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STEREOGRAPHIC PROJECTIONS AND
GEOMETRIC SINGULARITIES

M.C. Romero Fuster *®

Abstract

We relate the contacts of k-spheres and submanifolds of R™ with those
of (k+1)-planes and their inverse images through the stereographic pro-
jection in R™*! by defining K-equivalences between their respective fam-
ilies of contact maps.

1. Introduction

One of the facts that led to the consideration of four-vertex theorems for closed
space curves was the observation that the inverse of the stereographic projection,
£:R*— 5% —{(0,0,1)}, takes vertices of plane curves into zero torsion points
of their images considered as space curves (see [5]). It was also classically known
that € : R* — S® — {(0,0,0,1)} transforms umbilical points of surfaces in 3-
space into inflection points (in the sense of [6]) of their corresponding images in
4-space.

From the singularity theory viewpoint, these facts amount to say that

a) If ¢ is a singularity of type A, & > 2 (in Arnold’s notation [1]) for
some distance squared function on a plane curve o : R — R2 then it is a
singularity of the same type Ag, k& > 2 for some height function on the curve
a*=foa:R—= R

b) If p is a singular point of type Di, k& > 3 (notation of [1]) for some
distance squared function on a surface S immersed in R?, so it is for some

height function on the surface S* = £(.S) immersed in 4-space.
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It is natural to ask whether, in general, the map & : R* — 5™ —{(0, ...,0,1)}
transforms singularities of distance squared functions of a given type on some
submanifold M of R” onto the same type of singularities for adequate height
functions on M* = ¢(M) in R™! considered as a submanifold of R™*'. The
answer is affirmative as shown in [15] and [18], where this fact has been explored
in particular to deduce some new geometrical consequences for plane curves from
known results on convex space curves.

It has actually been shown by Sedykh ([18]) that the manifold of singularities
of any simple class for the evolute (focal set) of a smooth submanifold M of R
is isomorphic to the manifold of singularities of the same class for the front of
hyperplanes in R™*! that are tangent to the image of M under £ and do not pass
through the north pole of this projection. To prove this, he related through &
the germ of the generating family of the lagrangian submanifold of 7*R" (with
its natural symplectic structure) defined by the normal bundle of the manifold
M, to that of the generating family of the legendrian submanifold of the contact
manifold given by the projectivization, PT*R"*1, of the bundle T*R"*! defined
by the tangent elements (hyperplanes) of {(M) at corresponding points.

It can be seen that these two generating families can be respectively identi-
fied with those of distance squared functions on M and of height functions on
E(M). Then the relation between their germs, obtained by Sedykh, is precisely
K-equivalence (or V-equivalence, as in [8]). We use here an alternative approach,
based on the idea of contact between pairs of submanifolds of euclidean spaces,
developed by J. Montaldi ([12]), in order to prove this fact. This viewpoint
allows us not only to relate the contacts of M with hyperspheres of R™ with
those of (M) with hyperplanes of R™*! (by exhibiting an explicit K-equivalence
between the two families), but also to analyze the relations between the con-
tacts of M with lower dimensional spheres of R™ with those of £(M) with lower
dimensional linear subspaces of R"t1.

We conclude, in particular, some facts about contacts of surfaces and planes
in R*, from the results obtained by Montaldi in [13] on contacts of surfaces with

circles in 3-space.



STEREOGRAPHIC PROJECTIONS AND GEOMETRIC 169

2. Height functions and distance squared functions and
the geometry of submanifolds

Given submanifolds X and Y of R”, locally defined by X = g(R™) and Y =
£71(0), where g : R™ — R" is an embedding, and f : R” — R is a submersion,
we can "measure” their contact at a common point p € X NY by analyzing the
singularities of the composed map f o g: R™ — R? ("contact map”). In fact,
Montaldi [12] proved that the contact class of X and Y at p depends only on the
K-singularity type of fog (which in turn, does not depend on the maps ¢ and
[ chosen to represent X and Y respectively). Whenever we say that a couple
of manifolds X and Y has the same contact as another couple of manifolds
X’ and Y’ has at some other point, we mean that their respective ”contact
maps” are K-equivalent as germs at the given points. Two map-germs f; :
(R™ 2;) — (R%y;), i = 1,2 are said to be contact-equivalent or K-equivalent if
there is a diffeomorphism-germ (contact-equivalence), H : (R™ x R?, (z1,31)) —
(R™ x RY, (29,9y2)) of the form H(x,t) = (h(z),0(x,1)), with 6(z,y1) = y, for
all z in a neighbourhood of 1 in R™, such that H(z, f1(z)) = (h(x), f2(h(x))).
Notice that this amounts to say that H takes the graph of f; to the graph of
[f2, mapping the linear subspace y = y; onto the linear subspace y = yo. We
refer to [4] or [8] for the definition and details on K-equivalence.

When we study the geometry of an m-submanifold X of R™ we are led to
consider its contacts with hyperspheres and hyperplanes of the ambient space.
These are thus described by the respective behaviour of the families

a) of distance squared functions on X
¢ : RoxRr 2% RoxR* -4 R

(@y)  — (9(z):y) — llg(z) —yll*
b) of height functions on X

A Rmx St I Rexognt L R
(z,v) — (g(2),v) — < g(z),v>

We shall denote by ¢, and A, the functions obtained when fixing the pa-

rameters y and v respectively.
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The generic singularities of ¢ were initially studied by Porteous [16], who
observed that its singular set,is precisely, the normal bundle of X in R™ On
the other hand, the singular set of A,

O\,
Oz

2(A) = {(z,v) € R™ x §™!

= Dg(z) - v =0}

is the unit normal bundle of X and was studied in [14].

The bifurcation sets of ¢ and A can be geometrically interpreted as the set
of focal centers (or caustic) of X in R™ and the set of singular values of the
Gauss map on X (or of the Gauss map on the unit normal bundle of X, or
canal hypersurface of X, considered as a hypersurface embedded in R™, when
the codimension of X is higher than 1) respectively.

It is well known (see [7], [11]) that for a generic embedding X = g(R™) C R",
the families ¢» and A are generic families of functions on R™. For a detailed de-
scription of the term "generic family of functions” we refer to [7] and [19]. This
means, in particular, that these families are topologically stable, and for n <5,

smoothly stable too.

Some geometrically relevant subsets are:

The symmetry set,
M(¢) = {y € R ¢, has at least 2 critical points at the same level}

corresponding to the set of centres of hyperspheres touching X at least twice.
The generic structures of the symmetry sets of submanifolds of R? and R? have
been described by Bruce, Giblin and Gibson in [3].

The central set is the subset of M(¢) composed of centres of spheres n-
tangent (n > 2) to X, whose radius is the minimal distance from the centre to
the submanifold.

The Mazwell sel of X is defined as the set of unit vectors corresponding
to a height function whose absolute minimum is either degenerate or attained
at more than one point. This set was studied in detail in [14] for the case of

hypersurfaces embedded in euclidean space. It is not difficult to see that the
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Maxwell set of a submanifold of codimension higher than 1 coincides with that
of its canal hypersurface (defined as its unit normal bundle smoothly embedded

in R").
3. K-equivalence and stereographic projection

For a family F' : R™ x P — R? of mappings R™ — R?, set Z(F) = {(z,¢) €
R™ x P|F(x,¢) = 0}. Given two families of maps F; and F3 from R™ to R?,
with parameter spaces P; and P, respectively, we say that two germs F} at
(z1,¢1) € Z(Fy) and Fy at (x2,¢2) € Z(F3) are K-equivalent if there are smooth
map-germs,

DV (R™% Py, (21,¢1)) = (R™, 27) such that, for some representative of V/,
the map V. : R™ — R™ is a local diffeomorphism, for all ¢ in a neighbourhood
of ¢; in Py,

ii) a diffeomorphism-germ 6 : (P, ¢;) — (P2, ¢2) , and

ii) g - (R™x Py xR?, (21, ¢1,0)) — (RP,0) such that, for some representative
of i, pi(z,c) is a diffeomorphism of R? taking 0 to 0 for all (, ¢) in a neighbourhood
of (z1,¢1) in R™ x Py, satisfying

Fi(z,e) = plz, ¢, Fr(V(z,¢),0(c)))

Notice that if the germ of Fy at (z1,¢1) and the germ of Fy at (x2,cy) are
equivalent in the sense of the above definition, then the diffeomorphism-germ
defined by (z,¢) = (V(z,¢),0(c)) maps the germ of Z(Fi) at (x1,¢1) to the
germ of Z(F,) at (22, ¢z), preserving the decomposition of Z(Fy) and Z(F3) by
K-equivalence classes respectively.

We shall say that the family F; is (locally) K-equivalent to the family F;,
if there is a (local) diffeomorphism R™ x P; — R™ x P, of the form (z,¢) —
(V(z,¢),0(c)), taking Z(Fy) to Z(F3), such that the germ of Fy at (z,c¢) is
K-equivalent to the germ of Fy at (V(z,¢),0(c)) in the above sense, for all
(x,¢) € Z(Fy).

We shall show now that there is a K-equivalence between the extensions
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® : R"xR"xRy — R
(:C,(a,f‘)) — ||g(x)_a||2_T2
and

A : R"xS5"xR — R

(z,v,p) — <&(g(z)),v>—p
of the families ¢ and A when we restrict ourselves to convenient subsets of their

parameter spaces.

Let H be the set of all the affine hyperplanes of R™*! whose distance p to the
origin O is < 1 and denote by H* the subset of H made by all the hyperplanes
that do not pass through the north pole P of S™ and that are not parallel to
the vector OP. Clearly H* is an open and dense subset of H. Any hyperplane
[ € H* can be represented by its unit normal vector v, chosen in such a way
that the real number < v, (0, ...,0,1) > is positive, and its distance to the origin,
p =< 'U,O_‘A >, where OA denotes any vector of R™*! with end point A € .
We can consider H* as a subset of S x R through the above association of any
[ with a pair (v,p). And we have then a height function, h(z) =< v,z > —p,
associated to each hyperplane [ € H*, and hence a family of height functions

A RmxH* — R
(z,0,p)  +— <&(g()),0>—p

Notice that any hyperplane [ € H may have an associated distance function,
but there is an ambiguity in the choice of sign when the hyperplane [ is parallel
to the vector OP.

Given a k-sphere, S*, in R", we know that its image, £(S*), by £ is a k-sphere
in S — {(0,...,0,1)}, for stereographic projection is a conformal map. Then,
if S(a,r) denotes a hypersphere of radius r centered at a point @ € R, we can
denote by [(a,r), the unique affine hyperplane of R"™! whose intersection with
S™ is £(S(a,r)). We have in this way an injective map,

f : R"xR, — H
(a,r) — l(a,r).
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Moreover, it can be shown that

f : '(H) — H~
(a,r —  (u(a,r),pla,r))

is a diffeomorphism, where u(a,r) and p(a,r) are, respectively, the unit vector
and real number associated to the hyperplane [(a,r) in the above way.

We can also define another smooth map

p o (R"xR"xRy) xR — R
(:v,a,r,t) == M(La,r)(t)

where the value of the function ju(y4,(¢) : R — R at ¢ is given by the height

of the point s(a+ =t(a+ Tllgg Z”)) over the hyperplane [(a,r) of R**'. This

is well defined and smooth except when a = g(z).

And now it is not difficult to verify that

Az, (,)) = (2,07 (v, ), 82,67 (v, )))-
Consequently, if we denote
P = {(a,7r) e R" xRy : 8(a,r) € H A a ¢ Image(g)}
and P, = 0(P;), we can state the following

Theorem 1. The families of functions
 : Rmx P — R
(z,(a,7)) +—> |lg(z) —yl* —r?
and
A : R*"x P, — R
(z,v,0) — <&(g(2)),v>—p

are K-equivalent.

Remark: Observe that P, and P, are open and dense respectively in R™ x R
and St x]—1,1[.
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We can extend the set of hyperspheres of R™ in order to include the de-
generate ones, i.e. the hyperplanes, so that the map # defined above becomes
a bijection over H. In this case we must consider, instead of ®, the following

family of functions
D : R™"xRP""' — R
(z,[a:t:r]) — <a,g(z) > —3tllg(=)|* +r
so that, il ¢ # 0, the function Dy, gives the contact of M = g(R™) with the
hypersphere of R™ defined by the equation

a - T .
ly — 7|2 —3 |a|*t* =0,

whereas, if t = 0, it measures the contact of M with the hyperplane of equation
<a,y> +r = 0.

The problem now to define a K-equivalence between the families ® and
A:R™x S"x]—-1,1[— R

resides in the ambiguity of the choice of sign in the association of a height
function to any hyperplane parallel to the vector O_;p, as mentioned before. But
observe that this difficulty can be overcome by considering the local situation,
in such a way that the direction of the unit vector and the sign of the number
p are chosen consistently on a sufficiently small neighbourhood of any of these
hyperplanes.

On the other hand, although we have had to avoid the subset {(a,r) €
R"x Ry : 3z € R™ with g(z) = a} in order to define globally the K-equivalence
between ® and A in the theorem 1, it is not difficult to see that this can be
locally defined at every point of the parameter space R” xR for, generically, the
focal centers of the submanifold at any point g(z) lie off some neighbourhood of
g(z). So, by working in small enough neighbourhoods of (z,a,r) we should not
have any problems in defining the local diffeomorphism ji(z 4 ,y. Consequently

we can state the following,
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Theorem 2. Given x € R™ and [a : ¢ : r] € RP"! the germ of D at
(z,[a:t:r]) is K-equivalent to that of A at (x,&*([a : 1 :r])), where & ([a: 1 : 7))
represents any of the two opposite parameters in S™x| — 1,1[ corresponding to
the hyperplane of R™ associated through the stereographic projection to the

hypersphere of R™ determined by the point [a : ¢ : 7].

Given an embedding, ¢ : R™ — R”, of a manifold M in R”, the wavefront
of M at time r is obtained as the envelope of families of hyperspheres of radius
r centered on M, or equivalently, as the set of centers of hyperspheres of radius

r tangent to M. This is given, in terms of the map ®, as M, = {a € R" :

Jdz € R® with @,y = %;—’L(x) = = ajx‘” (z) = 0}. We define the big front,

W, as the union of all the wavefronts of M. This can be viewed as the set of
all the tangent hyperspheres to M. Genericity conditions on the embedding g
imply that the map ¢ is a versal unfolding of the germ of the distance squared
function ¢, at the point z, for all (z,a) in R™x R" we can then look M, as the
discriminant set of this unfolding. Now, for n < 5, only simple singularities of
functions of Arnol’d’s list ([1]) may occur, and as a consequence we have a finite
number of local models for wavefronts and big {ronts ([2]). Similar arguments
apply to bifurcation sets, singular sets and symmetry sets for both ¢ and A. In
the case of the last one, instead of the big front, we have what is usually called
the front of M (or the dual when M is a hypersurface), that is the set ,F', of all
the tangent hyperplanes to M.

We can add to W the tangent hyperspheres of infinite radius by considering
the discriminant sets of the map D : R™ x RP"*! — R defined above , instead

of those of ¢. We denote their union by Wp and call it compactified big front.
An immediate consequence of the Theorem 2 is that for any generic embed-
ding of a n-dimensional manifold M with n <b5:
1) The compactified big front of M is locally diffeomorphic to the front of
&(M). Observe that , since the map 8 takes Wp bijectively onto the front of
&(M), we actually have a global diffeomorphism between these two sets.

ii) The caustic of M is locally diffeomorphic to the set of singular values of
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the generalized Gauss map on £(M).
ii1) The Maxwell set of (M) is locally diffeomorphic to a double covering

of the closure of the central set of M.

4. Contacts with higher codimensional spheres and affine
subspaces

Let us denote by Sy (resp.Ly) the set of all the k-dimensional spheres (resp.
affine subspaces) in R”. Any k-sphere (k-dimensional affine subspace) can be
put as the intersection of n — k hyperspheres (hyperplanes), but observe that
we cannot consider all the possible intersections between all the possible hy-
perspheres (or hyperplanes) of R in order to describe all the elements in Sy
(resp.Ly), for on one hand not all the pairs of hyperspheres intersect and on the
other hand there is a (finite dimensional) redundancy in this representation, for
different subsets of hyperspheres may give, when intersecting them, the same k-
sphere. Nevertheless, given a submanifold M = g(R™) of R™ and any k-sphere,
S, we can make a choice of n — k hyperspheres centered at ¢, ..., ¢, and with
radii 71, ...,7,—x respectively, so that the contact of M and S is given by the
K-class of the map
v : R — R*F

v o= (lea =2l =i, flens — 2l[F = i)

This K-class is independent on this choice ([11,12]).
By working locally, we can make consistent choices on appropriate open
subsets, U; of Sk, so that it can be parametrized by coordinates of the type

(Bigesss Oy Fig soFn—g) € R™(=k)+n=k Ty this case the family

Uy R™x U — Rk

(@, (C1y ey Cmty T1y k) — (||l — 2|2 —rd, oy |lener — ||> — 12_4)

contains all the informations about the contacts of M with the k-spheres of
R™ lying on ;. Montaldi showed in [11] that there is a residual subset of

embeddings of M in R™ for which the corresponding families of maps Uy, are
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7well-behaved” in the sense that their r-jets satisfy certain convenient transver-
sality conditions. We shall refer to these as generic embeddings.

If we want to describe instead the contacts of M with k-dimensional affine
subspaces, we must consider a family

O R™ x W; — R»F

(2, (R0, ey Pk P15 e Prek)) — (KR, E > =Py, < Ny, © > —Pri)
with {(n:, pi)}"5" representing the subset of hyperplanes whose intersection
gives the considered k-plane of R”.

The map £ : R® — S™ transforms any k-sphere S of R™ into a k-sphere C'
in 5™, which in turn defines a unique (k 4 1)-dimensional affine subspace, [,
of R™*!. Moreover, if S = S™ " (ay,r1) N ... N S™ (ap_t,"n_rk), we have that
I=1"(a1,m1) N ... 0 ™(@p—p,Tn—k). Now, similar arguments to those used in the
previous section for the case of distance squared and height functions, lead us

to the following:

Theorem 3.
Given any embedding g : R™ — R, the families U;, and Q, are locally
K-equivalent, for all k =1,....n — 1.

Proof: The diffeomorphism 8 : 'y — (5 of the definition of K-equivalence be-
tween the families is given by the assignation Sk = S(er, r)Ne.NS(Cpmp, Tneg)
1 = I(cr, ) N oo N (g, Tok). And the map p: R™ x § x R — Rn*

can be defined as

oot i ciCnkiTnsk (tlv s tn—k) = (/’Lchl 1 (t] )7 s e pyrnegk (tn—k))

with each gy, constructed as in the Theorem 1, for all s =1,...,n — k.

We give next, as an application of the above considerations, some conclusions
about contacts of spherical surfaces with planes in R* obtained from the results
of J. Montaldi ([13]) on contacts of circles with surfaces in 3-space.

Given a surface M in 4-space, its contacts with planes are measured by the

singularity types of maps ¢ : R? — R? as exposed above. These may have
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corank 1 or 2. In the first case, the singularities will only be of type A4,,. We
shall say that a plane has a k-poinl contact with the surface at a point x if the
corresponding contact map has a singularity of type Ax_; at z. Notice that
the only plane for which the contact map has corank 2 is the tangent plane of
the surface at the given point. By using stereographic projections, as in the
previous section, we can translate contacts of surfaces with circles in 3-space
into contacts of surfaces with planes in 4-space. We must point out that since
circles are parametrized by a single variable, their contacts will always give rise
to singularities of type A,, and so will those of the planes corresponding to
them through the stereographic projection in R*.

Any tangent direction w in T, M defines a "normal hyperplane” , N, to
M at z (obtained as the direct sum of the tangent line generated by w and
the normal plane to M at z). The intersection of N, with M is a curve 7,
contained in this hyperplane (3-space), and its curvature vector, n(w), lies in
the normal plane of M at z. As w varies, the vector n(w) describes an ellipse
in this normal plane, known as the curvature ellipse of M at z ([6]). At some
points (generically isolated) in M this ellipse may degenerate to a segment such
that the line for it determined passes through the origin z of the normal plane.
These are known as the inflection points of M, and they were characterized
in [9] as the umbilic points of height functions on M. A tangent direction w,
is said to be asymptlotic if the vectors n(w,) and 22(w,) are collinear. Tt has
been shown in [9] that each asymptotic direction w at z is tightly related to a
binormal direction b at z. Moreover, it is possible to prove that w must be in
the kernel of the Hessian of the height function corresponding to b.

Given any tangent direction w at a pont x of M, we call w-plane to any affine
plane of R%, distinct from the tangent plane of M at z, that passes through =
and contains the direction w.

In what follows we shall consider spherical surfaces in R%, that is, surfaces
contained in S®. Given M C 52, the stereographic projection, £=! : $®*—{P} —
R?, takes M to a surface M’ in 3-space, and it can be shown that d¢ transforms

principal directions of curvature of M’ into asymptotic directions of M (a proof
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of this fact is given in a forthcoming paper [10] on 2-codimensional submanifolds
of R™). Now, from Montaldi’s theorems 1 (pg. 112) and 2 (pg. 116) in [13], we

can conclude:

1) If w is not an asymptotic direction, then there is a unique w-plane with

at least 4-point contact with the surface at x.

2) If = is not an inflection point and w is not an asymptotic direction then

a) if X is not an Az point for any height function on M, it does not exist

any w-plane with 4-point contact with M at x.

b) if there is some height function on M havind a cusp singularity at z,
there is a 1-parameter family of w-planes having at least 4-point contact

with M at z.

3) If z is an inflection point, there are exactly 3 or 1 circles with 5-point
contact with M at z (for different directions), according to z being ellip-
tic or hyperbolic umbilic for the height function in the unique binormal

direction of M at z (see [9]).

4) For a generic M, there are at most 10 planes at any point, with at least
5-point contact with the surface at = (which reduces to 3 or 1 if = is an

inflection point).

We conjecture that the above results are true not only for spherical surfaces,
but also for all the convex, i.e. those all whose points are of hyperbolic or

parabolic type, ([9]) surfaces in 4-space.

Some final comments:

It is not difficult to see that the techniques developed in this paper for
the stereographic projection can be adapted to the case of a map given by the
restriction to R”x{0} of an arbitrary inversion with respect to some hypersphere
of R™! whose center does not lie in R™ x {0}. This is due to the fact that

such an inversion would also preserve contacts between pairs of submanifolds
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of R™ x {0}, taking them to another pair of submanifolds of some hypersphere
of R™! with the same contact map. And on the other hand, inversions take
k-spheres of R” x {0} into k-spheres which determine (k+1)-planes of R"*'. We

would like to thank Ricardo Uribe for pointing out this fact to us.
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