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IMPLICIT HAMILTON EQUATIONS

J. Basto-Gongalves*

Abstract

A special class of first order differential equations not solved for the
derivative, implicit Hamilton equations, is defined as a lagrangian sub-
manifold ot the tangent space of a symplectic manifold, and their typical
phase portraits around singularities are studied.

For the one degree of freedom case their generic normal forms are
obtained, related to caustics of two dimensional lagrangian submanifolds
and to 1-parameter perestroikas of one dimensional wave fronts.

A similar study for one parameter families of these equations is also
presented: the generic normal forms are then related to 1-parameter per-
estroikas of caustics and to 2-parameter perestroikas of one dimensional
wave fronts.

Resumo

E definida uma classe de equacoes diferenciais de primeira ordem
nao resolvidas em ordem a derivada, equagoes de Hamilton implicitas,
como subvariedades lagrangeanas do espaco tangente de uma variedade
simpléctica, e os seus retratos de fase tipicos sao estudados na vizinhanca
de singularidades.

Sdo obtidas as formas normais genéricas para problemas com um grau
de liberdade, relacionadas com causticas de variedades lagrangeanas de
dimensao dois e com perestroikas de frentes de onda de dimensao um,
dependendo de um parametro.

Um estudo semelhante para familias a um parametro destas equagoes
é também apresentado: as formas normais genéricas estdo relacionadas
com perestroikas de cdusticas, dependendo de um pardmetro, e com
perestroikas de frentes de onda de dimensio um, dependendo de dois
parametros.
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perestroikas.
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An implicit Hamilton equation is a geometric generalization of a Hamiltonian
vector field; it appears in a very natural way as the result of converting Euler
equations to their corresponding Hamiltonian form, when the lagrangian is not
regular.

They can be viewed as differential equations not solved for the derivative,
but in the framework of [4] for studying normal forms, the generic (in the
context of all implicit differential equations) assumption made there, namely
that the exponent of the critical points is well defined and different from +1,
is violated: for hamiltonian vector fields the exponent is one for saddles, and
is not defined for a centre. The exponent of a nondegenerate critical point of
a direction field is defined to be the ratio of the eigenvalue of largest modulus
of the linearization of a vector field spanning the direction field to the smallest,
for saddles and nodes, and as the modulus of the ratio of the imaginary part to
the real, for a focus.

To obtain normal forms and typical phase portraits for the implicit Hamilton
equations a different framework is needed.

This is a report on work still in progress, announcing the main results with
sketches of their proofs; a more rigorous and detailed account will be published

elsewhere.

1. Basic results and definitions

A symplectic manifold is an even dimensional manifold M with a non degener-
ated closed 2-form w. As in every case here only the local situation is relevant,
M will always be T*R™ or TR", identified with R?*” with coordinates (z,p) or
(z,2) respectively.

In the situations to be considered, there is a standard way of defining a
symplectic form on TR™ from the one on the cotangent space: assume M =
T*R", with coordinates (z,y) and standard symplectic form wy = dz A dy;
denoting the corresponding coordinates on N = T*M = R* by ((z,y), (p,q)),
the standard symplectic form on N is given by wy = dpAdx+dgAdy. Then wyr
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induces a diffeomorphism ® from TM to T*M defined by v = ((z,y), (%,9)) —
((z,y),(y,—2)) = wm(.,v), and the standard form on T'M will be w = dy A
dz — dz A dy, the pull-back by ® of the standard form wy on N = T*M.

In general, the tangent space of a symplectic manifold M is a new symplectic
manifold with a standard 2-form induced by the original symplectic form on M.

A lagrangian submanifold / of (M?",w) is a n-dimensional submanifold of
M such that the pullback of w to [ by the inclusion map is identically zero,
wl|l=0.

A 1-form « on an odd dimensional M is a contact form if the restriction
day|{as = 0} of da to the hyperplane o, = 0 is non degenerate for every x € M;
a contact structure on M is a family of hyperplanes H, € T, M which can be
defined locally by H, = {a, = 0}. In what follows only the local situation
is relevant, therefore it will be always assumed that the contact structure is
defined by a contact form.

A legendrean submanifold /. of the contact manifold (M?"+!

a) is a n-
dimensional submanifold of M such that the pullback of « to [, by the inclusion

map is identically zero, a|l. = 0.

2. Implicit Hamilton equations

A hamiltonian vector field with hamiltonian H on M is given by

. OH . oH
T=—, p=

ap’ : B

Its graph in T M is a lagrangian submanifold, as the graph of dH is a lagrangian
submanifold of T*M. Thus lagrangian submanifolds of the tangent space gen-
eralize hamiltonian vector fields, and the following definition is natural:

An implicit Hamilton equation on a symplectic manifold M is a lagrangian
submanifold of its tangent space T'M.

The criminant C of [, or of the implicit Hamilton equation, is the set of
critical points for its projection on the base space, and the discriminant D or

caustic is the set of the critical values, the projection of C.
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The pull-back to [ of the form 6 = pdz — zdp on T(T*N) is closed, therefore
locally is the differential of a function. When [ is a surface (dim [=2) it defines
a direction field on [, with singularities at the points where the tangent space
of [ is contained in # = 0; these points always belong to the criminant curve of
A

The phase portrait of an implicit Hamilton equation is the projection of the
integral curves of that direction field on [, together with the caustic, where all
relevant singularities are located: away from the caustic the phase portrait is
just the union of integral curves of Hamiltonian vector fields.

The singularities of the phase portrait appear in two ways: as projections
of singularities of the direction field in the criminant curve, where the tangent
space of [ is contained in § = 0, and as images of critical points of the projection
restricted to /.

The phase portraits of two implicit Hamilton equations on M = T*N are
said to be equivalent if there exists a diffeomorphism of M taking one into the

other; a similar definition can be made for germs.

3. Hamiltonian form of Euler equations

The main example arises when converting Euler equations to its hamiltonian
equivalent: it is usually assumed that the lagrangian L : TN — R is hyper-
regular, i.e. the fibre derivative induces a diffeomorphism L of the tangent and

cotangent spaces of N:

(z,2) — (z,p) = <L~ %@,.«b)) .

Under these assumptions, to the Euler second order differential equations

on NV

0°L, ... 0L ... 0L
@(IE,.’E).’I: + m(fﬂ,f];).’ﬂ = %
correspond the Hamilton first order equations on the cotangent space:
. O0H . OH
&= P=

" op’ O
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(13

where H is the Legendre transform of L, defined by:
H(z,p) = pt — L(z,%), (z,%)=L"'(z,p).

In a more geometric way, the image of the map ¢ : TN — T'(T*N) defined

(z,2) — (7,% T,T)7T,B—L T,T))

by:

8x( 6x(
is a lagrangian submanifold [ of T'(T*N), the graph of the Hamilton vector field.
Then:
oL
0|l = —dh, h(z,z)= :icaj; — L(=z, ).

A point (z, %) € T'N is a singular point of the Euler equation if at that point

8 s .
det @(xx) =0

and therefore the equation cannot be solved for the higher order derivative. In
particular, the usual existence and uniqueness theorems for ordinary differential
equations do not apply if the initial condition is a singular point [3].

The map L is not a diffeomorphism at a singular point and consequently the
corresponding hamiltonian is not well defined. Then [ does not correspond to
a vector field: around the image of the singular points, the submanifold [ does

not project diffeomorphically onto the base M = T*N.

4. Caustics and normal forms

A map F : R* x R® x R® — R is the generating family of a lagrangian
submanifold [ of TM, where M = T*N and N = R", if:

aoF oF oF
l = {(xn"a‘xap) D= 8_]7(/\71717)717 = _E()\VTJ)% a(/\alap) = O} .
If the lagrangian submanifold ! corresponds to a Hamiltonian vector field,
the generating family is just the Hamiltonian of that vector field and k£ = 0.
Two generating lamilies F; and F; are Rt-equivalent if there exists a [unc-

tion S : R” x R" — R and a change of coordinates (A, z,p) — (A(X, z,p),
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X(z,p), P(z,p)) such that:
Fl(’\"fap) . Fg(A(/\,$,p), X(:E,p), P(.’E,p)) + S(I,p)

and R-equivalent if in addition S = 0. They are stably equivalent if they become

(R,R")-equivalent after adding quadratic forms @); on new variables A:

Fl(/\ly- . .,)\k,]},])) + Ql(/\k-}—la oo -7)\3) ~ FQ()\l, oo .,)\1,.13,]7) —I— QQ()\H,l,. . ‘,)\s).

A lagrangian map [ — M is the composition of the embedding of the
lagrangian submanifold / in TM with the projection 7 : TM — M; a caustic
is the set of critical values of a lagrangian map.

Two lagrangian maps (germs) are Lagrange equivalent if there exist a map
(germ) S : M — R and (the germ of) a diffeomorphism g : M — M such
that the (germ of a) diffeomorphism g. + 7*dS : TM — TM transforms one
lagrangian submanifold into the other. They are strictly equivalent if S = 0.

Unless otherwise stated, all germs are taken at the origin.

Theorem 1 ([1]). All lagrangian submanifolds | can be constructed from a
generating family, and two lagrangian germs are (lagrangian, strictly) equivalent
if the germs of their generating families are stably (RT,R)-equivalent. If the
dimension of | is two, the germs of the generic lagrangian maps are Lagrange
equivalent to the germs of the projection on M of the lagrangian submanifolds

defined by the generating families:
o F(A\z,p) =\ +p)
o F(A\ z,p) =2+ 222+ pA
with A € R.

Given two implicit Hamilton equations, if the generating families F; and
F; of the corresponding lagrangian submanifolds are R-equivalent, their phase

portraits are equivalent, but that is not necessary, F; can be just R-equivalent
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to a multiple of Fy, for instance: only a difference in the parametrization of the
integral curves is involved.
From theorem 1 it follows that then the possible generating families of a

generic (as will always be assumed) implicit Hamilton equation are:
o F(A\ z,p) =X+ p\+ S(z,p)
o F(\ z,p) =+ + A2+ pX + S(z,p)

for some smooth function S on M = T*N.
The origin is a fold point of an implicit Hamilton equation if it is a regular
point of the caustic and is not the projection of a singular point of the direction

field on [; the corresponding generating family is:

. a5
F(\z,p) = X* + pA + S(z,p), %(0,0)#0.
Since A* + pA 4+  is a R-miniversal unfolding of A* [1], it is possible to find an

admissible change of coordinates such that F becomes:
F(\z,p) =X +p)\ +z.

In general the condition on the derivative of S fails at discrete points on the
caustic: the origin is said to be a folded critical point if it is a regular point of

the caustic and the projection of a singularity; it corresponds to:

oS 0*s oS
— )3 .
F(Az,p) =X +pA+ S(z,p), 6:v(0’0) =0, 92 (0,0) # 0, op (0,0) #0

and it is a centre or a saddle as S, and S, have, or have not, the same sign at
the origin.

The origin is a pleat point of an implicit Hamilton equation if it is a critical
value of the restriction of the projection to the criminant curve; it corresponds
to:

oS

and it is elliptic or hyperbolic as S, > 0 or S, < 0 respectively.
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5. Perestroikas of fronts and phase portrait models

A map F : RF x R” x R* — R is the generating family of a legendrean
submanifold [, of R*"*!' = T(T*N) x R with N = R™ if:

. . OF
le — {(ZE,p,Z,SB,p) : a_)\()"xvp) = O,Z = F(/\vva)v

oF

. ; oF
T = a_p(AVE?p)vp = _a_x()‘vxvp)}

This is in fact a particular case of taking as generating family G(X, z,p,z) =
F(\ z,p) — =
Two generating families Fy and Fy are V-equivalent if there exists a func-

tion M : R¥ x R® x R® — R and a change of coordinates (\,z,p) +
(AN, z, p), X (2, p), P(x,p)) such that:

Fl()‘vxvp) = M()\,x,p)Fg(A()\,x,p),X(x,p),P(as,p))

They are stably equivalent if they become V-equivalent after adding convenient

quadratic forms @); on new variables A.

Proposition 1 ([1,i]). All legendrean submanifolds can be constructed from
a generating family, and two legendrean germs are legendrean equivalent if the

germs of their generating families are stably V -equivalent.

A legendrean fibration of a contact manifold E is a fibration 7. : ¥ — B
such that the fibres are legendrean submanifolds of F.

A legendrean map [, — B is the composition of the embedding of the
legendrean submanifold [, in £ with the projection 7. : E — Bj; a front is the
image of a legendrean map.

Given a map F(A, z,p,7), 7 € R™, it defines both a legendrean submanifold
leof T(T*"R"xR™) xR and a family of legendrean submanifolds {7 of T'(T*R") x
R, fixing 7; the corresponding fronts are the big front and the instantaneous

fronts.
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Two families of fronts ¥ and X7, corresponding to families of legendrean
submanifolds ] and /7, have equivalent perestroikas if there exists a diffeomor-

phism ® = (®7,7), T' depending only on the parameters 7, such that:
o7(s7) = £10.

Two generating families Fi(\, z,p,7) and Fy(A, 2, p,7), depending on pa-
rameters 7 € R™, are parametrized V-equivalent if there exists a function
M : RF x R™ x R® x R® — R and a change of coordinates (\,z,p,7) —
(AN, z,p,7), X(x,p,7), P(x,p,7), T (7)) such that:

Fi(\z,p,7) =M\, p,7)Foy(A(N, 2, p, 7), X(z,p,7), P(2,p,7), T(7)).

Theorem 2 The phase portrait at a point in the caustic of the germ of a generic
implicit Hamilton equation on M = T*N is equivalent to the phase portrait of
the germ of the implicit Hamilton equation defined by one of the generating

Sfamilies:
o F(A\z,p) = N+ p)\+ 2 at a fold point.
o F(\z,p) =X+ p)A+p+2? at a folded centre point.
o F(A\z,p) = N +pA+p—2? al a folded saddle point.
o (A z,p) = A +2)? + pX + o al an elliptic pleat point.
o F(A\z,p) =M+ 22X+ p)A — 1z al a hyperbolic pleat point.

Proof. In the context of implicit Hamilton equations, to the lagrangian sub-
manifold [ corresponds a legendrean submanifold /. with the same generating
family F', or more precisely G(\, z,p,z) = F(\, z,p) — z; since 0|l = dF|l it
follows that the integral curves of the direction field in [ are contained in the
level sets of F: [, is the big front and the instantaneous fronts IZ, obtained fixing
z = F(\ z,p), give the individual integral curves.

Considering the generating function G(X, z,p,z), z should be interpreted

as a one dimensional parameter; now two germs of perestroikas of fronts are
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equivalent if the germs of their generating families are stably parametrized V-
equivalent [5,6]. The list above follows from the lists established in [5,6] for the

generic generating families with n = 2.

To avoid moduli in the classification, weaker notions of equivalence can
be used, and the following is then natural: instead of changes of coordinates
depending only on (z, p), changes of coordinates (z, p, z) preserving the big front
oF

z = F()‘vmvp)y I\

(A, z,p) =0

are considered. The stable functions on R? for the equivalence based on changes

of coordinates preserving the generic fronts are [1]:

generating family function
A4+ ph—z (z,p,z) =
(x,p,z) = pta?
XM+ +ph—z | (z,p,2) > o

These are essentially the functions S(z,p), defined in the previous section,

involved in the list of theorem 2.

6. Families of implicit Hamilton equations and perestroikas
of caustics

A family of implicit Hamilton equations depending on parameters 7 € R™ is just
a family of lagrangian submanifolds of 7'(7*N) depending on those parameters.
It can also be viewed as a lagrangian submanifold of T(T*N"™ x R™).

Taking the phase portrait of one equation as sections z = ¢, ¢ € R, of a
big front, then sections (z,7) = ¢, ¢ € R™!, should be considered for a family
of implicit Hamilton equations; this approach will be developed elsewhere, here
an alternative treatment will be discussed.

Given a map F(\, z,p,7), 7 € R™, it defines both a lagrangian submanifold
[ of T(T*R™ x R™) and a family of lagrangian submanifolds [™ of T(T*R"),
fixing 7; the corresponding caustics are the big caustic and the instantaneous

caustics.
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Two families of caustics ¥] and X7, corresponding to families of lagrangian
submanifolds ] and [7, have equivalent perestroikas if there exists a diffeomor-

phism ® = (97, 7"), T" depending only on the parameters 7, such that:
LHOHED A

Theorem 3 ([6]). All perestroikas of caustics depending on one parameter T
can be constructed from a generating family defining a big caustic. In dimension
two, the germs of the generic perestroikas of caustics are equivalent to the germs

of the caustics of the generating families:
o F(Az,p,7) =X\ +p)
o F(A\z,p,7) =X +2)+p)
o F(M\z,p,7)= A+ (1 £ 2?)\2 + pA

o (AN z,p,7) =N +7X + )%+ p)

F, Ay, p) = X3 A2+ (1 £ 2+ mp) A2 + 22X + phy

with /\,)\1,/\2,7’,771/ €R.

As before, we add to these normal forms an adequate function S.(z,p),

depending now on the real parameter 7, to obtain:

Theorem 4 The phase portrait at a point in the caustic of the germ of a generic
one parameler family of implicit Hamilton equations on M = T*N is equivalent
to the phase portrait of the germ of one of families of theorem 2 or one of the
Jfollowing:

o F(M\a,p,7) =X +pX+7p+2?
o F(\z,p,T) =N +p\+p+r1a+2°
o F(\z,p,7) =M +2X +p+p+71r+2?

o F(\o,p,m) =X+ (rx2)N +pl+ =
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o F( A\ z,p,7)=N+7X+ 2\ +pl+a.
o F(AL g, mya,p) = A2 MM+ (22 +mp)A? +2h +pha T a2 +mp

with A, A1, Ay, 7,m € R.

Proof. If the phase portrait of one equation can be interpreted as a one param-
eter perestroika, it is natural now to interpret the phase portrait of an equation
depending on one parameter as a two parameter perestroika of fronts.

The classification of the corresponding genetrating families depending on

the two parameters (71, 72) can be obtained from the singularities:
o Ay F(Xa) =X+ a1+ ay
o Az: F(Ma) =M+ a1X? + a) + a3
o Ay F(Xa) =X+ a1X3 + agd? + az) + aq
o Df: F(Ma) = X3 £ X224+ a1A? + aghy + a3 + ag)y

by the path formulation method, the paths a = a(x, p, 71, 7) depending on two

variables (z, p) and having codimension up to 2, as summarized in the following:

singularity path unfolding terms
Ay (pv :E)
(p,p:l:xz) (0,])
(p,z?) (0,1),(0,p)
(p,p+2°) (0,1), (0, z)
Az (z,p, ) (0,0,1)
(z,p,p+ z%) (0,0,1),(0,0,z)
(£2%,p, ) (0,0,1),(1,0,0)
Ay (0,z,p, ) (0,0,0,1),(1,0,0,0)
Dy (x 4+ mp,z,x + mp,p) (1,0,0,0),(0,0,1,0)
Dy (z 4+ mp,z,x+ mp,p),|m| #1|(1,0,0,0),(0,0,1,0)

The generic 2-parameter perestroikas in the plane, corresponding to generating

families depending on two parameters, are given by:
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singularity generating family
Ay XN4+pl+x

Nipl+pEta?+n
Niphtz¥dm+mp
NMiprip+2l+ntne

As MizX+prta+n

Mtz 4+pr+ptai+n+ne
Mt(ntaH) XM +pl+a+n

Az N+rX+zX2+prtz+n
Df A2h + A3 + (x +mp+ 7'1))\% +ady+ (z+mp+ 1)+ ph
Dy A2hg — A3 + (x+mp+ 7’1)/\3 + 2y + (x + mp+ 1) + pAi,

|m| # 1

From here it is easy to obtain the list in the statement of the theorem, taking

zZ=—-—T.

The new two A, cases correspond to two different saddle-centre bifurcations:
in the first one a critical point on the criminant curve crosses at 7 = 0 another
critical point of different type, that for different values of 7 is not on that curve,
and both change type; in the other case two critical points of different types,
both on the criminant curve, meet and disappear.

In the first new As case, a saddle on the criminant curve passes through a
pleat point; a similar situation involving a centre is impossible for generic one
parameter families.

The second new Az and the A, cases correspond to the three different ways

two pleat points, or two cusp points in the caustic, coalesce.

In the D case, three pleat points, or three cusp points in the caustic, come
together and separate again. In the Df a cusp point crosses a different (at the
local level) branch of the caustic, the corresponding pleat point in the front
crossing a fold edge.

A special situation is also important: if a family of lagrangian submani-
folds depends on one parameter identified with time, the corresponding family
of implicit Hamilton equations is just a non autonomous equation. Its phase

portrait cannot be obtained through sections, as it is not longer true that the
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parameter, and also the generating family, are constant along the trajectories.
The above description is no longer valid; the phase portrait has to be obtained
by different methods, integrating a non autonomous vector field corresponding

to the time-dependent generating family.

7. Lagrangian models

Coming back to the main example, TN @& T*N with coordinates (z, %, p) and

the 1-form 6 = 3’;(3: &)dx — &dp is a contact manifold (with singularities), and

L
H(z,2,p)=c¢, p= g—f(x,x)
define a legendrean submanifold [S. As the projection TN @ T*N — T*N is a
legendrean fibration, the trajectory in T*N corresponding to H = ¢ is a front.
T(T*N) xR with coordinates (z, p, &, p, z) and the 1-form o = dz—pdz+idp

is a contact manifold, and

z="H(z,z,p), p= g—f(x,x), p= g—i(rx)
define a legendrean submanifold L.. As the projection T(T*N)xR — T*NxR
is a legendrean fibration, the image of L. is a front.

Also L. = UI¢ and ¢ depends smoothly on ¢ and is obtained from L. by
taking z = ¢; thus L. is the big front of the family I¢. The family of projections
of [¢ is a perestroika of fronts.

Assuming N = R, a straightforward computation shows that the list of sit-
uations considered in theorem 2 can be obtained from Euler equations with suit-
able lagrangians L(z, %), the corresponding generating families being H(z, ¢, p) =

pt — L(z, 1):
e Fold point: L(z,7) = —i® —z, H(z,z,p) = &* + pi + .
o Folded centre: L(z,2) = —(2 —1)* — 2%, H(z,&,p) = (& — 1) + pz + 22

e TFolded saddle: L(z,z) = —(z —1)* + 22, H(z,z,p) = (2 —1)* + pz — 22
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e Elliptic pleat: L(z,7) = —2* — z2? — z, H(z,z,p) = 2* + 22® + pz + .
e Hyperbolic pleat:L(z, 1) = —3* —23? + x, H(x, 2, p) = #* + z2® + pt — .

Remark: for the folded centre and saddle, the relevant point is z =0, & = 1
(taking A = & — 1), and the origin in the remaining ones (A = z); at © = 0 the
critical points are always degenerate.

For families depending on one parameter, the lagrangians are (keeping the

order of theorem 4):

o L(r,z,2)=—(2—71)%—22

o L(r,z,2)=—(2—1)*— 72 — 2>

o L(r,z,2)=—(z—1)*—a(z—1)— 72 — 22
o Ay L(r,z,i) = —3* — (r £ 2H)3? — z.

o Ay L(r,z,7) = —3° — 72 4+ 23? — .

As now the generating families depend only on one variable z, the Dy cases

can not be realized in this context.
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