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REMARKS ABOUT THE DISCRETE PROFILES OF
SHOCK WAVES

Denis Serre*®

Abstract

Discrete profiles for shock waves are important features in the nu-
merical simulation for systems of conservation laws. One discusses the
important role of the dimensionless parameter  := sAt/Az, where s is
the shock velocity and At, Az are the time and space mesh sizes. It
turns out that the rational case, the only one having being considered
for systems by previous authors, is a rather special one. It is far from
generic and does not share the properties that one should expect when 7
is irrational.

Résumé

Les profils d’ondes de choc sont des outils essentiels dans I’étude des
systemes de lois de conservation. Il y en a principalement de deux sortes
: les profils de viscosité et les profils discréts. Ces derniers peuvent étre
présents dans les simulations numériques par différences finies. On dis-
cute ici le role essentiel joué par le rapport sans dimension 7 := sAt/Ax,
ou s est la vitesse du choc et At, Az sont les pas de temps et d’espace.
Sauf pour une équation scalaire, seul le cas n € Q a été considéré au-
paravant. Il est pourtant loin d’étre générique. On montre ici que les
profils discréts pour 7 irrationnel, s’ils existent et ont une régularité
raisonnables, ont des propriétés qui ne subsistent pas dans le cas ra-
tionnel. La question de I’existence de tels profils est donc beaucoup plus
difficile que prévue.

One considers finite difference schemes which provide approximate solutions

of the Cauchy problem for systems of conservation laws :
w+ f(u),=0, z€R, >0, (1)

u(z,0) = uo(z), z€R. (2)
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Hereabove, f is a given smooth vector field defined on some open convex set
U C IR", which satisfies the strict hyperbolicity property : the Jacobian matrix

df (u) is diagonalizable with real eigenvalues A (u) < Ay(u) < ---, of constant

multiplicities. One assumes that each eigenfield (A, ker(df — X)) is either linearly
degenerate (dX vanishes identically on ker(df — X)) or genuinely nonlinear. In
this last case, X is a simple eigenvalue, ker(df(u) — A(u)) = Rr(u), whereas
dX - r # 0 ; one then normalizes the eigenvector by imposing dA - r = 1.

Let (A, r) be an eigenfield of multiplicity m = 1. Following Lax [6], there ex-

ists a unique continuous function ¢, defined on a neighbourhood V of

{(u, AM(w));u € U}, such that

1. ¢(u,s) = w il and only il s = A(u),

[NV

. for (u,v;s) such that (u,s) € V and (v,s) € V,
J(0) = f(u) = s(v —u) (3)

is equivalent to

either v = ¢(u,s) or v=u.

The equation (3) is refered to as the Rankine-Hugoniol condition for (v, u;s).
In the sequel, we shall pay attention to genuinely nonlinear fields only, so

that the Lax’s map satisfies, perhaps up to the restriction to a smaller set V,

(A(&(u,)) = $)(A(w) — ) < O if s # Alu). (4)

The function

iz, 1) = wug, < si,
O u = dwg, s), x> sl

is a solution of (1) in the distributional sense. It is said to be admissible if

moreover

Aur) < s < A(wg).

In that case, (uj,u,;s) is called a shock wave. Let us remark that the two
last inequalities are equivalent to each other and that, given (a,s) € V, either

(a,¢(a,s);s)or (¢(a,s),a;s) is a shock wave, depending on the sign of A(a)—s.
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The stability of shock waves with respect to various kind of perturbations is
of fundamental importance because only perturbations make a significant differ-
ence between admissible and non-admissible weak solutions. The most popular
perturbation is the addition in (1) of a parabolic viscous term e(B(u)uy), ; one
then lets € tend to zero. But for practical purposes, the main perturbation
is induced by space-time discretization, for instance when performing numer-
ical computations with a finite difference scheme. It is essential to determine
whether a shock wave is stable with respect to a given scheme, so that the
approximate solution will mimic the one of the Cauchy problem.

One shall always consider conservative difference schemes, which write in
the general form

At

u;”*'l:u;”—ﬂ( ]T’f'_l/z— j"il/z), jeZ,melN
At
Jp-ll-l/? =8 (E’ uT—p+17 T ’u’;n+q> #
Hereabove, the consistency with (1) is ensured by F(o,a,...,a) = f(a). This

m+1
J

iteration is called a (p + ¢+ 1)-points scheme because the computation of u
needs the knowledge of a priori p 4+ ¢ + 1 values u’ for j —p < k < 57+ ¢q.
The simplest schemes involve only three points' (p = ¢ = 1). For instance, the
Lax-Friedrichs scheme is made with

F(,0,6) = 3 (F(a) + f(5)) + 5-(a —b)
whereas the Godunov’s scheme comes from

F(o,a,b) = f(R(a,b)),

R(a,b) being the middle point v(0,1) in the solution of the Riemann problem

vi+ f(v), =0,
v(z,0)=a, z<0,
v(z,0)=0b, z>0.

Let us remark that no ambiguity occurs when v is discontinuous at = 0 since
then f(0(0—,1)) = f(o(0+,1)).

"However, in special cases, the Godunov’s scheme requires only two points.
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The stability of shock waves is strongly related to the existence of an ana-
logue of the shock wave at the discrete level : the so-called dicrete shock profile
(DSP). Let (u,,us;s) be a shock wave for (1). A DSP looks very much to a
traveling wave with velocity s, which achieves the values u;, u, as 7 — Foo.
Since the ratio At/Ax is given, there is no reason why s should be equal to a
slope of the lattice ZAxz x INAt. Thus a definition of a DSP cannot handle
a discrete function (that is a function defined on the lattice) in general. One
merely must consider functions defined on the entire plane IR, x IR; with values
in U. Since it has to depend only on the traveling variable x — st, one may

restrict to functions of one variable.

Definition 1. Let us denote by n the dimensionless ratio sAt/Ax. One says
that a smooth function v : IR — U is a DSP of the shock wave (u,,us;s) if il
satisfies both

ve=n) = v(e) = 5 [P (Sarvle = p+ D)o 0l +0) .

fF(%,v(zfp),~-~,v(z+qf1))], z € R,

v(—o0) =, v(+o0)=u,. (6)

The meaning of (5) is that for any z¢ € IR, the sequence
uj’ == v(20+j —mn)

satisfies the difference scheme. Thus uasas(7,1), defined by interpolation from
the values
m

untas(JAz, mAL) = ug’,

is an approximate solution which converges to @ as Az goes to zero, the ratio
Atl/Az being kept fixed. In particular it depends only on z — st up to O(Az).

There are definitive reasons to consider DSP depending smoothly on a real
parameter. From an algebraic point of view, the functional equation (5) needs
only that v be defined on a lattice zo + Z + nZ. 1, by chance, n is rational,
say n = [/d, then this is a discrete lattice zy + $Z and (5) becomes a discrete
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dynamical system ; it becomes apparent, noting that z — d(z — zo) transforms
the lattice into Z. Then a natural restriction of the size of the ratio? At/Az
makes F' to be invertible with respect to either its second argument or to the

last one. For instance, if d =1, (5) can be rewritten as

v(j) = H(Az/At,v(j — 1),---,v(j —p — q))- (7)

In this context, a DSP must be viewed as a heteroclinic orbit, between two rest
points (uz, -+, u;) (p+ ¢ times) and (u,,- -, u,), for the dynamical system

U1 H(U—lﬂ"'vv—}?—q)

V_2 V=y

V—p—q V—p—q+1
There is a huge amount of theoretical tools and the study of such orbits is well
understood, at least for small amplitude shock waves (see [§8]). The main tool
here is the center-manifold theorem. Let us give below the simplest application
to our problem.

One supposes that the (genuinely nonlinear) eigenvalue A vanishes some-
where in U. Then, because of genuine nonlinearity, both the set T' := {u €
U; Mu) = 0} and its image f(I') =: C are codimensional-one submanifolds. The
mapping f is a fold : the equation f(u) = z has one solution if z € C but it
has two or zero otherwise, depending on which side of C the point z belongs
to. Pairs of solutions are of the form (a, ¢(a,0)). Let us consider three-points
schemes (p = ¢ = 1). Then a DSP for a steady shock wave (s = 0) is a solution

of the equation
F(Uvujvuj+1):F(Uvuj—lauj)v JEZ.

Since moreover u; tends to u,; as j goes to Foo, then one integrates once the

profile equation by
F(o,uj,ujp) = f(ur)- (8)

2the so-called Courant-Friedrichs-Levy condition.. It usually implies —p < d < q.
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Hereabove, the CFL condition frequently allows us to invert the map b —

F(o,a,b) as a smooth function z — G(o,a, z), so that

ujpr = Glo,uj,2), 2 := f(ury). (9)

We know that d,F and d,G are invertible. On one hand d,F + dyF = df
whenever b = a; on the other hand d,F + dy F'd,G = 0. It follows

d,F(I — d,G) + dfd,G = 0, (10)

when b = a. Thus the kernel of d,G(0,a, f(a)) — I is isomorphic to the one
of df(a) : it is a line if @ € I' and it is trivial otherwise. We now consider the

extended iteration U;1, = g(U;), where

and

o(4)= (G,

In this formulation, a DSP for the shock wave (u,,u;; s = 0) corresponds to a
heteroclinic orbit between the rest points (u;,u;)" and (ug, u, )"
Let a belong to T and A := (a,a)’. The differential of g at A is

e < 0 (0) i (@) ) |
For most schemes, u = 1 is the only eigenvalue of dg(A) on the unit circle?; this
property is the non-resonnance condition of Majda-Ralston [8]. The multiplicity
of p = 1 depends of the accuracy of the scheme ; it should be n + & for a k-
th order scheme (see Michelson [9]). Let us consider for instance a first-order
scheme. Then the central manifold M of g at A is a (n + 1)-dimensional

manifold. By definition :

e it is locally invariant by g,

3but the Lax-Friedrichs scheme is exceptionnal : both g = 41 are eigenvalues of dg(A).
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e it contains every globally defined sequence (¢™(Up))mez which remains in

a small neighbourhood of A.

In particular, it contains all the fixed points of g. These are of two kinds : the
trivial pairs (u,u)’ and the pairs (¢(u,0),u). Thus the fixed points define two
codimensional-one submanifolds My and M; of M, transversal to each other.
Their intersection is nothing but the set of pairs (u, u) such that v € I'. Because
of the nonlinear hypothesis, the fibers v =constant define curves in M, which
are transversal to both My and M;. Let u; be close to a. The curve y(u;)
defined in M by v = w; meets Mo in (u;,w;) and My in (u, := ¢(uy,0),w),
which is different from the former if A(vw;) # 0. The diffeomorphism g acts on
v(u;), preserving the orientation?; with exactly two fixed points. One concludes
that there exists a one-parameter family of heteroclinic orbits between (ug, w;)
and (u,,u;). The orientation of these orbits is determined by an analysis of the
stability property of these fixed points : it goes from (u;,u;) towards (u,,w;) il
and only if A(u;) > 0.

A similar analysis works for any rational values of 7, but the phase space
is then of a large dimension N = (p 4+ ¢ + 1)d. It has been done by Majda
and Ralston [8]. Since this is a local analysis, the existence of a DSP is proved
only for weak shocks, that is under the hypothesis ||u, — w|| < €(d,a). Here,
Ma)At/Az = 1/d. Unfortunately, €(d,a) shrinks to zero as d goes to infinity,
which prevents to use the Majda-Ralston result in order to prove the existence
of DSP for irrational n’s by continuation. This is not due to a bad choice of
mathematical tools but rather to a deep mathematical reason : the spectral
properties of the functional equation (5) make the rational and irrational cases
very different from each other®.

A one-parameter family of DSP’s for a given shock wave (ug, u,;s) appears

in the study of the stability of a DSP under an initial disturbance. Let

n

v; = v(y —nn)

4this is a consequence of the CFL hypothesis.
Sthis is not true for scalar equations (n = 1). In this case, there is an accurate existence
theory of DSP for any value of 7). See the work of Jennings [4].
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and u;’ = ’U;-) + w; a perturbed initial data for the difference scheme. Assuming
that (w;); is summable and small, one expects an asymptotic behaviour which
mimics the one arising for viscous shock waves (see Liu [7]). The default mass
M = Zjez(uj”- — v]”) = >, w; does not depend on n because the scheme is
conservative. The sequence (u?); will be asymptotic in the [*-norm to another
DSP (v(zo+ j — nn));. The shift z, is determined by the following procedure :

the default mass splits into three parts

M= Y ruw)+ > ru(u)+m(z), (11)

p<A(uy) u>Mur)

where r,(u) € ker(df(u) — p) and

m(z0) := _ (v(20 + ) — v(5))-

I€Z
The first sum in (11) is a vector of an invariant subspace E~(u;) of df(w)
whereas the second is a vector of an invariant subspace E*(u,) of df(u,). For
weak shock waves, these spaces are transversal to each other and the sum of

6 n — 1. Thus a good decomposition in (11) needs the image

their dimensions is
of z = m(z) to run over a one-dimensional curve of IR". The analogue of m for

viscous shock waves is

m(z) = [ (o= +y) = v(y)dy = =(ur — w),

which runs other a straight line. We shall show below that this might not be
the case for DSP, at least when 7 is irrational. One only knows in general that

m(z+1) =m(z) + u, —w.

Proposition 1. Let us consider the Godunov’s scheme and assumes that A(u)
is the smallest eigenvalue of df(u) (thal is X = X;). One assumes thal the
Riemann problem has a unique admissible solution.

Lel us consider a DSP for a steady shock wave (u,,uz;;s = 0). Then v is

locally constant off a unil interval which may be fived as]0,1] :

Sthis is the so-called Lax shock condition.
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o v(z) =1 for x <0 and v(z) = u, foraz >1,

o let S(u,) be the shock curve lowards u, associaled lo the eigenvalue A. 1L

contains w;. For x €]0,1[, v(x) runs over S(u,) from w; to u,.

From this, one finds that m(z) = v(z — [z]) — v(0) + [z](v, — w;), where [z]
denotes the integral part of . For general systems (the full gas dynamics is a
good example), the shock curve is not a straight line, so that m(z) does not
run along a straight line. On the other hand, m trivially runs other the whole
line IR for a scalar conservation law (n = 1) and this makes a major difference

between the general case and the scalar one.

Proof. As before, a DSP for a steady shock satisfies F(o,uj,ujy1) = f(u0).
Here, F(o,a,b) is nothing but f(R(a,b)). Since f is a fold, the equality
f(R(uj,ujp1)) = f(ury) means either R(uj,ujr1) = u, or R(uj,ujy1) = w.
In the first case, the Riemann problem {rom wu, to w;+1 involves only forward
waves whereas the Riemann problem from u; to u, involves only backward
waves. In the second case, the Riemann problem from v; to ;41 involves only
forward waves whereas the Riemann problem from u; to u; involves only back-
ward waves.

Since R is continuous, R(uj,ujy1) tends to u, as j goes to +oo. Thus
R(uj,ujy1) = u, for j > Jy. For the same reason, R(u;,ujq1) = w; for j < Jo.

Let 7 be such that R(uj_1,u;) and R(u;,u;41) are equal, say for instance
equal to a. Then gluing together the Riemann problems from a to w; (with
only backward waves) and from u; to a (with only forward waves), one sees
that ¢ = R(uj,u;), so that ¢ = u;. A first consequence is that u; = u; for
J < Jopand u; = u, for 7 > J;.

Now let us suppose that there is a integer j so that R(u;_;,u;) = u, and
R(uj,ujty1) = w. Then one goes from u; to u; by backward waves and from
u, to u; by forward waves. Since one passes from u; to u, by a steady shock,
one obtains a solution of the Riemann problem from w; to itself by gluing all

these waves together. Since it is not a constant solution, this contradicts the
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uniqueness hypothesis.

This shows that J; = Jy+1. Except for j = Jy, u; is either u; or u,. Finally,
one goes from wuy, to u, by backward waves. Since only A(u) might be negative
among the eigenvalues of df(u), there is at most one wave, of the first family.
Since the shock velocity s(u,u,) is monotonous along S(u,) as a function of v,
the wave is backward if and only if uy, lies on the same side than u; of the
wave curve’® O1(u,). On the other hand the Riemann problem from w; to wuy,
is solvable by forward waves and this means that uj; belongs to a half-space
bounded by the following codimensional-one submanifold K(u;). This is the
set of states a such that the first wave in the Riemann problem from wu; to a
is a steady shock. The wave curve O;(u,) meets transversaly K (u;) at u, and
the aforementioned half-space does not contain the rarefaction part of O;(u,).
Thus uj, belongs to the shock curve and lies between u; and wu,.

O

We now turn toward the irrational case. The functional equation (5) is
no longer a finitely dimensional dynamical system. Although central manifold
theory has been developped in infinite dimensional contexts, it does not apply
to our problem because it always needs a Fredholm alternative for the linearized

operator arising from (5) :

LV(z):=V(z—n)—V(z)+0o Zq: dy F(o,a,---,a)V(z+k)=V(z+k—-1)).

k=—p+1

In Fourier variable, it becomes
F(LV)(E) = X(EFV(£),
where

X&) = (e — 1), + o(1 — e7%) Eq: e®d, F(o,a,---,a).

k=—p+1

7all the arguments of this last paragraph of the proof are valid at least if the shock curve
satisfies Liu’s admissibility criterion. In particular, they work for moderate shock strength.

8one uses unusual notations : O1(u;,) is the set of states u such that one goes from u to
u, by a l-wave.



REMARKS ABOUT THE DISCRETE PROFILES OF SHOCK WAVES 163

If i is irrational, det X (2mm) = (e=%™™ — 1)" approaches zero for arbitrarily
large values of the integer m although is does not necessarily vanishes. This
shows that £ is not an invertible endomorphism, even up to a finitely dimen-
sional subspace. The only hope is to invert £ by allowing a loss of derivatives,
providing 7 is well approximated by rational numbers. If so, one should try a
Nash-Moser procedure in the spirit of a famous problem: the linearization of
S1-diffeomorphisms (see for instance [1]). Blood, sweat and tears,...

Let us mention an interesting analysis by S. Benzoni-Gavage [2] in an infinite
dimensional context. It concerns an upstream semi-discretization when the

spectrum of df is non-negative :

duj — fluy) = fluj-1)
W = 7—A.’E . (12)

Then a semi-discrete shock profile is a function v : IR — U such that v(+o0) =
urg and u;(t) := v(j — st/Ax) solves (12). It is thus a heteroclinic orbit of the

retarded functional difference equation in the sense of Hale :

sv/(x) = f(v(x)) - J(v(x = 1). (13)

S. Benzoni-Gavage proves the existence of such semi-discrete profiles for small
shocks. One remarks that there is not any dimensionless parameter in this
problem.

Let us point out another trouble concerning DSP. It will be sufficient to
consider only three-points schemes and we shall forget about the dependence of

F on o. The profile equation is
v(z —n) = v(z) = o(F(v(2),0(z + 1)) = F(v(z = 1),0(2)))-
Let us define the reduced numerical flux 6(a,b) by

S

0(a,b) := F(a,b) 2(a +0) — f(w) + su.

From the Rankine-Hugoniot condition :

0w, uy) = 0(ug,uy) = 0.
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The DSP of (u,u,;s) (let us remind that we do not know about its existence

if n > 2) obeys the equation

1 1
oz =) = (=) + Loz = 1) = o(=+ 1)) = o(O(+ 1) =B = ). (1)
where we use the notation ©(z 4+ 3) = #(v(z),v(z 4+ 1)). Being reasonably

optimistic, one assumes v to be of bounded variation and define
V(y) =2 (00 +v) —v(j)),
IEZ
the series being summable. One shall assume moreover that V' is continuous.
By definition, V(z41) = V(2)+u, —w; and V(0) = 0. On the other hand, (14)
implies V(z 4+ 1) = V(z) + n(u, — w;), because © tends to zero at infinity. Thus
V(z+y)—V(z) = y(u, —w) for all y in Z + nZ. Since n is irrational, this
subgroup is dense in IR and this identity holds for every real number y. Finally:

Proposition 2. Let v be a smooth enough DSP for a shock wave (u,,u;s),
with an irrational value of sAt/Ax. Then
> (G +y) —v(@) =ylu—w), yeR (15)
i€z
The formula (15) cannot be extended to rational values of 7, as shown by the
example constructed above with the Godunov’s scheme? and a steady shock
wave (7 = 0). Indeed the sum in the left-hand side of (15) reduces, thanks to
proposition 1, to v(y) —w; if 0 < y < 1. Since v(y) € O;(u,), this cannot be
equal to y(u, —u;), unless O1(u,) is a straight line, which is false in general.
This conclusion prevents the theory of DSP’s to have nice results. Something

must be wrong in the following list :

e existence of DSP’s for irrational values of 7,

9as pointed out by the referee, the choice of the Godunov scheme could be controversial,
since it really displays no viscosity for steady shocks. However, it has been proved that
this scheme has a good behaviour in the scalar case, regarding DSPs ; this is a part of
Jennings’ work. Thus the bad behaviour that we describe here is actually related to nonlinear
interactions in a systems. Thus we still believe that it is faithfull to general facts about
schemes.
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e smoothness of these DSP’s with respect to the space variable z,
e continuity of these DSP’s with respect to the parameter 7.

Once again, a comparison should be made with the linearization of
Sl-diffeomorphisms, since this last problem is solvable for well approximated
irrational rotation numbers, whereas it is not for rational ones. This displays, as
in our problem, a discontinuous behaviour on Q when looking at the dependence
on the parameter.

Our last discussion concerns a priori estimates for DSP’s. The first one is
rather classical since it is a reformulation of the maximum principle. At last,
one will give an identity which is sometimes a L!-estimate.

Regarding the maximum principle, we assume that the phase space U is the
union of a family (D, ), of convex compact subsets. The index runs other a set

(IR*)? and the family is monotonous, continuous and satifies
Davﬂ = Da U Dﬁ-

Indeed, what we need is only to find a unique smaller D., containing a given
compact subset of U. For practical purposes, these D, are positively invariant
domains in the sense of Chuey, Conley and Smoller [3] or in the sense of Hoff [5].
We shall assume that the finite difference scheme is monotonous with respect

to (Da)a and for 0 < o < oy (this last condition is the CFL one) :
1. Let @ and a_,, -+, a, € D, be given. Then
b:=ay—o(F(o,a pt1, - ,aq) — Floya_p, -+, a,-1))
belongs to D,
2. If moreover b € dD,, then a_, = -+ = qa,.

Let us give a few examples of such a situation. For scalar equations, D, =

[—a1,az] and this definition of monotonicity fits with the usual one:

(a—m e af]) = ap — O'(F((T, A—pt1,° "7, afl) - F(Jv A_p, ="~ 7‘10—1))
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is monotonous with respect to each of its arguments. For general systems, the
Godunov’s scheme is monotonous with respect to domains D, which are strictly
convex and positively invariant under the resolution of the Riemann problem.
One still needs the CFL condition be satisfied. The Lax-Friedrichs’ scheme is
monotonous in a weaker sense because the computation of b does not involve

ap : if b€ dD, and ay, € D, then a_; = a; = b.

Proposition 3. Let the finile difference scheme be monolonous wilh respect
to (Dy)a as above. Lel (uj,u.;s) be a shock wave and let Dg be the smaller
element of the family, containing both u; and u,.

Then any continuous DSP for (u;,u,;s) maps IR inlo Dg.

Proof. Let v be a DSP for (uj,u,;s). By continuity, v is bounded. Let D,
be the smallest domain containing all the values of v. Certainly, Dz C D,.
If Dg # D.,, then there is a zg € IR such that v(z) € 9D.,, by compactness.
The monotonicity implies that v(zo + n + k) = v(z) for —p < k£ < ¢q. By
recursion, v(zo + mn) = v(z) for all m € IN, so that v(z) € {w,u,}. An
obvious contradiction.

[}

Let us remark that the proposition 3 holds true even for the Lax-Friedrichs’
scheme. The proof is straightforward.

The maximum principle does not prevent from bad oscillations of v at
infinity'®. This is certainly the core of the difficulties mentionned above. How-
ever, as Jennings pointed out [4], the scalar case (n = 1) is more favourable.
We shall give below a L'-type estimate in this context.

We first apply proposition 3 to see that a DSP for a scalar shock wave
satisfies

(v(z) —u)(v(z) —w) <0, zé€IR. (16)

We know restrict our attention to three-points schemes (p = ¢ = 1) and use the

10for rationnal 1 and small shocks, Michelson [9] proved that the rescaled profile converges
uniformly toward those of a viscous Burgers’ equation, as ||u, — u|| goes to zero. This is
compatible with oscillations as z goes to +oo for a fixed shock with an irrationnal 7.
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form (14) of the profile equation. Following Jennings, the profile is monotonous,

so that it is of bounded variation.

Lemma 1. Lel us assume thal

lim z(v(z) —u,) = lim z(v(z) —wu;) =0. (17)

z—+00 Z=»=—00

Then the following integral is well defined and is equal to %(ul — Uyp) !

/+OO z (v(z —n)—v(z)+ g(v(z +1)—v(z— 1))) dz.

=

Proof. Let p(A, B) be the integral, restricted to the interval (A, B). It splits
into two parts py(B) + p_(A), with

B y [BH
zv(z)dz + - (z = Dv(z)d=.
2JB1

B-n

p+(B) 1:/

B-1

(z4+n)v(z)dz — /

B-1
An integration by parts gives

B+1 2

p+(B) == [ Qlzn, B)do(z) - To(B+1),

B-1
where @) is continous and satisfies uniformly @ = O(B). Since the Stieljes
measure dv has a constant sign, the integral is bounded by O(B(v(B + 1) —
v(B —1))), which decreases to zero at infinity because of (17). Thus

2

lim pi(B) = —%ur.

B—+oco
Similarly,
2
' i
Ahr—noo [)_(A) - 2 e

On the other hand,

/jfz(@(z—%)—@(z—l—%))dz = AA+129<Z—%>()12

B B-1/2

- z0 <Z + %) dz + 0O(z)d=.

B-1 A+1/2
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Since 0(u,,u,) = 0(uz, ;) = 0, the hypothesis (17) implies
20(z) 7250 0.

Hence the two first integrals of the right-hand side tend to zero as A and B go
respectively to £oo.
We now multiply (14) by z and integrate on the whole real line. We conclude

that the integral of © is well defined and

a/B O(z)dz = %2(1” g (18)

Let us remark that this formula holds also for systems (n > 2) provided a DSP
converges fast enough towards its limits u,.; at infinity.

Let us apply this formula to our beloved schemes. First the Lax-Friedrichs’:

() = S((@) + J(8)) + 5 (a =) = flu) + s

It can be rewritten as

S Uo(a) + Jolb) + 5-(a = b)

where
Jow) 1= () = flur) = s — ) = f(u) = F(ur) — s(u - u,).

Thus a scalar Lax-Friedrichs’ DSP satis{ying the decay (17) will have the prop-
erty

fotoe)dz = =, — ) 19

/Bovz) B =— (u, — wp). (19)

From Oleinik’s shock inequality, the function fy has the same sign between u;

and u, than w, — u;; indeed (u, — u;) fo(u) > 0. Because v takes values in this
interval, we must view (19) as an a priori estimate. In most cases, say when
the Lax’s shock condition f'(u,) < s < f'(u) is satisfied, there is a positive
constant C such that (u, —w;) fo(u) > C|(u, — u)(w; — u)| for u between u, and
u;. Then (19) is a L'-type estimate :

2

L—n 2
J10(2) = w)(w(z) = w)lde £ 5=, = )
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We end by establishing an analogous result for the upstream scheme
uith = uf — o(f(uf) — f(uj_)),

which is relevant when the spectrum of df is everywhere non-negative. The
shock velocity must be non-negative and one has F(a,b) = f(a), so that

0(a,b) = fo(a) — 5(b— a). The identity (18) takes the form

/B Folv(z))dz = ’7(12; " (4, — w). (20)

It yields again an a priori estimate in the scalar case.
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