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GLOBAL EXISTENCE OF L? SOLUTIONS IN
DYNAMICAL ELASTO-PLASTICITY

M. Rascle

Abstract

In previous papers we studied a classical dynamical model of elasto-
plasticity, with so-called isotropic hardening and we proved that this
model has a unique generalized solution, which is globally defined. Here
we prove independently that the Riemann Problem has a unique solution,
which (fortunately !)coincides with the above generalized solution.

1. Introduction

In [1], we have considered dynamical models of elastic-plastic material, with
1sotropic hardening and established the global existence and uniqueness of solu-
tions in the Sobolev space H'. In [6] is defined a notion of generalized solutions
in L2, which naturally coincides with the previous one for smooth solutions.
The generalized solution to the initial-boundary value problem is shown to be
unique and globally defined. Moreover, either notion of solution is associated
to a semi-group of pseudo-contractions in L2 This property, very surprising
in the context of conservation laws, is closely related to the absence of shock
waves in this model, which itself is implied by the convexity assumptions on
the plastic yield curves, as stated below. For instance these very nice proper-
ties of the model are not at all satisfied in the class of models considered by
B. Plohr, [5]. Here we solve the Riemann problem in the classical way and we
show that the unique solution to that problem is also the unique generalized
solution introduced in [6]. We also show, as in the above paper that this gen-
eralized solution, although only piecewise smooth, satisfies the same evolution

variational inequality (2.17) below as does a solution.
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The outline of the paper is the following. First the precise model, and the two
notions of solutions are recalled in Section 2 below. Then in Section 3 we study
the simple waves in the elastic and in the plastic regime, before solving the
Riemann Problem in Section 4 and comparing with the generalized solution in

Section 5.

2. Basic facts

A. The model.
In [1], [6] we have considered the following dynamical model of a long thin bar

of elastic-plastic material, with isotropic hardening:

O — Oy0 =0
0o — 0, v +Asgn(o) = 0 (2.1)

In these equations, sgn denotes the sign function, and A is an unknown Lagrange
multiplier, which vanishes in the elastic regime.

Since this kind of model, although classical, is not necessarily familiar to the
reader, we first briefly recall the main assumptions. For more details, we refer
to the references in [1] and [6].

The first equation in (2.1) is the momentum equation, in which v is the velocity
and o the stress. For simplicity, the density p and the Young modulus E are
assumed to be equal to 1. We assume that the strain ¢ can be decomposed into

an elastic and a plastic part

gi=0u=¢,+¢,,

where u is the displacement.
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Figure 1: the coordinates of A are (g, 0,).

For instance in Figure 1 the abscissa of point C' is the plastic strain of
any point on the straight line BC'D. The underlying constitutive relation is
compatible with Clausius-Duhem inequality and satisfies the classical normal-

ity assumptions. Essentially, it can be described as follows:

(i) We assume (since E = 1) that
0=¢c, (2.2)
(i) We rewrite the second equation in (2.1) under the form
Oce — 0,0 = —0iep (2.3)
which is nothing but the compatibility equation
0 = O, v = 0,,0,u.
(ili) We introduce the accumulated plastic deformation

¢
Pli= — i= /0 |0sep(, 5)| ds (2.4)
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(iv) Moreover, we impose that the the solution to satisfies the constraint
o] +9(7) < oy . (2.5)

In order to do that, we have introduced in (2.1) a nonnegative Lagrange mul-
tiplier A corresponding to this constraint. This parameter is determined dy-
namically by (2.1)and by the yield condition (2.5) and in turn determines the

dynamics of the plastic deformation by
Oiep(x,t) = Asgn(o) . (2.6)

The function ¢ in (2.5) is implicitly defined in Figure 1, in which the equation
for the first yield-curve ABM is

o= o0,— g(—e+ay,). (2.7)

In other words, g is a smooth non-decreasing convex function, such that g(0) =

0, which satisfies for some positive constants c¢; and ¢y
(H)V7<0,0<¢<g(7) <cy ¢"'(7) 20
(v) Now we introduce
U := (v,0,7) and G(U) := (v,0,9(7))
and let us define the conver sets of plasticity by
C={U/GU)e K}, K:={V=,008)/lol+8<0c,}. (2.8)

Notice that K is a cone, and that the velocity v does not play any role in its
definition and is only introduced here for mathematical convenience. In fact,
we also want v < 0, but that will be implied by the initial data (.,0) = 0 and
the last equation in (2.1).

(vi) We say that U is in the elastic regime if

UelInt(C): |o|+g(y)—0a, <0, (2.9)
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or

UedC: |o|+g(y) —o, = 0, and 90| = sgn(c).0i(c) < 0. (2.10)
On the contrary, U is in the plastic regime if
UedC: |o|+g(y)—o, = 0, and §o| = sgn(o).0i(c) > 0. (2.11)
We also notice that the unknown vector
(0, Asgn(a),A), A >0

appearing in (2.1) vanishes in the elastic regime and always belongs to the
normal exterior cone to K. In convex analysis, see e.g. [3], [2], the set of such
vectors is called the subdifferential of the indicator function xx of the convex
K at point G(U) and is denoted by dxx (G(U)).

Finally, if the problem is set on the domain 2 C IR , we introduce the Hilbert
space H := (L*(2))?, equipped with its natural scalar product (. , .), and we
define the unbounded operator A in H by

AU := (=0,0,—0,v,0) . (2.12)

We now can rewrite system (2.1) under the form of an abstract dynamical

constrained problem:
U+ AU + 9xx(G(U)) 0. (2.13)

In particular, in the elastic regime the subdifferential Oxx(U) vanishes, and

system (2.13 is simply

Ov—0,0 = 0,
0oc—0, v = 0, (2.14)
aﬁ = 0.

In contrast, in the plastic regime the solution U (resp. G(U)) “ would like” to
leave the convex set C' (resp. K), so that we need the additional (unknown )
nonnegative function A in system (2.1) to remain in K. All we know about this

Lagrange multiplier is its direction and orientation.
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B. Solutions and generalized solutions.
Therefore we are left with system (2.13), which is an evolution variational in-

equality. Naturally, we add initial data
U(z,0)= (v,0,7)(z,0) = Us(x) := (vo(z), 00(x),0) (2.15)
and boundary conditions, e.g. on  := (0, L)
v(0,t) = v(L,t) = 0. (2.16)

We could replace either of these conditions by any other natural boundary
condition.

In [1] we defined a solution U = (v, 0,) to the initial-boundary value problem
(2.13), (2.15), (2.16)as a function with values in the domain D(A) such that

YU* = (v*,0%,~*) € L*0,T; H)|U*(x,t) € Ca.e.,
T
/ (BU + AU, GU) — G(U*))dt < 0, (2.17)
0

and which satisfies in an appropriate sense (2.15), (2.16). Due to the nonlin-
earity of function g, the problem is not that easy, since A is a skew-symmetric
operator in H, and therefore is monotone with respect to U, whereas the sub-
differential term is monotone with respect to G(U), but not with respect to U.
Nevertheless, using the Yosida regularization technique for maximal monotone
operators in Hilbert spaces, see eg. [2], we proved the global existence and
uniqueness of such a solution, and even a nice property of pseudo-contraction
in L2, provided that the initial data satisfy Uy € D(A). Note that here

D(A) = H}(Q) x H'(Q) x L*(Q),
where the above spaces are the classical Sobolev spaces.
The obvious limitation of this result is of course the above assumptions of
regularity and compatibility between initial data and boundary conditions. In

particular, this theory is unable to handle the case of a Riemann problem. How-

ever, if we want to deal with discontinuous solutions on 2 = IR, two difficulties
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arise:

(i) the solution to the Riemann problem is not even in H = (L*(IR))® !
This is a minor problem, since we can always replace IR by a large bounded
interval 2 and use the finite speed of propagation to describe - locally in time-

the solution to the Riemann problem as an element of H = (L*())®.

(ii) the second problem, much deeper, is that the scalar product

QU + AU,G(U))

in (2.17) has no meaning if U is a L%-solution.

For this reason, we defined in [6] a generalized solution U = (v, 0,7) to the
initial-boundary value problem (2.13), (2.15), (2.16) as a function with values
in H = (L*)3 such that, for almost all ¢ in (0,7), and for all smooth function

U* = (v*,0*,7*) with values in C, we have

[ @*2+ 02+ G () (@5)dolich
~ [ 0" + 00" + 190) (@,5) dolih
+ /O o)z, 8) E=E ds (2.18)
+ /0 /Q(v.atv* + 0.0i0" + 7.0i9(v*) — 0.0,0" — v.0,0") (x,5)dxds < 0,
where
G () := A’y g(s)ds. (2.19)

In this formula, the absence of contributions v.c and v.c* in the boundary
term expresses the boundary condition (2.16). Integrating by parts the terms
containing the smooth function U* and applying the chain-rule formula in those
which only involve U, it is easy to see that solutions and generalized solutions
are the same if they lie in the domain D(A). We can now start studying the

Riemann problem, i.e. the initial value problem with initial data

U(z,0) =U_(resp.U;) for x < 0 (resp. > 0).
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3. Simple waves

A. The elastic regime
We have already seen that in this case the system (2.1) reduces to (2.14), which

is linear. Tts three characteristic speeds are
)\1: —-1< )\2: 0< /\3: 1

and the corresponding Rankine-Hugoniot relations are

sly] = —[o],
slo] = —[v], (3.1)
sly] = 0.

Moreover, since the system is linear(ly degenerate), for any entropy-flux pair

(n,q) we have the entropy equality

sl = [d] - (3:2)

Note that in particular the “physical” pair

(ma) = (v*/2+0%/2+ G(v), ¢ = —v.0) (3:3)

appears in the boundary terms in (2.18).
Therefore U_ and U, can be connected by a contact discontinuity of the first

(resp. third) family if and only if
[v—0]l=[]=0,s=-1 (resp. [v+0o]=[]=0,s=1)), (3.4)
and by a (stationary) contact discontinuity of the second family if and only if
[v] =[0] =0, s=0. (3.5)

B. The plastic regime

First we note that any line {z = constant} corresponds to the same material
particle, whose state evolves with respect to time. In particular in Figure 1 the
particle at point B is “older” than it was at point A. Since the slope of the

tangent to the curve ABM is the square of the characteristic speed,the concavity
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of this curve rules out the possibility of shock waves in the plastic regime. The
same holds for the lower family of compression plastic yield curves like curve
DE. In contrast, the models considered in [7], [4] or in [5] admit concave plastic
compression curves, and therefore admit plastic shock waves, which then raises
(for multi-dimensional problems) the difficult question of giving a meaning to
products of distributions in non conservative equations. This difficulty is totally
avoided here.
To connect U_ and Uy by a plastic wave, we first note that using (2.4) it is
equivalent to determine the evolution of the accumulated plastic deformation,
in fact one of v or g,. Knowing either one of these variables at time ¢ = 0 is
sufficient to specify the plastic yield curve on which each particle is going to
evolve. Consequently for x < 0 or z > 0, the stress ¢ is a known function of
the strain:
o= o(e):= ox(e)

Therefore, using (2.3) we rewrite (2.1) under the form

O —d,0(e) = 0,

O — Opv = 0, (3.6)

Oy = _‘at5p| .

The first two equations in the above system, uncoupled from the last one, are

nothing but the system of one-dimensional elasticity. Here the two eigenvalues

/\;t = ﬂ:\/J/(é).

They are genuinely nonlinear, and for the reason we already mentioned, the

of this reduced system are

corresponding waves are rarefaction waves, across which the corresponding Rie-

wy =vt /06 \Jor(e) (3.7)

is constant, and |o| is increasing with respect to time.

mann invariant

In addition to these two classical waves, we see that the last equation in (3.6)

can be rewritten as
Oy = —[0(e —o(e))| (3.8)
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Knowing € determines the time evolution of  on either side of the line {z = 0},
and allows any discontinuitiy of vy across this line. Therefore any stationary
contact discontinuity (or slip surface in the multi-dimensional case) which sat-
isfies (3.5) is also permitted in the plastic regime.

We are now ready to solve the Riemann problem.

4. The Riemann Problem

We are going to give a graphical proof of existence and uniqueness, using what
is known in French as géométrie descriptive to depict curves in IR, namely the
left-hand part of Figure 2 below describes the projection of the wave curves on
the plane (v,¢) and the right-hand part the projection of the same curves on
the plane (g,,¢).

We first note that the plastic rarefaction waves are much slower than the (fast)
elastic precursor waves, since the slope of the plastic yield curves is much smaller
than the Young modulus (a typical ratio is 1/2500). Therefore in Figure 2, the
curves in the right-hand part, i.e. the projections of the wave curves on the
plane (g, €), have a vertical part, as long as the solution remains in the elastic
regime, and the other part of these curves has a slope strictly bigger than 1. We
also see that stationary contact discontinuities correspond to vertical straight
lines on the left-hand part of the picture, and - with appropriate units - to

parallels to the bissector of the first quadrant in the right-hand part, since
[l = [o] =le—g]=0.

In the typical case depicted in Figure 2, the solution U is defined as follows:

(i) U(z/t) = U_ for z/t < —1 and then U_ is connected to U; by a “fast”

(backward) elastic precursor wave, of speed A; = —1.

(i)U(z/t) = Uy for =1 < x/t < A_(U1), and then Uy is connected to Us by

a slow (backward) plastic rarefaction wave.
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(iii) U(z/t) = Uy for A_(Us) < z/t < 0, and then U, is connected to Us by

a stationary contact discontinuity.

(iv) U(z/t) = Us for 0 < x/t < A\;(Us), and then Us is connected to Uy by

a slow (forward) plastic rarefaction wave.

(v) U(z/t) = Uy for Ay (Uy) < z/t < +1, and then Uy is connected to U, by
a fast (forward) elastic precursor of speed +1.
This solution involves five different waves, or more accurately one composite
backward (resp. forward)wave, corresponding to the increasing (resp. decreas-
ing) curve I'_ (resp. I'y) in the left-hand part of Figure 2 (and to C_ (resp.
C.) in the right-hand part of Figure 2) , and a stationary contact discontinuity.
We see that the crucial part in the above description is this contact discontinu-
ity between U, and Us. In the (v,¢) plane, we must have vy = v3 := v, whereas

in the (g,,¢) plane, we must have

Fv):=[o] =€ —¢e3—€pa—Ep3=0. (4.1)
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Figure 2: The Riemann Problem: a typical example.

Since the slopes of curves Cy are strictly bigger than 1, we easily see that

Fis a strictly increasing function. Therefore

Theorem 4.1

For all Riemann data U- and Uy, there exists a unique solution to the corre-

sponding Riemann problem.

We are now ready to check that this solution is also the unique generalized

solution defined in Section 2.

5. Generalized solution to the Riemann Problem

As we already said, any solution to (2.13), (2.15), (2.16) is a generalized solution.
Conversely, integrating by parts, it is easy to see that any generalized solution
with values in the domain D(A) satisfies (2.17) and therefore is a solution.

More generally, as in [6], let us consider a piecewise-smooth generalized solution

U and let us assume that the distribution
oU + AU

does not charge the curves of discontinuity of U. In particular this is the case

for the above solution to the Riemann Problem , which is piecewise-smooth
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and does not involve any shock wave in the plastic regime. For this solution
the only possible discontinuities are elastic contact discontinuities or stationary
contact discontinuities in the plastic regime. In either case, the wave is linearly
degenerate. Therefore, integrating (2.18) by parts on each side of the curves of
discontinuity and using (3.3) and the Rankine-Hugoniot conditions (3.1) (3.2) as
in [6], we easily see that there is no contribution on these curves of discontinuity,
so that we recover (2.17). Conversely the same calculation shows that under

the same regularity assumptions we would recover (2.17) from (2.18). Therefore

Theorem 5.2
(i) Any solution to the initial-boundary value problem (2.13), (2.15), (2.16) is
a generalized solution.
(i1) Conversely, any piecewise-smooth generalized solution to the initial-boundary
value problem (2.13), (2.15), (2.16) satisfies (2.17) for each smooth U* € C,
provided that the distribution

oU + AU

does not charge the curves of discontinuity.

(#11) In particular, the above solution to the Riemann Problem satisfies (2.17)
and the above reqularity assumptions, and therefore is the unique generalized
solution to (2.13), (2.15), (2.16).

In conclusion, on one hand the definition of generalized solution introduced in
[6] is quite natural from the point of view of functional analysis, and on the
other hand it recovers the natural solution to the Riemann Problem. Therefore
this theory is quite satisfactory for the class of models considered here. Now
modeling realistic impact problems with “real” materials is quite an ambitious
program, see e.g. [5] for an attempt in this direction, and definitely exceeds the

purpose of this work, whose main advantage - not negligible ! - is simplicity.
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