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MATHEMATICAL MODELING OF PLASTICITY IN
METALS

Bradley J. Plohr *

Abstract

We present a short introduction to continuum models for the plas-
tic flow of metals. Our emphasis is on the physical principles underlying
these models, the nature and validity of approximations involved, and the
mathematical structure of the flow equations. Using the framework devel-
oped, we derive a simple, but realistic, model describing one-dimensional
plastic flow.

1. Introduction

When a piece of metal is subjected to stress, it responds by deforming. If
only small stresses are applied, then the metal returns to its original shape
when stress is relieved. In this regime, the metal is elastic. If, however, the
stress exceeds a threshold, the yield stress, then the metal suffers permanent
deformation. This is plastic behavior.

Models of plasticity have been investigated by many scientists for many years
(some of the fundamental work is referenced below). Early work assumed the
deformations to be small; this approximation is often quite good, and it leads to
some simplification. A primary focus was static solutions and linearized dynam-
ics. More recent work has addressed the problems posed by large deformations

and nonlinear dynamics, but much remains to be understood.

*This work was supported in part by: the U. S. Army Research Office under Grant
DAAL03-92-G-0185; the National Science Foundation under Grant INT-9512873; and the
Conselho Nacional de Desenvolvimento Tecnoldgico e Cient “ifico under Grant 301411/95-6.
1991 Mathematics Subject Classification.T3E05, 7T3E70, 7T3D05.

Key words and phrases: rate-dependent plasticity.


http://doi.org/10.21711/231766361996/rmc116

2 B. J. PLOHR

Physically realistic models of dynamic plasticity are necessarily complicated.
The kinematics of a three-dimensional continuum, the thermodynamics of ma-
terials, and the physics of microscopic defects all enter the description of plastic
phenomena. Simplified versions of such models are, of course, valuable for un-
derstanding the mathematical features of plastic flow. It is essential, however,
for these simplified models to be faithful to the physics. The purpose of this
paper is to derive such a simplified model, paying close attention to the nature
and validity of the approximations made.

Section 2 contains an overview of continuum models of plasticity. We discuss
the governing conservation laws, measures of elastic and plastic strain, the form
of constitutive relations dictated by thermodynamics, and the phenomenon of
yielding. More specific constitutive models are considered in Sec. 3. The elas-
tic response of a metal is isotropic, and the shear strain that it can support is
tiny; these properties allow us to formulate a constitutive model with a man-
ageable number of empirical parameters. In Sec. 4, we specialize the general
three-dimensional flow equations to one-dimensional flow with uniaxial strain.
This flow configuration is used in the experimental determination of material
properties under conditions of high pressure and high strain rate. The governing
equations resemble those for reactive gas dynamics, but there is an important
difference, as we discuss. We conclude by briefly describing some general fea-

tures of solutions of this simple model.

2. Large-Strain Plasticity

In this section, we develop a general framework for describing three-dimensional

plastic flow, following Ref. [11].

2.1. Kinematics and conservation laws. To describe the motion of a
continuous body, two distinct frames of reference are required: the material
(or Lagrangian) frame, in which a coordinate X labels a point of the body
in its reference configuration; and the spatial (or Eulerian) frame, in which a

coordinate x represents a position in physical space. The placement of a body
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in space is an association of a position x to each material point X. Therefore
the motion of a body is represented mathematically by a time-dependent map

¢ defining the spatial positions of material points through the relation
z = ¢(X,1). (2.1)

A material point moves with the particle velocity

99

Lfg,

(2.2)

and the deformation of a small neighborhood of the point is characterized by
the deformation gradient

F=Vé. (2.3)

In the absence of external forces, the principles of conservation of momentum

and energy lead to the two equations
poV =V -P =0, (2.4)

Po GIVIZ’ + 5) -V. (VTP) = 0. (2.5)
Here the dot represents differentiation with respect to time, pg is the mass den-
sity in the reference configuration (which can depend on X), P is the (first)
Piola-Kirchhoff stress tensor, and &£ is the specific internal energy. The prin-
ciple of conservation of angular momentum is equivalent to requiring F~!' P to
be symmetric; therefore we write P = [I'S, where S is called the (second, or
symmetric) Piola-Kirchhoff stress tensor. These Piola-Kirchhoff stress tensors

are related to the familiar Cauchy stress tensor o through
o=J'PFT = J'FSFT. (2.6)

Here

J =det F (2.7)

denotes the Jacobian determinant of ¢. Whereas o represents the force per unit
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This system of conservation laws involves second-order derivatives of ¢, but
it can be reduced to a first-order system in the standard way. Indeed, the

deformation gradient and velocity are related by the identity
F—VV=0. (2.8)

Conversely, if F' and V solve this equation, and if F'|;=o = V¢ for some ¢y, then
there exists a motion ¢, with ¢|;=0 = ¢o, such that F' = V¢ and V = d¢/dt for
t > 0. Therefore, by including Eq. (2.8) in the system of conservation laws, we
can regard F and V as fundamental dynamical variables, instead of ¢, and the
system has first order.

Once S and & are defined through constitutive assumptions about the ma-
terial, Eqs. (2.4)—(2.8), together with initial conditions, determine the motion

of the material.

2.2. Strain. Deformation changes the internal energy of the material, which
causes stresses within the body. The energy, however, depends only on changes
in the distances between points of the body; it is unaffected by spatial rotations.
The rotation-independent part of the deformation is the strain.

When the body has undergone a motion with deformation gradient F', ma-
terial points initially separated by dX have a spatial separation de = F dX.
Therefore the squared distance between them is dX T FTF dX, which can be
written as dXTC dX in terms of the (right) Cauchy-Green strain tensor, de-
fined by

C=FTF. (2.9)
This tensor can be viewed as a metricin the material frame that measures spatial
separation. The tensor C' is invariant under spatial rotation of the body, for if
I is replaced by QF, where @ is orthogonal, then C is unchanged. Moreover,
C' determines the ratio of the length of dz = F dX to the length of dX, so that
the internal energy £ depends on F' only through C.

An equivalent measure of strain is the Lagrangian strain tensor

1
B=3(C-1), (2.10)



MATHEMATICAL MODELING OF PLASTICITY IN METALS 5

which vanishes if and only if I is orthogonal, and which reduces to the usual
infinitesimal strain tensor (the symmetric part of the displacement gradient) in
the small-strain limit. In these terms, the internal energy £ depends on F only

through F.

2.3. Plastic strain. When that material is elastic, £ is determined completely
by FE together with a thermodynamic quantity, such as the entropy or the
temperature. For plastic materials, however, another kind of strain affects the
energy.

A principal feature of plastic behavior is irrecoverable deformation: whereas
an elastic body returns to its undeformed state when all applied forces are
relaxed, in general a plastic material does not. On a microscopic level, this be-
havior is caused by defects in the atomic lattice of the metal. Shear forces cause
the displacement of rows of atoms, resulting in the formation of dislocations.
Thus plasticity is, on a fundamental level, the result of dislocation dynamics.
However, plastic behavior at the continuum level can involve phenomena at
many length scales, such as interaction of dislocations, pile-up at grain bound-
aries, polycrystals, ete. For noncrystalline materials, it is difficult to formulate
continuum models directly in terms of dislocations.

Instead, phenomenological models are used. A general thermodynamic treat-
ment of such models has been given by Green and Naghdi [5]. In analogy with
the elastic strain tensors C' and F, they introduced the plastic Cauchy-Green
strain tensor C'P and the plastic Lagrangian strain tensor EP = 1(CP —T).
The internal energy € depends on EP as well as E/, and the dynamics of EP are
specified by a plastic flow rule.

The introduction of CP can be motivated by a multiplicative decomposition
of the deformation gradient [2, 7, 9]. Imagine cutting out a small volume around
a material point and relaxing the forces acting on its surface. The residual de-
formation is the irrecoverable, or plastic part, of the deformation, characterized

by a tensor Fp. Thus F' can be decomposed as a product
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of elastic and plastic parts. In general, neither Fe nor F} is the gradient of
a map. Nevertheless, one can view F}, as taking a material separation dX to
a separation dX = FpdX in an “intermediate” frame, and similarly view Fe
as taking dX to de = FedX. The squared distance between points separated
by dX is dXTFJFp dX, which suggests the identification CP = Fng. This
identification provides a micromechanical interpretation for C'P.

Notice that the decomposition (2.11) is not unique, in that e and Ip could
just as well be replaced by Fe@Q~" and @Fp, respectively. In general, @Fp and
Fp represents different plastic deformations, since the separations an dX and
FpdX can differ in length. However, when @ is orthogonal, these lengths are
equal for all dX, so that @Fp and F} should be regarded as equivalent. For
this reason, a measure of plastic strain should be unaffected by rotations in the
intermediate frame. This is true of Fng but not of an alternative tensor that
we consider below.

We emphasize, however, that the introduction of F}, while useful for in-
tuition and motivation, is not necessary for modeling the plastic behavior of
(noncrystalline) materials: since the energy depends on Fp only through CP, it

suffices to consider CP alone.

2.4. Hyperelastic material. We conclude that the internal energy & is
a function of the strain tensors F and EP, the specific entropy N, and any

additional internal variables K for modeling effects such as hardening:
£=E&(E,EP,N,K). (2.12)

Such a material is a generalization of a hyperelastic material, for which £ is a
function of F.

Standard arguments in rational thermodynamics [5] show that a hyperelastic
energy function completely determines the stress. Specifically, the second Piola-
Kirchoff stress tensor is the thermodynamic conjugate of the strain E:

0&

S = /)oa—E

(2.13)
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Similarly, the temperature T' = Bg/ﬁN is thermodynamically conjugate to the
entropy.
By analogy, we can introduce the plastic stress tensor

o€

S = ~roggp

(2.14)

conjugate to EP and Q = —pgdE/OK conjugate to K. (The minus signs here
are standard. In the small-strain limit, Sp reduces to S.) These quantities are

important because they appear in the identity
poT N =tr (Sp EP) + QK (2.15)
for the dissipation of entropy. The entropy dissipation must be nonnegative:
tr (Sp EP) + QK > 0. (2.16)
This inequality poses restrictions on the equation of state (2.12).

2.5. Yield. Another key feature of a plastic material is that its behavior
is elastic below a certain threshold; only at or beyond this threshold does the
material yield. Usually the threshold criterion is phrased in terms of the Cauchy
stress. For example, according to the classical von Mises criterion, plastic flow

occurs only if

2
ldevor] > \@ Yo(K), (2.17)

where Yj denotes the static yield stress. (Here we use the notation
14| = [tr (AT A4)]? (2.18)
for the norm and
1
devA = A — gtr(A)[ (2.19)

for the deviator, i.e., trace-free part, of a 3 x 3 matrix A.) The dependence of
the static yield stress on K models effects such as hardening.
If the material reaches the yield threshold, plastic flow can occur. To under-

stand this, picture a small volume of material, represented as a point in stress
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space. Drawn in this space is the yield surface, defined by equality in the yield
criterion (e.g., inequality (2.17)). If the flow carries the point across the yield
surface, EP begins to evolve: EP 2 0.

Plastic flow strives to bring the point back to the yield surface (as a conse-
quence of the entropy dissipation inequality (2.16)) at a rate that increases as
the yield criterion is exceeded further. In some circumstances, the rate is fast
relative to the time-scale of the flow and a rate-independent approximation is
appropriate. On a fundamental level, however, plastic flow is rate-dependent.
Therefore the evolution equations for the plastic variables take the form EP = A
and K = M, where the source terms A and M involve the state variables but
not their derivatives. The source terms vanish unless the yield threshold is

exceeded.

2.6. Governing equations. In summary, the equations of motion are

F—-VV =0, (2.20)

poV —V - (FS) =0, (2.21)

po (%IVP + 5>' ~v.(VTFS) =0, (2.22)
EP = A, (2.23)

K =M, (2.24)

where S is given by Eq. (2.13). The equation of state (2.12) and the source

terms A and M remain to be specified by a material model.

3. Material Modeling

To complete the equations of motion of a plastic medium we must formulate
models for the equation of state and the plastic source terms. In this section,
we discuss the motivation for and the derivation of a realistic material model

for large-strain plasticity.
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Although hardening effects can be very important in plastic flow, a thorough
discussion is beyond the scope of the present paper. Accordingly, we shall ignore

the hardening variable K in the remainder of the paper.

3.1. Equation of state. The hyperelastic equation of state (2.12) is very
general; in practice, a more specialized model is needed. An example is provided
by small-strain theory. In this theory, both F and EP are assumed to be small,
and the total strain F is decomposed additively:

E = E°®+ EP, (3.1)

where E€ is called the elastic Lagrangian strain. Then the internal energy &
is modeled as a function of ¢ = E — EP. (One consequence is that Sp = S.
See Eqgs. (2.13) and (2.14).) Often £ is assumed to be given by the classical
St. Venant-Kirchhoff model:

pof = oK (1r8°)" + G Jdev®], (3:2)

K being the bulk modulus and G being the shear modulus of the material.
When the deformation of the material is large, however, such a model proves
to be inadequate (for a discussion, see, e.g., Ref. [1]).

To devise a more realistic model, consider again a small volume of material.
The internal energy £ stored in this volume is the work done in deforming the
volume from its plastic configuration (obtained by relaxing surface forces) to
its current configuration. Thus it depends only on the elastic part Fe of the
deformation gradient [8]. Since £ is unaffected by spatial rotations, it should
depend on Fe only through the tensor C'¢ = FJ Fe, which is called the elastic
Cauchy-Green strain tensor in the intermediate frame. Equivalently, £ would
be a function of £¢ = £(C¢ — I), the elastic Lagrangian strain tensor in the
intermediate frame. These considerations suggest that £ could be modeled by
a general function of I/ €.

One must be careful, however [6]. The energy function £ must be expressible

in terms of F and EP, as required by the thermodynamic arguments leading to
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the Green-Naghdi form (2.12); but F ¢ cannot be so expressed. Indeed, we have
noted nonuniqueness in the decomposition (2.11): if @ is orthogonal, then Fe
can be replaced by FeGT, so that € is replaced by @EGQT, without affecting
CP = Fg Fp. To be thermodynamically consistent, an energy function depend-
ing only on £ € must remain unchanged by such a rotation in the intermediate
frame. In other words, & must be orthogonally invariant, meaning that the
elastic response of the material is isotropic [8].

Conversely, if € is an orthogonally invariant function of €, then it can be
expressed in terms of F/ and EP. The reason is as follows [11]. An invariant
function of a symmetric tensor can be written as a function of the principal
invariants of the tensor, i.e., the elementary symmetric functions of its eigen-
values [14]. Since C€ = Fp (CP)~'C F;', the eigenvalues of C € and (CP)~'C
coincide. Therefore invariants of £ € can be related to invariants of (CP)~1C.
In particular, £ can be expressed in terms of F and EP.

Notice that
(CP)'C = (1 +2EP)” (I +2E) ~ I +2(E - EP) (3.3)

when EP is small. In other words, the tensor § [(CP)~'C' — I] reduces to E€ =
FE — EP in the small-strain limit. Therefore it can be regarded as a large-strain
generalization of the elastic strain.

When € is an orthogonally invariant function of £€, and more generally
when & is expressible as a function of (CP)~1C, there is a simple formula relating

the stress tensors S and Sp [11]:
Sp = SC(CP)~" = (CP)~'CS. (3.4)

In particular, Sp and S are approximately equal in the small-strain limit. A

proof of formula (3.4) is presented in the appendix.

3.2. Isotropic material. Because metals are usually modeled as having
isotropic elastic response, we assume that the internal energy £ is an orthogo-

nally invariant function of F¢. By the foregoing arguments, £ can be written
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as a function of the three principal invariants of £ €, or equivalently of C'¢ or
(cPy=le.

It is useful to distinguish two kinds of the elastic deformations: dilations and
shear deformations. In a dilation, volume is changed but there is no change of
shape, meaning that Fe is proportional to I. By contrast, a shear deformation
preserves volume: det Fe = 1. The dependence of £ on dilations gives rise
to pressure forces, whereas its dependence on shear deformations causes shear
forces.

An elastic deformation with gradient Fe can be decomposed into a dilation

followed by a shear deformation: Fe = Fe - Jé/sl, where the Jacobian
Jo = det Fo = (detT€)""” (3.5)
is orthogonally invariant. Correspondingly, we can decompose the strain as
e — 0" (3.6)

where C € represents the shear strain, since det C € = 1. In these terms, £ can
be written as a function of Je, which measures dilation, and two independent
invariants of C' €, which measure shear.

There are several choices for these invariants. In the context of one-dimensione
flow, which is the focus of later sections of the present paper, it is convenient

to choose invariants of the logarithmic strain
e _ 1 e

(as is done, e.g., in Refs. [4, 13]). The decomposition of L€ into its trace and

its deviatoric (i.e., trace-free) parts separates dilation and shear. Indeed,
— 1 —
trL ¢ = 5 logdet T = log Je (3.8)

is independent of shear, whereas
— 1 1 ~ 1 ~
devL € = dev 3 (log Je) I + 5 logC €| = §dev log C € (3.9)

is independent of dilation.
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With these considerations as motivation, we are led to introduce the loga-

rithmic elastic strain

L= %log [(cPyc] (3.10)
in the Lagrangian frame and define the following associated invariants: with
T =p5

T =mexptrl® = nJe, (3.11)

v = tr[(devL )] = [devZ |, (3.12)
§ = tr[(devL®)* . (3.13)

The invariant 7 measures dilation and v and § measure shear strain. In these
terms, the equation of state takes the form

E=E&(r,v,6,N). (3.14)

From this equation of state we can calculate the Piola-Kirchhoff stress:

_[0E  20E s 308 el | ot
S—Je{al—l—;adevL e [(devL )]}c : (3.15)

(See, e.g., Refs. [4,13].) The Cauchy stress is therefore given by

98 208, o 30E - ,
o= EI + ;adevf + ;%dev [(dev[ ) ] , (3.16)

where (€ = FLCF~'. (For simplicity, we have assumed here that J = Je, i.e.,
det CP = 1. This assumption is clarified below.)
Notice that, at this stage, the conceptual product decomposition (2.11) is

no longer needed; the internal energy is expressed in terms of F and EP.

3.3. Small anisotropy. As we shall see in discussing the plastic flow rule,
the plastic behavior of metals entails that the shear strain remains quite small,
even when the dilation is permitted to be large. In quantitative terms, v and §
remain less than about (0.002)% and (0.002)3, respectively. Therefore anisotropy
caused by shear strain is small, and an approximation for the internal energy is
warranted. In deriving such an approximation, we combine ideas from Refs. [15,

4,3,13].
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In the small-anisotropy approximation, £ is expanded about states of pure
dilation, for which ¥ = 0 and 6 = 0 but 7 > 0 is arbitrary. Technically, we
make the assumption that 4 depends smoothly on v and § and then expand
the energy to first order in these strain variables. Since § = O (73/2), as follows
from definitions (3.12) and (3.13), the effect of § on & is regarded as negligible

compared to the effect of 4. Therefore we ignore § and write

g(T,’Y,(S, N) = 50(7—7 N) +7—G(T, N)’)/ (317)

The first term represents the elastic energy corresponding to dilations; the sec-
ond term is the correction for shear strain.

According to formulae (3.15) and (3.16), the Piola-Kirchhoff is
S = Je{-pI+2GdevL®} (3.18)

and the Cauchy stress is

o=—pI+2Gdevt®, (3.19)
where )
_ 1 9% O(G

p= fgtra =~ " or (3.20)

is the mean pressure. In particular, ||[deveo| = 2G\/7. Since the plastic flow
strives to keep ||dev || smaller than \/%Yo (by virtue of the yield condi-
tion (2.17)), and since Y5/G ~ 0.005 for a typical metal, we conclude that /%
remains smaller than about 0.002. Thus the small anisotropy approximation is
justified.

In the small-strain regime, L€ ~ E€ by virtue of Eq. (3.3), so that 7 ~
o[l + trE€] and v ~ ||devE€||>. Therefore (suppressing the variable N for

simplicity of notation)
2 1 2 2
po€ = pobo(To) + E4(To)trEC + 57'056'(70) (trEe) + G(7o) \\devEeH . (3.21)

We may, without loss of generality, assume that & (7) = 0; moreover, we assume

that the pressure vanishes in the reference state, so that &)(79) = 0. Comparing
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approximation (3.21) to the energy (3.2) for a St. Venant-Kirchhoff material,
we can identify 70&(79) as the bulk modulus and G(79) as the shear modulus.

More generally, &(7, N) would be the energy of the material if it were a
fluid (i.e., if it had no shear strength), and G(7, N) is the shear modulus when

the material has specific volume 7 and entropy N.

3.4. Plastic flow rule. It remains to specify the plastic flow rule EP =A. In
small-strain theory, plastic flow of metals is described by the von Mises yield
condition and by the Lévy-St. Venant-Prandtl-Reuss plastic flow rule, which
posits that EP is normal to the yield surface, i.e., parallel to deve. Before
generalizing this theory to large-strain plasticity, we make two remarks.

First, it is observed experimentally that plastic flow in metals preserves
volume. Therefore we assume that the flow rule maintains det CP = 1. One
consequence is that J = Je, so that 7 = p~! is simply the specific volume.

Another is that
tr [(CP)_l Ep] = %tr [(CP)_] CP] = % (det C’p)_] (det CP). =0. (3.22)

Therefore, in order to preserve plastic volume, (C’p)_l EP must be deviatoric.
Second, thermodynamics requires the dissipation of entropy to be nonnega-

tive. Since we ignore hardening, inequality (2.16) requires that
tr (Sp EP) > 0. (3.23)

Notice that if (CP)™" EP = dev[(CP)™" EP], then this inequality can be written
tr (dev [Sp Cp] dev[(Cp)_l Ep]) > 0. (3.24)

Therefore it is natural to assume that (CP)™" EP is a nonnegative multiple of
dev [Sp Cp]. In the small-strain limit, we recover the Lévy-St. Venant-Prandtl-
Reuss rule that EP is proportional to deve.

To express the flow rule more precisely, we shall use the following notation:
if Ais a3 x 3 matrix and B is a metric (a symmetric, positive definite, 3 x 3

matrix), then the norm of A with respect to B is

1Allp = [tr (ATBAB)]% (3.25)
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and the deviator of A with respect to the B is

e, = A — %tr(AB)B‘l. (3.26)

In this notation, (dev,pSp) CP = dev [S, CP| and, because of formula (3.4),

[devepSp|.p = tr ([dev (p CP)}Z) = tr ([dev(SO)F) = |[devo][%. (3.27)

These considerations motivate the following large-strain plastic flow model.

Let Yy denote the static yield strength, and let

3
Y = \g |devep Sp| o (3.28)
denote the dynamic yield strength. Then the plastic strain is governed by
. d S
EP = A= \/g acP VPP op (3.29)
|devep Splcp

where A, the equivalent plastic strain rate, is a nonnegative, nondecreasing
function of Y that vanishes if

Y < Yo (3.30)

Remark. The flow rule (3.29) and the yield criterion (3.30) differ from that
of Ref. [11], in that Sp has been used in place of S. The present formulation
corresponds more closely to the classical infinitesimal theory for an isotropic

material.

4. One-Dimensional Flow

In this section we specialize the general three-dimensional flow equations to a
particular one-dimensional flow, uniaxial strain. This kind of one-dimensional
flow occurs, for example, in the head-on collision of thin metal plates, and is
it important in the experimental determination of material properties under
conditions of high pressure and high strain rate. The defining feature of this

flow configuration is that, since the transverse dimension of the metal plate is
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large compared to its thickness, there is effectively no motion of material in the
transverse direction.

Flow with uniaxial strain is to be distinguished from flow with uniaxial
stress, which arises in modeling the elongation of a long thing metal rod. Since
the transverse dimension of a rod is small, the material can move in the trans-
verse direction. In fact, the material must move transversely in such a way that
the forces normal to the surface of the rod vanish; thus an elongated metal rod
forms a neck. The structure of the governing equations and their solutions in
uniaxial stress are quite different from those in uniaxial strain. For instance,
whereas shock waves are an important feature of flow with uniaxial strain, they

do not necessarily occur under conditions of uniaxial stress [12].

4.1. Uniaxial strain. In uniaxial strain (see, e.g., Ref. [9, 4, 16]), aligned in

the X-direction:
(1) all variables are independent of Y and Z;
(2) the particle velocity takes the form

¥ ={p,0,0)"; (4.1)

(3) the total deformation gradient F is diagonal with yY- and zZ-components

equal to 1;

(4) the plastic deformation gradient F, is diagonal with equal yY- and zZ-

components.
Since det F' = J = po7, assumption (3) means that
F = diag(por, 1, 1). (4.2)

Recalling that det I, = 1, by virtue of the flow rule, assumption (4) entails
that Fp takes the form

Fp = diag (6261’/3, e~ P/, 6—5p/3) : (4.3)
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Here ¢p is a scalar measure of the plastic strain. It proves convenient to let
€ = log(poT) (4.4)
and to define the elastic strain €e through the additive decomposition
€= ce + p. (4.5)
In terms of € and ee, the elastic deformation gradient is easily calculated to be
Fe = ¢**diag (6266/3, 6_66/3,6_56/3) . (4.6)

From the definition of the logarithmic elastic strain we find that

1
L¢= gd +devL® (4.7)
with
2 1 1

devLe = (edldg (g, —g’ —g) . (48)

Consequently,

2

Y = 5662. (49)

These kinematic formulae give the following picture of uniaxial motion. As
argued above, 7, and therefore |ce, is small; as a result, ¢ and ¢p are nearly
equal, but they can be large in absolute value. Suppose, for definiteness, that
€ < 0 and e¢p < 0. Then each slab of material is squeezed in the X-direction
by the factor J = expe; there is no motion in the Y- or Z-direction. In re-
sponse, the material deforms plastically by contracting in the X-direction and
expanding in the Y- or Z- directions, in a manner that preserves volume and
symmetry. The residual elastic deformation consists of a pure dilation by the

factor J'/? = exp(e/3) and a small shear deformation, characterized by ee.

4.2. Equation of state. For uniaxial flow, the small anisotropy expan-

sion (3.17) of the equation of state is

g = Eilr, V) & §TG(T, N)ee?. (4.10)
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We shall use 7 and ¢p as fundamental dynamical variables, so that ce here
should be replaced by log(poT) — ¢p, yielding € = &(r, p, N). Associated to

this functional form of the energy are the conjugate quantities

9
and
o€
P = P, (4.12)

which appear naturally in the equations of motion. Indeed, the Piola-Kirchhoff

stress tensor is
1 8 Do -1 ;
S = Jdiag (0’,0’ - §J op,0 — §J 0p> c, (4.13)

as one verifies easily. In other words, the zz (i.e., longitudinal) component of
the Cauchy stress tensor is o, the mean pressure is p = —o + .]_]Up, and the
deviator (i.e., shear part) of the Cauchy stress is J~'opdiag (1, -1 —%), so that
the dynamic yield strength is Y = 2|op|.

The properties of the material are now encoded in the “fluid” energy & and
the shear modulus G. Sophisticated physical models for these functions can, of
course, be quite complicated. In the remainder of the paper, we consider a very

simple model, obtained as follows.

1. Ignore thermal effects. Therefore we suppress the entropy variable N and
omit the conservation of energy equation. In effect, the flow is isentropic,
so that the entropy is conserved rather than generated according to the
identity (2.15). In compensation, energy must be lost; in fact, the energy
equation acquires a source term equal to the negative of the source term

in the entropy dissipation identity.

2. Take the shear modulus G(7) and the bulk modulus K = 7&J(7) to be
independent of specific volume. Using the additional conditions & () = 0

and &(m) = 0 discussed in Sec. 3.3, we can determine &.
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For this simple model, we have the following explicit formulae:

&(7) = py " K {poT log(poT) — pot + 1} , (4.14)
o 2
p = —Klog(por) — gGEe . (4.15)
4 2. 5
o = Klog(por) + gGﬁe + gGﬁe , (4.16)
4
Up = gpoTGEe. (417)

4.3. Equations of motion. It follows that the governing equations reduce to

poT —uvx =0, (4.18)
pot —ox =0, (4.19)
ép = sgn(op)p. (4.20)

Here p, which is % times the equivalent plastic strain rate A, is a nonnegative,

nondecreasing function of |op| that vanishes if
2
lop| < gyo- (4.21)

Because we have ignored thermal effects, the entropy dissipation identity is

replaced by the energy dissipation identity

1 .
Po <§v2 + 5) — (vo)x = —lop|u. (4.22)

This system of equations has the same form as does the system governing
reactive gas dynamics in Lagrangian coordinates: ¢p is analogous to a reaction
progress variable, since it appears in the constitutive relations (4.10)—(4.11) and
its governing equation (4.20) is an ordinary differential equation along particle
paths. There is an important difference, however, between plasticity and reac-
tive gas dynamics. In reactive flow, the source term in the equation governing
the reaction progress variables vanishes at the equilibrium states, which are iso-

lated points. In plasticity, by contrast, the source term of Eq. (4.20) vanishes



20 B. J. PLOHR

on the so-called elastic range, defined by the yield condition (4.21), which has
a nonempty interior. This feature of the source term leads to phenomena, such

as hysteresis, that are characteristic of plasticity.

4.4. Characteristic speeds. The four characteristic speeds for system (4.18)-

(4.20) are —J7 ¢, 0, 0, and J~'¢, where the (elastic, or frozen) sound speed ¢
is defined by

o  O%€

2 2 | ro— | S—

Pe=%r = o

The analogy with reactive gas dynamics suggests that another speed is impor-

(4.23)

tant as well, viz., the speed of sound in equilibrium. In the present context,

“equilibrium” means the boundary of region where p # 0, i.e., the yield surface

lop| = %Yg Thus we are led to define the plastic, or equilibrium, sound speed
cp by
do
Plep’ =5l (4.24)
T lyield

the derivative being taken with |op| held fixed at 2Yp:

Js < 928 92E 2 H2E e
b2 O daM_d%_(fﬂf) (d%’) L)

p Cp N E h %a|0p|/aﬁp - ﬁ 87’86p a6p2

In order for the system (4.18)—(4.20) to be hyperbolic, ¢ must be real. Fur-
thermore, experience with reactive gas dynamics suggests that the equilibrium
sound speed should not exceed the frozen sound speed; this is the subcharacter-
istic condition [10]. The formulae for the sound speeds show that the following

two statements are equivalent:

1. the frozen sound speed ¢ and the equilibrium sound speed cp are real and

satisfy ¢ > ¢p > 0;

2. the internal energy £ is strictly convex as a function of 7 and ¢p.

In this way, hyperbolicity and the subcharacteristic condition relate to a ther-

modynamic condition, convexity of the energy.
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For this particular equation of state,

*e (.. 4
o 4 _
Frae; = 3G 1+ <), (4.27)
0% 4
and "
%€ 9°¢ 0% 4 4
_87_2 —86p2 — <—8T86p) = §G {[X — §G6e (1 + Ce)} . (429)
Also,
, , 0% O°C 4
Y 22 _ I Y O
5" ¢ 52" 5 T (]x - 3Gce> . (4.30)

Consequently, there is a constant e™?* (of order 1 if K/G is of order 1) such
that, in the region where |ce| < e™?*: (a) the internal energy & is strictly
convex as a function of 7 and ¢p and (b) the stress o is strictly concave as a
function of 7.

It is reasonable to assume that |ee| is kept much smaller than ce™3X by
the plasticity of the material. Thus the sound speeds, which are given by the
formulae

4
pct = K + §G (1+ ee) (4.31)

and

; 4
[)Cp2 — [X, = gGﬁe (] + Ce) 5 (4'32)

satisfy ¢ > ¢p > 0; moreover, pc is strictly decreasing as a function of 7.

4.5. Wave structure. In elastic flow, during which ¢p remains constant, the
governing equations essentially reduce to the system for isentropic gas dynamics.
The foregoing calculations show that —o, which is the analogue of the pressure,
is strictly convex as a function of specific volume 7. Therefore elastic flow
is qualitatively the same as flow of an ideal gas: expansion leads to elastic

rarefaction waves, and elastic shock waves form under compression.
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In plastic flow, the source term in the flow rule (4.20) is nonzero and com-
petes with the nonlinearity of the flux functions. A balance between these effects
is set up by traveling wave solutions. Such solutions, which are called plastic

waves, are prominent features in uniaxial collision experiments.

For a traveling wave solution, the flow variables 7, v, and ¢p depend on X
and t only through the combination £ = X —7ymt, where m > 0 is the mass flux
through the wave. (We assume, for definiteness, that the wave is right-facing.)
The conservation laws show that the quantities m7 4+ v and mwv + o are constant
across the wave, so that 7 and o lie along the Rayleigh line, m*r — o = const.

On the other hand, the variation of ¢p across the wave is determined by the

differential equation

de
—Tomd—g_) = sgn(op)pu. (4.33)

The right-hand side is nonzero if and only if the yield stress is exceeded:
lop| > %YO. Therefore the profile of a traveling wave solution, when projected
into the (7,0)-plane: (1) lies along the Rayleigh line; (2) lies in the region
lop| > 2Yo; and (3) begins and ends where the Rayleigh line intersects the yield

curve |op| = 2Y,. Along the yield curve, the stress is

/2

: 2 o1, Y - .
U|yield = Klog(por) + gYosgn(Up) (por)™" + é(p(ﬂ') o (4.34)

One verifies easily that this curve is concave except in a region of extreme
compression, with po7 on the order of Y5/ K. Except in this extreme, a Rayleigh
line lies outside the yield surface if its endpoints lie on the compression (op < 0)
branch of the yield curve (but not if they lie on the expansion branch). Therefore

plastic waves occur in compression.

Notice that the thickness of a plastic wave is set by the p=!, which has units

of time. If ! is much smaller than other time scales in the flow, then the

1

rate-independent limit g=' — 0 is a reasonable approximation. In this limit,

the thickness of a plastic wave shrinks to zero, becoming a plastic shock wave.
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Thus discontinuous waves arise in rate-independent flow with uniaxial strain.
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Appendix A. Stress Calculations.

For hyperelastic materials, stresses are related to derivatives of the internal
energy. Recall that if f is a function of a tensor argument A, then its derivative
Jdf/0A can be calculated as follows [14]: we imagine that A depends smoothly

on a parameter « and calculate df (A)/de; then

d af\" dA
Based on this identity, we verify formula (3.4) for the plastic stress.
Lemma A.1. If £ = £((CP)~'C), then
Sp = S8C(CP)" = (CP)'CS. (A.2)

Proof. Let A denote (CP)~'C. Imagine that CP is fixed but that C varies

smoothly with a parameter o. Then
Leeryiey =i (L) eri (A3)
da I oA da |’ '
so that 0€/0C = (CP)~1E/AA. On the other hand, if C' is fixed and CP varies
with 3, then
E((CPY)IC) = —tr

43 9A a5
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Using the cyclicity of the trace, we see that 9€/9CP = —(CP)~! (35’/(914) c(cP)L.
By virtue of Eqgs. (2.13) and (2.14), Sp = SC(CP)~!. Since Sp is symmetric,
Sp = (CP)~1CS as well.
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