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A-PRIORI ANALYSIS OF FINITE ELEMENT

SOLUTIONS OF QUASILINEAR ELLIPTIC
DIFFERENTIAL EQUATIONS

Felix C. G. Santos

Abstract

When the discrete operator (PDE) is not a Fredhdlm operator of
some index in the discrete framework, the existence and convergence
of sequences of finite element approximations to solutions of strongly
nonlinear elliptic partial differential equations are not so clear in general.
Usually, this is the case when the exact solutions and/or the boundary of
the domain are not smooth enough. We present some new results which
give existence and convergence of sequences of discrete solutions. Some
numerical results are shown and analysed.

Resumo

Quando o operador discreto (EDP) ndo é um operador de Fredh6lm
de determinado indice em uma estrutura discreta, a existéncia e con-
vergéncia de sequéncias de aproximagcoes de solugbes de equagdes dife-
renciais parciais elipticas ndo-lineares pelo método do elemento finito ndao
sdo, em geral, muito ficeis de serem determinadas. Este é o caso, por
exemplo, quando as solugdes exatas e/ou o contorno do dominio ndo sao
suaves o suficiente. Neste trabalho, alguns novos resultados sdo apresen-
tados para situagoes que ndo satisfazem as exigéncias de uma estrutura
de Fredh6lm. Alguns resultados numéricos sdo mostrados e analisados.

1. Introduction to the Problem

Let W%* be the usual Sobolev spaces with the usual norms, k,s € R, whose
functions are defined over a domain @ C R", n > 1. Consider K to be the
designation for a given closed convex subset of WP, for some fixed p, 1 < p <
00.

7, will designate a partition (mesh) of the given domain € into simply con-

nected sub-domains (finite elements). We will say that the size of the mesh is
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h > 0, when the largest diameter of the smallest spheres circumscribing the
finite elements is equal to h. Usually, the finite elements formulations do not
provide rich enough geometry representation capabilities in order to exactly
represent the boundary 9€ of a general domain Q. Then, the mathematical
representation of the geometry provided by a specific finite element formulation
being used would actually generate a new domain Q; # . Nevertheless, even
restricting the class of domains to be considered (for instance, polygonal do-
mains) we will assume that the finite elements formulations we consider gives
N, = Q (a trivial case would be when € is a polygonal domain and the element
formulation is isoparametric linear). Further restrictions on the mesh 7, will be
considered when needed.

The finite element space (discrete space) S"(75,p, Q) = {vi, € COQ) : va|r €
Puo(T),VT € 1.}, where P,(T') is a suitable space of polynomials of degree less
than or equal to p, defined over the elements T' € 7,. For instance, the finite
element formulation we use for the numerical examples employs bi-quadratic
finite elements in the plane, and it can deal with element boundary as complex
as lines and arches of circles.

Let 2 C R™ be open and bounded, n > 1. Consider the following parame-
terized functional Jy : W' — R, 1 < p < oo,

Jo[u] :/<D(Vu,u,/\,x)dx—/ f(a:,/\).udx—/ U(u, A, z)dz (1)

Q Q n
whereu : @ — RN, N>1, AR, m>1, f: A xR® — RV, and
U:(RVXR"xQ) — R, ®: (RV" xRN xR™x Q) — R. Here ', C 9.

Also, we define T'y = 90 — T',,. For what follows we define
K={ueW"|u(z)=g(z) forall zeTly4}

where g : 90 — RN is a given function defined in the trace space of functions
in WP, Each one of the sets ', and Ty is either empty or a union of nontrivial
simply connected subsets of 9. In order to avoid unnecessary difficulties we
will always assume that T'y # 0.

Let us assume first that
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Hyp. 0.1 : J,\[.] is Gédteaua-differentiable with respect to the function in WP,
Jorall X € R.

Thus, we may define the following problem (exact problem):
Pr.0 : find (u,A) € (KN W) x R™, such that u is a stationary point for
L[] WP — R o
or, equivalently,

Pr.1 : Find (ug, Ao) € (K x R™) such that

}'_‘(u()7 )\()) =0 on {}

O

where F(ug,Ao) = 0, for F': WP x R™ — W—la L4 % = 1, means, in the

)
»
distributional sense, the boundary value problem:

(4]
oo 0P
F()(UO, )\0) = —V[m(VUQ. U, /\0, I)] —|— a—u(Vuo, Ug, )\0, J))
_.[($7 )‘O) =0
od ov
G()(UQ7 )\0) = m(VUo, Ug, )\07 .T)Il($) — a—u(U(), /\0, l') = 0 on Fn

BQ:def‘n, FdﬂFnz@

and g(z) is in the trace space of WP, as well as %M is in the dual of
the trace space of W' over the boundary T',. The vector n is the outward
normal of the boundary, and f € W19,

Since we are going to deal with a-priori analysis, we will assume that the

following hypothesis is satisfied
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Hyp. 0.2 : There exists a nonempty set A C R™ such that, for all \y € A,
Tyl has at least one stalionary point ug(Xo) in some given admissible closed

convex sel K C WP, ie., (uo(Ao), Ao) is a solution of Pr.0 for each Ao € A.

[m]

Then, it makes sense to define the discrete problem (finite element problem)

as
DPr.0 : find (up, Ay) € (S™(74) N K) x Ay, such that uy is a stationary point
for Jy,[] : Sh(Th) — R™ 0

Where A C Aj. Equivalently, we may cast the following alternative versions to
Pr.1 and DPr.0:
Pr.2 : Find (ug, Ao) € (K x R™) such that

By (ug,v) = Ly (v) forall ve Vle’p

]

where W,? = {u € W' | u(z) = OVz € T'y;}. We define the parameterized
form By : (W' x W™19) x R™ — R; and the functional L : (W'? x W~11) x
R™ — R by

Bi(u,v) = /[aavq) (Vu,u, A\, z): Vo + Z%(Vu,u,)\,m).v]dx

Li(u,v) = /f)\x ’ud”c+/ (u, A, z).vdl

Now we set the discrete problem as

DPr.1 : Find (up, M) € (S™(7h,p,2) NK) x R™ such that

By, (un,vi) = Ly, (up,vs), for all v, € S*(m,p, Q) N W;’p

[m]

We also remark that it is assumed that the Dirichlet boundary condition

can be satisfied exactly by functions in S*(7, p, ).
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Next, we will define other equivalent problems of the preceding ones, but
requiring an alternative way of locally parameterizing the solution set. This is
important if one wants to eliminate the negative aspects of critical points such
as turning points, where it is not possible to define local charts based on the
natural parameters .

Set

F(u,\) =V, Ji[u], for all (u,)) € Wp? x R™

Let V: (Wy? x R™) x R™ — W~ x R™ be as

viwxin=| G0N | ®

The function g : WP x R™ —s R™ represents a change in parameterization
for dealing with regular and turning points [1].

Then, for some s > 2, as close to 2 as necessary, and for some given isomor-
phism K : Wy* x R™ — W% x R™, we define V, : Wy* x R™ x R™ —»
Wb x R™ as

Vilon, pst) = PoK ™YW (on, u;t)  for all (vh, u) € Wy* x R™ (4)
where
Wo* = g%
Wle = K5

Il = R0 Nlwss

ll-1.e = BN llw=re,

2
A=y

s
and Py, : H} x R™ — H~!' x R™ is a suitably defined projection, which is
dependent on the operator K and is bounded as an operator from Wy into

itself, for some fixed s > 2.

Pr.3 : Find (u, A\;t) € (K x R™) x R™ such that

V(u,Xt) =0
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a
DPr.2 : With s > 2 fixed, find (u, \;t) € (W' N K) x R™) x R™ such that

Vi(u, ;1) =0

2. Comments on the Problem

This work is intended to analyse certain aspects of the existence, uniqueness
and convergence of sequences of finite element solutions to problem DPr.0 (or its
variations). Such a problem has been the subject of several previous works [1],
(2], [3], [4], [5], [6], [7], [8], but many important and basic questions still remain
open. The class of problems we are dealing with is used in the mathematical
formulation of several applied problems in many different areas, e.g., elasticity,
elasto-plasticity, chemical reactions, thermal analysis of fluids and solids, etc.

Since the solution set of Pr.1 can be very complex [9], it is important to
state the subset of the set we are considering. However, this question demands
some elaboration to be answered properly, and we are not going into the details
of it. For a more complete consideration we refer to [11]. Here we just state
that we are considering the subsets of regular and simple turning points. So,
we will say that My is the solution set of Pr.1 and M, and M, are the set of
regular points and the set of simple turning poins of Pr.1, respectively.

When the solution and the operator are smooth enough, it is usually possible
to cast the problem Pr.l within a suitable space framework, such that the
operator F'(.,..) is a Fredholm operator of some index. Several previous works
have used that structure as the center piece of the development of the theory
for the numerical analysis of such problems as we have stated in the previous
section. However, such smoothness is frequently an unrealistic requirement. For
instance, if the PDE was not of the semi-linear type, then strong smoothness
is to be required for the solution points (e. g., W** s > 2) and for the domain

(Ch a > 0, or local convexity at corners). It is possible to observe that
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the Fredholm structure requires such restrictions on the problem [11]. So, we
are left with the problem of defining the appropriate considerations in order
to take the smoothness of the solution, of the domain and of the operator
into consideration in a separate manner. It is important to point out that
unsmoothness of the solution set and of the boundary of the domain is an
important issue in engineering, where that aspect is common place.

In this work we present two different main results related to the existence
and convergence of sequences of solutions to DPr.1 when an exact solution point
is assumed to exist. We are not considering the continuation properties for those
solutions points. The first result requires very little from the smoothness of the
operator, of the solution set and of the domain, but it considers only solution
points which are strict minima of the functional J,[.], for some A € R™. The
second result concerns stronger requirements over the smoothness of the solution
set, of the operator and of the boundary of the domain. Neither of these results

imply the Fredholm structure.

3. Main Results

In this section we will show the main results of this work, which concern two
different aspects of the problem described above. We are not going to present
any proof for them, since they are very long and technical. Nevertheless, the
interested reader may find them in [11]. We start this section by stating results
concerning the equivalence between the problems DPr.2 and Pr.3 and DPr.0

and Pr.0, respectively.

Lemma. 1 : Vi(u,\;t) = 0 if and only if (u,\) € S* x R™ salisfies <
F(u,\),v, >= 0 for all v, € S*, (which means that (u,\) solves DPr.0); and
glu, \) =1.

O

Lemma. 2 : V(u,\;t) = 0 if and only if (u,\) solves problem Pr.0 and
glu,X) =1t.
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O
Next, we provide a sequence of definitions and a sequence of two theorems,

one lemma and one corollary, which together compose the main results.

Def. 0.1 (Palais-Smale sequences) : Let J : W'? — R be Gateaua-different
and let a sequence {uy} C WP be defined such thal

Wl < € # C(H)
for some C' < oo, and for all k’s; and
||VuJ[uk]||W1,p — 0

as k — 0. Then {ug} is called a Palais-Smale sequence.
O

Def. 0.2 (Palais-Smale condition) : Let {uz} C W' be a Palais-Smale
sequence for some given functional J : WP — R. {uy} is said to satisfy the
Palais-Smale condition (PS) if and only if it is possible to extract a subsequence
of {ur} which is strongly convergent in W' (PS sequences are sequentially

compact).

Def. 0.3 (Class-I) : Let Jy : W'"? — R be a paramelerized functional, for
which A € R™, m > 0. Then, Jy is said to be in the class-I if and only if

i) It is Fréchet-differentiable in WP x R™;

ii) [t satisfies the P-S condition.

Def. 0.4 We define Q € class D1, 2 < ¢ < oo, if the equalion

Au=V.f
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has a unique solution u € Wy for every vector valued function in [L9]", Q €
R", and

[ullwra < K,

| /1]l e

holds for a constant K, independent of f.
[}

Theorem. 3 : Let J[] : Wy? x R™ — R, 1 < p < oo, be a functional
of class-I type. Suppose @ € D' (t = min{p,p'}). Let up € Wy be a local
strict minimum point of Jy,[] : Wo? — R, for some \g € R™. Then, there
exists hg > 0, such that, for each 0 < h < hy, there exists atl least one solution

up, € SM(m), which solves DPr.0, and is a local minimum point for Jy[.] over

Sh(Th).
Furthermore,
([lwn — wollwrr) < wheBiET(lufO)nSh{JAo [wn] = o [uo] }
and

' (lun = wollwrr) < Vo [un]llw-1.0-

If Jy] satisfies (G.iii) and (H.iii) (see below), then the above estimates can
have the form

n(llun — wollwia) C il {lfwon - wolls

wp €Be(ug)NS"

where n, ' : RY — RT are strictly increasing conlinuous funclions, and

n(0) =0 =17'(0), C = C(||uollwre,|Ao|), and 0 < § < 1.

[m]

The class of functionals will be further restricted into the following category:
I Wa? s B™ —R

J\[u] = Gi[u] — Hy[u] — La[u] (5)

where G(_[.] satisfies
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G.ii)

G.iii)

G.iv)

G.vi)

G.vii)

F. C. G. SANTOS

It is Fréchet-differentiable in W, 7 x R™;

<V, Ghu1] — V Galug], ur —ug >> agl|us quH%’,l,p, for all uy, uy € W'U]’p
where oy may be a decreasing function of the norms of u; and uy in Wy ?

and ); furthermore, 1 < # < max{p,2} and A € R™;

IV.Girlua] — Vi Gawa]|lw-10 < an]lun — u2||€},1,,,, for some 0 < 0 <
min{l,p — 1}; for all uy, u; € Wy"*; and where a; may be an increas-

ing function of the norms of u; and uy in Wy'";

GL[0] = 0 and V,GA[0] = 0 for all A € R™;

It is two times Fréchet-differentiable in W x R™, and
IVaGalu + o] = ViGalulll gawtr w1y < Collllipnoe

where s € (1,00) is any number; Cy = Co(]|u|[wr, ||e|lwr=, |A]) is an
increasing function of its arguments; v, € W A € R™; and 1 > 7o >
0. Furthermore, the coefficients of the linearized operator are determined

by the regularity of the first derivative of its argument; and 1 > ~y > 0;

< V2G\[ulp, @ >> Bollepll3, for all u € Wh* o € H', and where 5 > 0
may depend decreasingly on the norm of the function « in the norm of

71,00,
I/I/O’ ’

G(“)[u] : R™ — R, VuG(N)[u] : R™ — Wb ViG(N)[u] :R™ —
LWIP, W11 are at least two times continuously differentiable for all

(u, ) in bounded sets of W™ x R™;

and f1[.] satisfies:

i)

H.ii)

It is Fréchet-differentiable in Wy ? x R™;

V.Hi[]: W(}’p — Wb and V,HL\[]: CY — W,, 0 < a < 1, are
compact for all A € R™;
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H.iii)

H.iv)

H.v)

H.vi)

H.vii)

|Vt [u1] — Vo Hy[ug]|lw-1a < Cillur — ug|[fip, for some 0 < 4, < 1,
for all uy, uy € Wy'*; and where C; may be an increasing function of the

norms of u; and uy in Wy ? and of ||, A € R™;

H,\[0] =0 and V,H,[0] =0 for all A € R™;

It is two times Fréchet-differentiable in W1 x R™, and
192y + 6] = P2 Hull ey < Collolline

where s € (1,00) is any number; Co = Co(||u|lwr=, ||@|lwiw,|A]) is an
increasing function of its arguments; v, € Wh** A € R™;and 1 > v, >
0. Furthermore, the regularity of the coefficients of the linearized operator

is determined by the regularity of the first derivative of its argument;

< ViH)\[ulg,o >> Collpl2z, and ||[VEH\[ulp|le < Cslle||r2, for all
u € Wh®.» € L?, where Cy and C3 may be a decreasing, respectively

increasing, function of ||u|lw1. and |A[;

Hiylu] : R™ — R, Vo Hylu] : R — W, V2H()lu] : R™ —
LWP W=11) are at least two times continuously differentiable for all
(u, A) in bounded sets of Wy™ x R™; furthermore, FVHN , i

e
VL H[u]

W=19 is a nonlinear compact operator and ==

: Hy — Hj is a

linear compact operator; |a| = 0,1,2;

and L) satisfies

L.i)

Lyl Wol’P — R is a bounded linear functional for all A € R™, and is
denoted by
Ly[u] =< f,u> for all u € Wy*

I i«
where f € W™1P is as smooth as necessary.

Lemma. 4 : Lel the projection P, : Wy* —s S" be defined based on the

bilinear form

B(u,v) =< V3G, [uolu,v >, for allu € Wy* and v € VVOI’SI
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where Ao € R™, uo € W%, r > 2,85 » 2. Then Py ¢ Wy* — Wy is a

bounded operator for all s close enough to 2.

O

Theorem. 5 : Let Jiy[.] : Wy? x R™ — R satisfy (G.i-vii), (H.i-vii) (but
not H.vi) and (L.t1). Lel (ug, Ng) € M, U My, be given, and assume that Mgy C
Wot"* x R™, where r > Zg, 5> 2. Lel the domain & € D, for some 2 < 1 < oo,
and let 3 be as close to 2 as needed.

Then, for any given bul fived q, 0 < q < 1, there exisls hg > 0, and § > 0,
such that, for all 0 < h < hy, there exists a unique (up,\n) € S* x R™ €
Bs(Pruog, Ao), which solves DPr.0 (the discrele problem). Furthermore, we have
the following two-sided estimates

11D w2y Vi ( Prio, Ao; to)] ™ Vi (Patio, Ao; to)||ws xrm &
1+¢ -

< (Jlun = Pauollwrs + [An = Xo]) <
< ”[D(u,)\)vh(Phu(): Ao; to)]_] V}L(Phuo, Ao to)”WMme
< =g .
for all s > 5 close enough to 2.
O
Corollary. 6 Let the hypothesis of the Theorem 5 be true. Then,
ln = woll g + PAn = Xo| < CT+E-5
Jor all s € [3,00) and
lltn — two||wieo + |An — Ao|RY < CH™%
for all h > 0 small enough. Here C = C(||u0||W01+r,s, [Xol).
O

OBS.: 1. Theorem 3 is important in the sense that very little is required about
the functional and the exact solution point besides that it is a strict minimum

point for Jy[.]. It does not provide uniqueness for the discrete solution, but it
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shows that any discrete sequence converges when h — 0. This is substan-
tial, since there are algorithms built to choose one unique minimizing sequence
from the set of all possible minimizing sequences. It is interesting to note that
Theorem 3 can be specialized to functionals whose gradient are monotone coer-
cive operators and be compared with the results obtained in [9]. This will give
interesting interpretations for the functions n(.) and 7’(.).

2. Theorem 5 provides a way of thinking separately about the effect of the
regularity of the solution points, of the boundary of the domain and of the
operator, and the role each one of these aspects plays in the existence issue for

the discrete solution.

Numerical Examples

In this section we present an example of strongly nonlinear problem (i.e., the

growth of the functional can not be located between two quadratic functionals).

It has a smooth solution set but the boundary of the domain is unsmooth, and

then it can not be cast into a Fredholm structure. The program NFEARS

was used, which means that the finite element space is the space defined by

bi-quadratic finite elements with possible irregular nodes for graded meshes.
The basic functional is:

14 |Vul?)? u®
gl = [P fpudan — [ grudy

where the domain is the L-shaped region as in Fig.l. We will refer to the
problems by the letter L (for L-shaped region). The convex set where we will
seek the solution set for the stationarity condition of the above functional will
depend on the desired smoothness and on the domain; and so will the definition
of I',,, the part of the boundary where we define Neumann boundary conditions.

The problem depends on the vector of real parameters (y, A), and

Jn(r0,a) = =23’ (a — 1)r*** sin(af) — pA*r** sin®(ab)
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and
aa(r,0,a) = (1 + X2 ar® ™ {ny sin[0(a — 1)] 4 ny cos[f(a — 1)]}

on T, where (nq,n3) = (n1(r,0),ns(r,0)) is the normal to the boundary I at
(r,0). The parameter « is fixed, in order to define the smoothness and boundary
conditions of the problem. As usual, (r,6) is the representation of a position
in R? in polar coordinates. We will set (4, A) = (1.0,0.01), even though some
comments will be necessary in some cases.

It can be proved that the above functional satisfies the conditions (G.i-vii);

(H.i-vii) (with the exception of H.vi) [11], where

1+ |Vul?)?
Gl = [ SISO
o

Hunylu] = p /Q S0

dQ

and
Ly (u) = fﬂfw,x)udQJr fr gaudl',
for all u € W,
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Let us set a = %. A branch of smooth exact solution points is
uo((r,0), (A, 1)) = Ar® sin(ab)

for all (\,1) € R*. The solution points are in Wls_l’Q, which means that they
are as smooth as we may want. However, the domain is not smooth, and the
Fredholm setting breaks down. Here, the convex set where we look for solutions

is
K={ueW" |u(r,§)=0, forall (r,0)=(r,0),and (r,0)=(r,%),

0<r<l1}

Remark : Actually, this problem has been classified as unsmooth, since we
can not use the Fredholm structure, which means that we do not know for sure
if one can extend the solution in a continuous way. Another important remark

is related to the smoothness of the domain as required in Theorem 5, that is,
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we should have @ € D?, for some s > 2. Checking the Definition 0.4 we observe
that it is difficult, sometimes, to have a finer control of the domain smoothness
by using that definition. However, we know that that is true for some s > 2
(very close to 2, but still bigger than 2) [11]. In Theorem 5 we should have a
constant 2 < § < s, such that r > %, where, in the present case, r can be any
number such that r < g+ %, which means that we are in good shape. Hence, we
conclude that, for this case, the importance of the unsmoothness of the domain
was damped out by the high smoothness of the solution points.
O
The main tools to analyze this problem are Theorem 5 and Corollary 6, in
what concerns a-priori estimates. Following Corollary 6 the rates of convergence
should be the best possible, that is, 1 with respect to the norms of the spaces H*,
W4, because ug € W32, for all 1 < s < 6. So, we can not expect to have the
best possible rate of convergence with respect to W1°°, but, as a consequence
of Theorem 5, we may expect, as in Corollary 6, to have a rate not worse than
%, because ug € W”g’g, for all 3> 1, as big as we wish.
Fig. 2 and Table 1 present the result for the true relative error for a se-
quence of uniformly refined meshes. The observed rates of convergence for the
two last meshes are ~ 1.0, ~ 1.0, and 0.84, for the norms of H', W* and

WLee respectively.

mesh | d.o.f. L® Wl Lp HY wTp
1 56 0.26414E-02 | 0.12247E-01 | 0.30561E-02 | 0.15225E-01 | 0.15996E-01
2 208 0.38320E-03 | 0.36767E-02 | 0.39196E-03 | 0.38316E-02 | 0.37673E-02
3 800 0.58052E-04 | 0.11311E-02 | 0.49790E-04 | 0.96061E-03 | 0.92049E-03
4 3136 0.89700E-05 | 0.35209E-03 | 0.62854E-05 | 0.24043E-03 | 0.22759E-03
5 12416 | 0.13994E-05 | 0.11025E-03 | 0.79045E-06 | 0.60137E-04 | 0.56542E-04

Table 1: True relative error - Strongly nonlinear smooth - L-uniform - a = %

More numerical examples may be seen in [11].
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