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REAL SINGULARITIES AND DIHEDRAL
REPRESENTATIONS

A. Dimca L. Paunescu*®

Abstract

The Euler characteristics of some real algebraic hypersurfaces deter-
mine and are determined by natural dihedral representations on the co-
homology of their associated complex Milnor fibers.

1. Introduction

This paper can be seen as one in a series of papers, see for instance [P], [DHP],
in which we intend to investigate the topology of real algebraic varieties by

using the extensive existing knowledge about complex singularities. Let f €

Rzg, -+ ,x,] be a weighted homogeneous polynomial of degree d with respect
to the weights deg(z;) = w;, where w; are strictly positive integers for j =
0,---,n.

Consider the smooth affine hypersurfaces
Fr = Fr(f) = {z € R"™; f(2) = 1}

F=F(f)={z € C*; f(z) = 1}

which we call the real (resp.complex) Milnor fiber of the polynomial f.

The monodromy homeomorphism

h:F — F, h(l‘) = (twox()"“ ,tw"l'n)
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where t = exp(2ri/d) and the induced monodromy operator h. : H.(F) —
ﬁ*(F), where C-coefficients are used for (co)homology if not explicitly men-
tioned otherwise, are familiar objects of study, see for instance [M], [M Or],
[AGV], [D2]. In particular, when f has an isolated singularity at the origin,
then the pair (E*(F), h) is completely determined by the weighted homogene-
ity type (w;d) = (wo, - - ,wy; d), see [M Or].

On the other hand, the topology of the real Milnor fiber Fg is much more

complicated to describe, e.g. cannot be derived just from the type (w;d).

Example 1. Any quadratic polynomial f (wy = -+ = w, = 1, d = 2) is
linearly equivalent over R to one of the normal forms f,, p = —1,0,--- ,n,
where f(z) =22+ + .7:12) — .’L’;_‘_l — o — 22 see [D1] p.46. Tt is easy to show

that Fg(f,) has the homotopy type of the sphere S?, compare to Remark 11
below. Here we use the convention S—1 = ().

The aim of this paper is to show that there is a natural dihedral representa-
tion on the reduced homology ﬁ*(F) of the complex Milnor fiber of f combining
the action of the monodromy with the complex conjugation.

Let

Kg = Kg(f) = {z € S C R™Y; f(z) = 0}
be the real link of the polynomial f. When f is a homogeneous polynomial (i.e.
wy = -++ = w, = 1) we consider also the real projective hypersurface defined
by f, namely
Vi = Va(f) = {z € RP"; f(z) = 0}.

The understanding of the topology of such hypersurfaces Vg is a central prob-
lem in mathematics, going back to Hilbert 16t" problem, see for instance the
excellent survey by Gudkov [G] and also [BCR], [Si].

Assuming the zeta function of the monodromy operator h. known, as is
often the case by [AC], [MOr], [D2] - - -, it turns out that the equivariant Euler
characteristic of F' with respect to the dihedral representation introduced here

determines (and is determined by) the Euler numbers x(Fr) and x(KRg), see

Cor. 19.
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In the case of an isolated singularity f, the equivariant Euler characteristic
of F satisfies some additional properties and, as a result, is determined just by
X(FR).

One of the main advantages of our method is that this dihedral represen-
tation behaves well under the Thom-Sebastiani construction, in a similar way
to x(F), x(Fr) but unlike y(Kg) or x(V&), see Example 24 for some explicit

computations along this line.

1. Review of dihedral representations

In this section we recall the basic facts on dihedral groups and their represen-
tations following Serre [Se], pp. 36-38. The dihedral group D,, is a finite group

of order 2m and has the following presentation
D = (ry6:0™ =5 = srar = L

To discuss the irreducible representations of the dihedral group D,, we have to

consider two cases according to the parity of m.

Case A: (m even > 2)
In this case there are 4 irreducible representations of degree 1, given by the

following obvious table :

Table 2
| r S
Py 1 1
Py 1 =],
U3 —1 1
’¢74 -1 -1

Next there are m/2 — 1 irreducible representations of degree 2 given by

ph<r>=(f W)= (14)

where 0 < h < m/2 and A = exp(2mi/m).
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Actually the above formulas define a D,,-representation for any h € Z such

that

p = pht
P = ¢1 © 252 (3)
P = by DAy

where “=" means isomorphic representations and “@ ” denotes the direct sum

of representations.

Case B: (m odd)

In this case there are only 2 irreducible representations of degree 1, namely
11 and 1y from Table 2.

And there are (m — 1)/2 irreducible representations of degree 2, given by p"
above for 0 < h <m/2.

The following result has a trivial proof using Ex. 5.2 in (5.3) from [Se]. Here

® denotes the tensor product of two representations.

Lemma 4.
() ¥;i®¢;j=v1, L1 @%;=¢; for j=1,2,3,4
Yo QY3 =va, P2 @¢Ya =13, P3@ths=1,
(i) p" @ p* = p"** @ ph* for any h,k € Z;
(iii) IfV and W are irreducible G-representations and dimV = 1 then V@ W

is an irreducible G-representation for any group G.

2. Dihedral representations on the Milnor fiber

Since f is a polynomial with real coefficients, we can consider the complex
conjugation map

c: F = Fz)=7.

The monodromy homeomorphism i and the complex conjugation homeomor-

phism ¢ satisfy the following easy-to-check relations

ht = ¢* = cheh = 1.
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In other words, there is a group homomorphism ¢ : Dy — Homeo(F') defined
by ¢(r) = h, ¥(s) = ¢ where Dy is the d-dihedral group with the presentation
given in section 1, and Homeo(F') is the group of all the homeomorphisms of

the complex Milnor fiber F.

Using the natural group homomorphism Homeo(F) — Aut(H.(F)) we get

thus the following basic result.

Proposition/Definition 5. The complex Milnor fiber I of a real weighted
homogeneous polynomial f of degree d has a natural Dgy-action. This induces
a dihedral representation on the graded vector space H,(F) called the dihedral

Milnor representation.

Example 6.

(i) f(z) =zl (n=0). It is well-known that the monodromy operator h, has

in this case the following characteristic polynomial
A(t) = det(tT — h.) = (t* = 1)/(t = 1) (7)

see for instance [M], [M Or].

To describe the corresponding dihedral Milnor representation on ﬁ*(F) =

Hy(F) = C*=! we have to consider two cases.

(a) d odd, d > 3.
Using (7) it follows that the dihedral Milnor representation in this

case is (isomorphic to) the direct sum
/)] o /)2 DD p(d—l)/Z

(b) d even, d > 2.
In this case h. has a real eigenvalue, namely —1. The corresponding

dihedral Milnor representation is the sum

s @pl Qe @pdﬂ—l_
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More precisely, let ¢ = exp(2mik/d) be the d-th roots of unity. Then
a basis for the vector space ﬁg(F) is given by a = € — €xy1 for
k=0,1,---,d—2.

The vector corresponding to the representation 3 above is
a=ay+ay+ -+ ag_g.
Indeed, one has h.(a) = —a and c.(a) = a.
.o _ d
(i) f(z) = —xg
As in (i) above, there two cases to consider

(a) d odd, d > 3. The corresponding dihedral Milnor representation is

again

pl DD p(d—l)ﬂ_

This can be proved as above, or by using the real homeomorphism

o:F(zd) = F(—23),0(z) = —=

(b) d even, d > 2.

The corresponding dihedral Milnor representation is now
hy @pl DB pd/Q—l'

Indeed, the elements 8y = €, — €41 form a basis for ﬁO(F) in this

case, where ¢, = exp((2k + 1)mi/d). The vector

B=00+pB2+ -+ Bi-2

satisfies the relations h.(3) = c.(8) = —pB. This explains why the

representation 4 occurs here.

Let f € Rlzo,- -+ ,x,] and g € Rlyo, - , ym] be two weighted homogeneous
polynomials of the same degree d (note that this last property can always be

achieved just by changing the weights of f and g by suitable factors!).
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Then Oka’s version [O] of the Thom-Sebastiani construction [ST] tells us
that the Milnor fiber F'(f + g) is homotopy equivalent to the join F(f) * F(g)
of the “partial” Milnor fibers F'(f) and F(g).

Passing to reduced homology, this gives the following formula (up-to a shift
in grading!)

H.(F(f +9)) ~ H(F(f) ® H(F(g)) (8)

Using the explicit form of the homotopy equivalence j : F'(f)* F(g) — F(f + g)
given by Oka [O], it follows that j, commutes with both the monodromy oper-
ators (fact already stated in [O]) and complex conjugation morphisms ¢.. This

gives us the following

Proposition 9. The dihedral Milnor representation on H,(F(f+g)) is isomor-
phic to the tensor product of the dihedral Milnor representations on ﬁ*(F(f))
and H.(F(g)).

Example 10. Consider again the polynomial f, from Example 1. Using Ex-
ample 6 and Prop. 9 repeatedly, we get that the dihedral Milnor representation
on the space H.(F(f,)) = H,(F(f,)) = C is isomorphic to

P3Q QY3 QYa ® -+ @ s

(p+1)—times (n—p)—times

which is t»; when p+ 1 and n — p are both even, t)3 when p+ 1 odd and n — p
even, ¢4 when p + 1 even and n — p odd and, finally, ©», when p+ 1 and n — p
are both odd. (Use Lemma 4, (i)).

Remark 11. The real Milnor fibers behave in a similar way under the Thom-
Sebastiani construction.

For f and g as above, we introduce the notations

F*(f) = Fr(f), F~(f) = Fr(—J)

(and similarly for g).

Then using similar arguments to [O] one can prove the following.
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(i) If F*(f) # 0 and F*(g) # 0, then there is a homotopy equivalence

F*(f) = F*(g) = F*(f +g)
(i) If F*(f) # 0 and F*(g) = 0, then there is a homotopy equivalence

)= 5 + 5]

(iii) If F*(f) = F*(g) = 0, then F*+(f +g) = 0.

Note that there are similar properties for F=(f).
As an example, using (i) for f = 2§ +---+ 22 and g = —22,, —--- — 2] it
follows that the real Milnor fiber F(f,) has the homotopy type of S? as claimed

in Example 1.

3. Equivariant Euler characteristics

To simplify the notation, let G denote the dihedral group Dy. Then we can

consider the equivariant Euler characteristic of the Milnor fiber F' given by
xa(F) =3 (=1Y[H;(F)] (12)

the classes [ ] being evaluated in the complex representation ring R((G), see
Wall [W].
It is convenient to introduce also the reduced equivariant Euler characteristic

%6(F) defined by the equality
xalF) =t + (-1)"Xa(F) (13)
Using Prop. 9 it follows that
Xa(F(f +9)) = Xa(F(f)) ® Xa(F(9)) (14)

i.e. Yg has a nice multiplicative property with respect to the Thom-Sebastiani

construction.
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Consider now the decomposition of Y (F') into irreducible G-representations
Xa(F) = a1 + agthy + azths + agths + Z brp" (15)
h

where aj, b, are integers. The usual Lefschetz fixed point formula [Sp] applied

to ¢ gives the following
X(Ig) =1+ (=1)"(a1 — a2 + a3 — a4) (16)
Let X = {z € R™!; f(z) = 0}, S™ be the unit sphere in R"*! and K = XNS"

be the real link of our polynomial f as in the introduction.

Proposition 17.

X(Kr) =14+ (=1)"" + 2(az — a1)

Proof. Using the R%-action on R™" associated with the weights of f, we see
that the spaces R"*!'\ X and 5™\ Kg have the same homotopy type. Hence,
using Alexander duality, [Sp] p.296, we get

X(R*\ X) = x(5"\ Kr) = (—1)"x(5", Kr)
= (=1)"(x(5™) — x(Kwr)) = (=1)"*'x(Kr) + 1 + (=1)".

On the other hand, the space R"*'\ X has the same homotopy type as the
disjoint union F*(f)U F~(f), using the notation from Remark 11. Therefore

N(Kz) =14 (1) 4 (—1)+ (x(F*(f))+x(F‘(f)))-

To prove the result, it is enough to show that

XVG (F(f)) = ald)] + Gz¢>2 + (l4¢3 + 03954 + Z b;Lph

where a;,- -+ , a4 are the same integers from (15).

When d is odd, this is very simple. Indeed the homeomorphism

¢+ F(f) = F(~f) given by
o(z) =(-1) -z = ((-1)"°=zo,- -, (1) z,)
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induces an isomorphism of G-modules H; (F/(f)) ~ H; (F(—f)) for all j. More-
over, in this case a3 = a4 = 0 since the representations ¢3 and ¢4 do not occur!

When d is even, one can again define a homeomorphism ¢ as above by the
formula o(z) = A -, where A = exp(wi/d).

Then it is easy to check that ph = hyp, i.e. ¢ commutes with the corre-
sponding monodromy homeomorphisms. On the other hand, hcy = pc. When
he = 1, this gives c.p. = w.ce i.€. @, preserves the representations of type
Py and ¥,. When h, = —1, we have —c.p. = puc. i.e. @, interchanges the
representations of type 3 and 4 (a special case of this phenomenon is seen in
Example 6). This ends the proof of Prop. 17.

It is usual to consider the zeta function ((k)(¢) of the monodromy homeo-
morphism h : F' — F' defined by

((h)(@) = T det (t1 — hlHy(F)) (18)
j=0
This zeta function is known for large classes of weighted homogeneous singular-
ities f, in particular for all isolated singularities [MOr] and for large classes of
homogeneous singularities, see [D2].

It is clear that the knowledge of this zeta function ((h) determines the
following integers a1 + aq, az+ a4 and by, where a; and by, are as in (15). Indeed,
one has to consider the multiplicity of 1, —1 and respectively, exp(2mik)/d) as
a root (or a pole) in ((h). This fact, together with (16), (17), gives

Corollary 19. The monodromy zeta function ((h) and the Fuler numbers
X(Fr) and x(Kgr) determine the equivariant Euler characteristic xg(F') and
conversely.

Let us consider now the case when 0 is an isolated singularity for f. Then

H;(F) =0 except for j =n and Kg is a smooth manifold of dimension n — 1.

Proposition 20. When O is an isolated singularity for f, the equivariant Euler

characteristic Xa(F') satisfies the condilions

(1) a1 = ay when n is even, and
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(i1) a3 = ay when n is odd.

Proof. Assume that n is even. Then K is an odd-dimensional oriented closed
manifold and hence x(Kg) = 0. This implies a; = a3 by (17). Assume now that
n is odd. If d is odd as well, a3 = a4 = 0 and there is nothing to prove. When

d = 2d; is even, consider the polynomial

.fw(:BOv e 7'7"n+1) = f(-/L'Oa e 71'n) + -7";21_}.1
which is weighted homogeneous if we set wt(x,4+1) = d;. Using (14) and Example
6, if follows that

Xc (F(f)) = (@191 + agths + asths + aata + -+ ) @
= a1P3 + agths + azpy + aspy + - -

where - - - denotes a sum of 2-dimensional irreducible representations. Applying

(i) to the polynomial f we get as = ay.

Example 21. When O is not an isolated singularity, the equalities in Prop. 20
do not hold in general. For example, take f = x3z?. Then it is easy to see that
Xe (F(f)) = 2 — 3 + ¢

Assume now that the weights w; of the polynomial f have been numbered
in such a way that wo, -+ ,wy are odd for 0 < k < n and the rest wgq,--+ , w0,
are even (if any). Then the group Z, = {%1} acts on the sphere S™ by the
formula £1 -z = (£1) - z and the fixed points are the n — k — 1 sphere S"7%~1
given by the linear section zg = --+ = x; = 0. The quotient (S™ \ S"~*~1)/Z,
can be identified with the product RP* x D** where

D ={yeR"Myi+ - +y2_, <1}

If the hypersurface K is disjoint from the fixed point set "%~ we can define

a hypersurface in RP* x D" by taking the quotient

FR = ]X’R/ZQ (22)
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When 0 is an isolated singularity for f, we get x(Kg) = 0 for n even, while for
n odd we get from (16), (17) and (20) :

X(Kr) =1+ a, — a1 = x(Fg) (23)

In particular, for homogeneous polynomials K is just the projective hypersur-

face Vg discussed in the introduction.

Example 24. Let fi(zo,21) be a homogeneous polynomial of degree d with
d — k an even non negative integer such that 0 is an isolated singularity for fx
(over C) and the irreducible factorization of fi in R[zg, z;] has k distinct linear
factors. Since the zeta function (k) is known [M Or] and K consists of 2k
points it follows easily that

a;=(d—k)/2, aa=(d+k—2)/2,

0 for d odd
(d—2)/2 for deven

a3 = a4 =
and by =d—2 for 1 <{<(d—-1)/2.
Using the identification of elements in R[G] to class functions on G (by
taking characters), we get X (F(fx)) (s) = a1 —as+ a3 —as = —(k —1). Using
now the formula (14) we get X (F(fe, + fx,)) (s) = (k1 — 1)(k2 — 1) or

X (‘/R(fkl + sz)) =X (FR(fM + sz))

=1— (ki — (k= 1) 29

Hence we get these possibilities for d = 4

(o, k) | (0,2) [ (0,4) [ (2,2) | (24) | (4.4)
(k) | 2 1 0 | 2 [ 8

Take now g = z2z?. Using Example 21 it follows that

Xa (F(9)) (s) = =3.

As above we get

X (Fr(g + fx)) =1-3(k—1)
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for £ =0,2 or 4.
On the other hand, to determine x (Vk(g + fi)) we have to compute first

Xa (F(g+ fi)) = (%2 — 3+ va)(ar1t1 + agths + azths + agths + -+ )
= (a2 — az + aq)tr + (a1 + a3 — aq)t)2
+(—a1 + az + ag)tps + (a1 — az + az)pg + - -
= a1ty + ags + azthz + aatPs + - -

where - -+ denotes a sum of 2-dimensional irreducible G-representations. Using

(17) and (23) we get

Xx(VR(g+fe) =1+a—d
=14 (a1 + a3 — as) — (ag — as + aq)
:1—|—a1—a2+2(a3—a4):k.

Note that for the nonisolated singularities of the form f 4 g the computation
of x(V&) or x(Kgr) cannot be done just by using the topological information
contained in the Thom-Sebastiani formula. For such computations the consid-
eration of dihedral representations is essential.

Besides (22), there is another generalization of a real projective hypersurface.

Let P = P(wo, - ,w,) denote the complex weighted projective space asso-
ciated to the weights wo, -+ ,wy, see [D2]. Let V = V(f) be the hypersurface
in P corresponding to the equation f = 0.

Let Vg be the set of real points of the variety V. In other words, Vg is the
fixed point set of the involution ¢ : V' — V induced by the complex conjugation.
When [ is homogeneous, this Vi is just the hypersurface in R P"* given by f = 0,
as in the Introduction.

Let K = f~1(0) N S?"*! be the complex link of the polynomial f at the
origin. Note that the projection p: K — V, z — [z] induces a surjective map
pr : Kr — Vg, for which each fiber consists of exacty two points. We warn the
reader that this map pr does not come from a Zjaction on K. Indeed, the
involution of Kg obtained by interchanging the two points in each fiber of pg is

not continuous! (see the example discussed below).
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Nevertheless, we can stratify this map pg in such a way that its restriction
over every stratum in Vg is a Zy-bundle. Since Euler numbers behave addi-
tively with respect to stratifications (use Lefschetz duality theorem for relative

manifolds, see [Sp], p.297 with Z coefficients), we get the following.

Corollary 25.
x(VR) = az — ay + (1 + (=1)"1")/2.
In particular, when f has an isolated singularity at the origin and n—1 = dim¢ V

is odd, then x(V&) = 0.

Finally, we note that in general Vi is not a Q-manifold (as is V' itself being a

quasismooth weighted hypersurface, see for instance [D2]). A very simple exam-

ple is when wo = -+ = w,—y = 1, w, =2 and f(z) = zo. Then the link Kp is
just the sphere S™~1. The projection Pg identifies the points (0, z1, -+ , &,_1,2,)
and (0, —x1, -+, —Tp_1,x,) for all (0,21, ,x,) € ™! as well as the points

(0,---,0,1) and (0,---,0,—1). The latter identification comes from the multi-
plication by 1.

Hence the space Vi is obtained from the product RP"? x [—1,1] by col-
lapsing the boundary RP"~% x {£1} to a point y. It is clear that V& is not a
@Q-manifold at this point y.
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