an ideal of finite codimension in K,. For each

m € Z, the following statements are equivalent:
1. me C(I).

2. The inequality Q; < (m,a’) holds for each (n — 1)-dimensional compact
face A(a?) C T(I).

Examples:

1. Let I; = (2® 4+ v®, zy® — 2°y)

The vertices of the polyhedron 'y (1) are {(0,8),(1,5),(5,1),(8,0)}.

The primitive integers corresponding to the 1-dimensional faces of I'(1;)
are a* = (1,0), a®* = (0,1), ¢® = (3,1), a* = (1,1) and ¢® = (1,3), with
l(a') =1(a?) = 0, l(a®) = I(a®) = 8, and [(a*) = 6.

This ideal I; is degenerate in the face A(a?) since any point (z,z), with
z # 0 is a solution for the equations Bigty = Gy, = U Ag(a*) is the first
non-degenerate set associated to A(a?), hence Q4 = 8.

The faces A(a®) and A(a®) are non-degenerate, then we have Q3 = ((a®) = 8
and Qs = {(a”) = 8.
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Applying the Theorem 1.11, we see that z™ € C(I;) if and only if m; +
my > 8.

2. Let I = (2® + 2%y, y® + 2y°)

We have T'y(I3) = Ty (1), but the ideal I5 is degenerate in the faces A(a®)
and A(a®), here Q3 = 16, Q5 = 16, and Q4 = 6.

Applying the Theorem 1.11, we see that 2™ € C(I,) if and only if 3m;+my >
16 and my + 3m, > 16

3. Let I3 = (2® + 2y®, y® + 2°y)
We have I'y(I3) = I'+(11), but I is Newton non-degenerate, hence C(I3) =
T4 (1)

Toroidal Embeddings

The theory of toroidal embeddings was developed by Kempf et all in [4].
The procedure of constructing the toroidal embedding associated to a given
Newton polyhedron is a local modification of Khovanskii’s method of assigning
a compact complex nonsingular toroidal manifold to an integer-valued compact
convex polyhedron in K™. This construction, that we summarise below, is
due to Varchenko [10, pp.183-184] and form the essential tool used in proving
Theorem 1.11.

Considering the equivalence defined in the item [c] of the definition 1.4, we
see that any equivalence class is naturaly identified with a convex cone with its
vertex at zero that is specified by finitely many linear equations and strictly
linear inequalities with rational coeflicients.

The closures of equivalence classes specify a partition Yg of the positive cone

R”* into closed convex cones that have the properties:
1. If oy is a face of a cone o € ¥y, then o1 € Xg.

2. For any cones o1 and oy in YL, o1 N 0y is a face of both o1 and oy.
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Following the algorithm described in the proof of Theorem 11 of [3 p.32], we
construct on the basis of Yo, a partition X of the cone R}* into finitely many
closed convex with their vertices at zero, satisfying the conditions 1. and 2.

above and the following:

3. Any cone belonging to ¥ lies in one of the cones in Ly and is specified by
finitely many linear equalities and linear inequalities with rational coeffi-

ctents.

4. Any cone q-dimensional o in ¥ is simplicial and unimodular, i.c., there
exist a set of primilive integer vectors a'(a),... ,a%(a) which are linearly
independent over R and n— q primilive inleger veclors a®(a),...  a"(o)

such that Zal(a) +...4+Za"o) = Z".

Let o be an n-dimensional cone in ¥ and a'(c),a*(c),...,a"(c) the corre-
sponding set of primitive integer vectors of o that has been ordered once and
for all. We associate to each such o a copy of K denoted by K"(c). Let us

denote by m,: K"(0) — K" the mapping given by the formulae

a}(o‘) a(o

=y y%e)

where x1,x9,...,x, are coordinates in K™, y1,9s,...,y, are coordinates in
K"(o) and a{(a), ..., al(c) denote the coordinates of the vector a’(a).

We shall glue any two copies K"(o) and K”(7) via the following equivalence
relation. Let y, € K™(o) and y, € K™(7), then y, ~ y, if and only if m,(y,) =
mr(yr)-

We shall denote this thus-obtained set by X = X(I'y(/)) = UK"(0)/ ~,
where UK (o) denotes the disjoint union of the K"(o).

It follows from the properties 1-4 of the partition ¥ and Theorems 6,7
and 8 of [4 pp.24-26] that X is a nonsingular n-dimensional algebraic complex
manifold and that 7: X — K™ defined by 7(y) = 7,(y,) is a proper analytic
mapping onto K" ( y, denotes a representative in K"(o) of the equivalence

class y in X).
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Therefore, for any monomial z™ € K™ and any n-dimensional cone ¢ € %

we have the equivalence between the conditions:
(*) 2™ < E.sup; {]gi(z)|} for all z in a neighbourhood U of 0.

(**) 2™ o 7o (yo) < E-supi {lgil 0 6 (yo)} for all y, € m=(U).

We shall use the condition (##) to prove the Theorem 1.11.

Proof of the Theorem 1.11.

Given an n-dimensional cone o, with a set of generators a',... ,a", since I has

finite codimension in K,, for each point € 771(0) there exist an n-tuple of
ns P Yo - p

numbers
(@1(Ys), - - - »@n(ys))
with £(a’) < Q;(y») < Q; such that

sup; {|gil 0 o (yo)} = [y L y@2 @] sup; {|hi(ys)[}

and for all y, € m;(0) we have sup;|hi(y,)| > 0.

Then there exists a neighbourhood V' of 7;1(0) such that sup.;|k;(y,)| > 0
for all y, € V

On the other side, for all y,, we have

P omili) = g

where M; = {m,a’), hence the inequality 2 of the Theorem 1.11 holds if and
only if the inequality (##) holds. O

Remark. Since the statement of the Theorem 1.11 shows us when a monomial
is in the integral closure of an ideal, the remaining question is to show when a
germ of function h € K, is in the integral closure of an ideal.

If we consider the ideal I; given in the above example, we can see that all
polynomials & which have only terms of degree higher than 8 are in the integral

closure of I;, but there are some special polynomials which have some terms
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with degree less than 8 and belong to the integral closure of I, endeed let
h = 2° 4+ 2%y — a2y, following the proof of the Theorem 1.11. it is easy to show

that h € Ty.

2. Whitney equisingularity of germs of hypersurfaces

2.1. Whitney equisingularity and the integral closure of ideals

Let X = G7'(0) be an hypersurface in k" x k, where G : k* x k,0 — k,0
is a one parameter deformation of a germ g. The pair {Xg,0 x &k} is Whitney
equisingular at 0 if 0 x k is a stratum of a Whitney stratification of X¢g in a
neighbourhood of 0 ( see [9]).

For complex germs, Teissier shows the importance of the integral dependence

relation in the determinacy of the Whitney conditions.

Theorem 2.1. The (¢) condition of Teissier. The pair {Xg,0 x C} is
Whitney equisingular if and only if %—Cj belongs to the integral closure of the

o

ideal in C,y1 generated by {.LZ 3 } foralli,j=1,... n.
x

)

When g has an algebraically isolated singularity at 0, Gaffney shows in [3,
p-319] that the (¢) condition of Teissier is also valid in the real analytic category.

Hence, we shall consider this condition to show the Whitney equisingularity.

In the sequel we shall denote the ideal <;1:Z ad—g, 2,7 =1,... ,n> by I.

7

Definition 2.2. [6] The polyhedron of equisingularity of a germ g, denoted by
E(g) is the convex hull of the set

U{m—I—RZ_: :vaT}.

A natural question is to identify all directions @ such that I';.(8) C £(g) and

give necessary and sufficient conditions in terms of the polyhedron £(g) for the
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Whitney equisingularity of the pair {G71(0), 0 x k}, where G' = g + (6.
In the Proposition 2.6., applying the Theorem 1.11. to the ideal I we char-
acterize the polyhedron £(g).

In the next lemma we show that m € £(g) is a necessary condition for a

monomial ™ € ( x; , hence it is a necessary condition for the Whitney

7G
al‘j
equisingularity of the pair {Xg,0 x k}.

Lema 2.3. Let G(z,t) = g(z) +ta™ be a deformation of a germ g which has
isolated singularity at 0.

i oG\ | . ;
A necessary condition for ™ € <lz 3z./ " Kny1 ism € E(g) in K,,.
J

Proof: If we suppose that m ¢ £(g) in K, it follows from the valuative criterion

of the Proposition 1.1 that there exists a curve ¢ : (K,0) — (K™, 0) such that
dg w
filg, (2™ 0 @) < filg, | 9. ° ¢) for alli,j=1,...,n;
Zj

where filg, (X ant’) = min { £ : a; # 0} for any Taylor series 3" azt in K.
Let ¢ be the curve in K11 deﬁned as (X)) = (4(X),0).
g

Since LZSZ =& (9_1] + tx; BJLJ for all 2,5 = 1,... ,n;, we have

fili, <a: ¢) = il (x S—G : ¢)

and the result also follows from the Valuative Criterion. O

In the next lemma we show that the polyhedron of equisingularity £(g)
also gives a sufficient condition for the Whitney equisingularity of the pair

{G71(0),0 x k}.

Lemma 2.4. Let G(z,t) = g(z)+tz™, |t| <1, be a deformalion of a germ g.
Ifx,ax cTforalli,j=1,...,n, then 2™ € <x,ac>.
a.’E] a.L'j

Proof: It follows from the hypothesis that there exists a constant 0 < e < 1



194 M. J. SAIA

such that
|t| Zy axj S € SUup;j ng—i(L)
for all (z,¢) in a neighbourhood U of 0 x 0 in K™ x K.
C d O™
Hence sup; ; xla—x](x) = sup;; xla—f](:v) + tx; 62; ()| >
> sup; x,ad—fj(x) — |t|sup;,; x,daix](x) > (1 —¢)sup;; ng—i(:v) .

From the growth condition, there exists a constant ¢ > 0 such that

xzﬂ(aﬂ) for all z

alL‘j

2™ < e sup;;

in a neighbourhood V of 0 in K™. Then

2™ < e sup;; Jlaa—i(x) < 1 i _Sup; j 11(3—2(”
for all  in the neighbourhood (V x K)NU of 0 x 0 in K™ x K. O

Our next step is a characteriztion of the polyhedron of equisingularity £(g)
in terms of the Newton polyhedron I'; (1) of the ideal I.
When T'; () is non-degenerate, the following result is an easy consequence

of the Lemma 1.9. and of the Theorem 1.10.

Proposition 2.5.
i) E(g) C T4 (1)
ii) E(g) =T+(I) tf and only only if T (I) is non-degeneralte.

Applying the Theorem 1.11 we show how to obtain the polyhedron &(g)

when the polyhedron ' (), has degenerate compact faces.

Proposition 2.6. For each m = (mi,... ,my) € ZY the following statements

are equivalent:

a) m € &(g).
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b) The inequality Q; < (m,a’) holds for each (n — 1)-dimensional compact
face A(a?) C T(I).

Since g has isolated singularity at 0 the ideal [ has finite codimension in K,,,

therefore the result follows from the Theorem 1.11.

Examples

1. Let g(z,y) = 2%+ y(x3 . y2)2 = 2% + 26y — 2233 + 4°.
The ideal I is generated by

19) ; 53 3 O
x—g = 927 4 625y — 62°y°, y—g = 92% + 62°y? — 62%y*,
Ox Ox

l 7 4,2 4 dg 6 3.3 5
z— =z'— 62y —I—Syxandya—:xy—&vy + 5y°.

Y

The vertices of the Newton polyhedron I'y(7) are (7,0),(1,4) and (0,5).
The primitive integer vectors in R_Z: corresponding to the 1-dimensional faces
of Ty (I) are a' = (1,0), a®> = (1,1), a® = (2,3) and ¢* = (0,1).

The face A(a®) with vertices (7,0) and (1,4) is degenerate since

0

22 =a" —6a'y? + Sy'z, and
ayA(a3)

dg _9g g

Pl = y== =y =0.
a.’L’A(a3) yal’A(ﬁ) y@yA(as)
The sets Ajs(a®) and Ajg(a®) are degenerate because the points of type
(t%,4%) € C? are solutions for all the equations mi% restricted to these sets.

The first non-degenerate set of A(a®) is Ag(a?), hence @3 = 18.
The face A(a?) with vertices (1,4) and (0,5) is non-degenerate, hence @, =

Therefore we conclude that a monomial 2™ lies in £(g) if and only if m; +
my > 5 and 2m; + 3my > 18. The vertices of polyhedron £(g) in R7} are (0,6)
and (9,0).

It is easy to see that for all the monomials 2™ such that m is in the compact

face of £(g), the condition z; adx

€ &(g) is satisfied only for the monomial 27,
Ly
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hence the pair {Xg,0 x k} where G(z,y,t) = g(z) + ta” satisfies the Whitney
conditions a and b .

A straightforward calculation shows us that, in this example, all monomials
™ such that m € &£(g) are in the integral closure of the ideal xiagijl 2>,
hence we have the Whitney equisingularity of the pair {Xg,0 x k} for any G
of type G(z,t) = g(z) 4 ta™, with m € &,.

We can see from this example that the condition of the Lemma 2.4. is

sufficient but not necessary for the Whitney equisingularity of the pair { Xg, 0 x
2. Let g(z,y) =y + 2(2® — y?)? = y° + ay* — 22%y? + 27
The ideal I is generated by

d a . e
z rg = T7z" — 8z*y® + zy?, y—g = 725y — 823y + ¢,
Ox Ox
d ; 0
x—g = 9y®z — 42y + 42%y® and y—g =9y — da*y® + day’.
dy dy

The vertices of the Newton polyhedron I'y(1) are (7,0), (5,1), (2,3) and
(0,5).

The primitive integer vectors in R?: corresponding to the 1-dimensional faces
of I(I) are ' = (1,0), ¢* = (1,1), ® = (2,3), a* = (1,2) and ¢® = (0,1).

The faces A(a?) and A(a*) are non-degenerate, hence Q, = 5 and Q4 = 7.

The face A(a®) with vertices (5,1) and (2,3) is degenerate.

The first non-degenerate set of A(a?) is Agg(a?), hence Q3 = 26.

We conclude that a monomial ™ lies in £(g) if and only if my + mq > 5,
my + 2my > 7 and 2my + 3my > 26 .

Therefore the vertices of polyhedron £(g) in RY are (0,9), (1,8) and (13,0).

m

Here, the condition x,% € &(g) is satisfied for the monomials y° and
23, hence the pairs {Xg,0 x k} where G(z,y,1) = g(z) + t2'? or G(z,y,t) =
g(z) 4 ty® satisfy the Whitney conditions a and b .

In this example, we can show that each monomial z%y® # 2! such that (a, b)

is in the compact face with vertices (1,8) and (13,0) of £(g) does not lie in the



THE INTEGRAL CLOSURE OF IDEALS AND WHITNEY 197

integral closure of the ideal <xza—G
axu,j:m

¢: (C,0) — (C*,0) such that the valuative criterion does not hold for these

> by constructing an analytic curve

curves.
For example, let G(z,y,t) = g(x,y) + tzy®, the curve ¢: (C,0) — (C*,0) is
©(A) = (A%, )?,—2)) and the corresponding pair {X¢,0 x k} is not Whitney

equisingular.
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