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Abstract

We study the global existence in time, as well as the regularity, of
strong solutions of the partial differential equations of evolution type
corresponding to a generalized Boussinesq model for thermically driven
flows. The model includes the case in which the fluid viscosity and ther-
mal conductivity depend on the temperature.

Resumo

Estudamos a existéncia global no tempo, bem como a regularidade, de
solugoes fortes das equagoes diferenciais parciais de evolugao correspon-
dentes a um modelo do tipo Boussinesq generalizado para escoamentos
convectivos termicamente induzidos. O modelo permite que a viscosi-
dade do fluido e o coeficiente de condutividade térmica dependam da
temperatura.

1. Introduction

In this work we study global existence and regularity of strong solutions of the
equations governing the coupled mass and heat flow of a viscous incompressible
fluid in a generalized Boussinesq approximation by assuming that viscosity and
heat conductivity are temperature dependent. The equations are

Ou — div(v(p)Vu) + u.Vu — apg + Vp = h,

divu =0, (1.1)

Owp —div(k(p)Vy) +u.Vo=f in (0,T] x €,
where €2 is a bounded domain in RY , N = 2 or 3. Here u(t,z) € R
denotes the velocity of the fluid at point x € Q at time t € [0,T]; p(t,z) € R is
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the hydrostatic pressure; ¢(t,x) € IR is the temperature; ¢(t, x) is the external
force by unit of mass, v( - ) > 0 and k( - ) > 0 are the kinematic viscosity
and thermal conductivity, respectively; « is a positive constant associated to

the coefficient of volume expansion. The expression V, A and div denote the

gradient, Laplace and divergence operator, respectively; the ith component in
N,

cartesian coordinates of uVu is given by (uVu); = Y u; axz; also uVp =
j=1 i)

= 0

Z“ja—@~

j=1 Lj

The boundary conditions and initial data are as follows

u=0, =0 on (0,T]x 09,
w(0,2) =uo(z) and ¢(0,x) = po(x) for z€Q,

(1.2)
where ug, o are given functions on €. For simplicity, we will consider homoge-
neous conditions on 99 (the boundary of ); the general case can be reduced
to this one by assuming suitable smoothness on the boundary data (concerning
this point, see [7]). Such a reduction leads only to change in the right-hand
sides of (1.1), by addition of certain linear and nonlinear terms, which do not
influence the proofs of the final results in a essential way. For derivation of the
equations (1.1), see for instance Drazin and Reid [3].

The classical Boussinesq equations correspond to the special case where v
and k are positive constants (see Morimoto [9], Oeda [10] and Hishida [5].) For
certain fluids, we can not disregard the variation of the viscosity (and thermal
conductivity) with temperature, this being important in the determination of
the details of the flow. In particular, it is believed that the temperature depen-
dence of the viscosity is responsible for the fact that the direction of the flow in
the middle of a convection cell is usually different for gases and liquids (see [6]
and the references there in). Thus, it is important to know well the properties
of equations (1.1), if one intends to understand details of thermal convection
phenomena.

However, from the mathematical point of view, equations (1.1) have been
less studied than the ones in the usual Boussinesq approximations, maybe due

to the stronger nonlinear coupling between the equations. In fact, a rigorous
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mathematical analysis is more difficult in this situation than that in the case of
the classical Boussinesq equations. Concerning the existence of solution of (1.1),
the constructive spectral Galerkin method was used by Lorca and Boldrini [7]
to obtain a local strong solution (see [7] and the next section for the precise
statements of the results.) Global existence and regularity of solutions were
open questions, however, that should be answered if one intends to do further
analysis, like the one involved in the study of error bounds for the approxima-
tions, which is important from the practical point of view, and the bifurcation
analysis done to understand the onset and characteristics of thermal convection.
The analysis of error bounds was done in [8], while the study of bifurcation is

under way.

In this paper, we describe our results about global existence and regularity of
solutions of (1.1). For this, we observe that in [4] Heywood gave an interesting
variant of the analysis for the Galerkin method, showing that the solution is
regular for positive times. The main point in his method, is to show how the
obtaining of estimates for the approximations, used in the Galerkin approach to
existence theorems, can be pushed further, to give the classical regularity of the
solution directly and easily, with minimal reliance on the regularity theory for
the Stokes’ equations. We will combine those arguments with additional specific
estimates for our Galerkin approximations. With these further estimates, one
can infer the existence of a regular solution; then, with this degree of regularity
in hand, the fact that the solution has classical regularity follows by the LP-

estimates for the steady generalized Boussinesq equations (see [6]).

Concerning the global existence we obtain a result by assuming that & and
f belong to L>(0, co0; L*((2)), that certain other regularity assumptions to be
detailed later on hold, and, as it is usual, that the data have small enough
norms. We observe that we do not require any sort of decay in time of the

associated external forces.
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2.Regularity of the solution

We begin by recalling certain definitions and facts to be used later on in this
paper.

In what follows the functions are either IR or IR™ valued (N =2 or 3), and
to easy the notation, sometimes we will not distinguish them in our notation;
this will be clear from the context. The L?*(Q)-product and norm are denoted by
(, ) and | |, respectively; the LP(Q) norm by | |,,1 < p < oo; the H™(2) norm
are denoted by || ||, and the W*?(Q)-norm by | |, ,. Here H™(Q2) = W™2(Q)
and W*P(Q) are the usual Sobolev Spaces (see Adams [1]; for their properties);
H3 () is the closure of C5°(Q) in the H'-norm.

If B is a Banach space, we denote L%(0,T’; B) the Banach space of the B-
valued functions defined in the interval (0,7') that are L4-integrable in the sense
of Bochner.

Let C5o,(Q) = {v e CP(Q)Y; divv=0 in Q}; V = closure of CG%(Q)
in (Hg(Q))", and H = closure of Cg2(Q) in (L*(Q))N.

Let P be the orthogonal projection from (L?(€2))Y onto H obtained
by the usual Helmholtz decomposition. Then the operator A : H — H given
by A = —PA with domain D(A) = (H*(Q))¥ NV is called the Stokes
operator. It is well known that A is a positive definite self-adjoint operator

and is characterized by the relation

(Aw,v) = (Vw,Vv) forall we D(A), veV .

In order to obtain regularity properties of the Stokes operator we will assume
that Q is of class C! (see Amrouche and Girault [2]). This assumption implies,
in particular, the equivalence of the norm given by the Stokes operator and the
V' N H%(Q) norm.

We will denote by v* and ay (k € IN) respectively the eigenfunctions and
eigenvalues of the Stokes operator. We know that v* are orthogonal in the
inner products (, ),(V,V) and (A,A) and are complete in the spaces H,V
and (H2(Q))¥ NV (see Temam ([12]).
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Similar considerations are true for the Laplace operator A; we will denote
by ¥* and Ay (k € IV) respectively the eigenfunctions and eigenvalues of the
operator —A defined on H}(Q) N H2(Q).

For each n € IN, we denote P, the orthogonal projection from (L*(Q))N
onto V,, = span{v!,...,v"} and we denote P, the orthogonal projection from
L*(Q) onto W,, = span{y)!,... ¢"}.

Throughout the paper, we will suppose that

(2.1)

0<wv<vio) <y <+oo, 0<ky <k(o) <k <+oo
|V (0)] < V) < +oo, |K(o)] <ki <+4oo forall ceR.

Remark. We note that if we have a maximum principle for ¢ in (1.1)-(1.2),
then we can relax the assumption for v, k. In this case it is sufficient to suppose
v(-)>0and k(-) > 0 and then we can transform problem (1.1)-(1.2) into
an equivalent one in the case of strong solutions (see [6], [7], for details). For
example, we have this kind of maximum principle when f < 0 and g € L>(Q).

Now, we rewrite problem (1.1)-(1.2) as follows: find u € L*(0,T;V) N
L2(0, T3 (HA(Q))Y), B € L2(0, T (LA(Q))Y) and € L=(0, T3 HAQ)NHY(R)),
Oyp € L(0,T; L*(Q)) (0 < T < +00) such that

(Oep, &) — (div(k(p) V), &) + (u.Vp,&) = (f,€) , V&€ Hy(Q) (2.2)
Ulimo =Uo ; ©)i=0= 1o , a.e. T EQ.

{ (Oyu,v) — (div(v(p)Vu),v) + (u.Vu,v) = (apg — h,v), YweV,
The spectral Galerkin approximation for (u, ) are defined for each n € IV as
the solution (u", ¢") € C*([0,T], Vi, x Wy,) of
(O, v) — (div(v(e™)Vur),v) + (u".Vu",v) = ("9 — h,v), Yo €V,
(at(pn>€) - (le(k(‘P")V(P"),f) + (un.v(pn7 g) = (f: 5)7 VS € Wi )
u* =Py ; ¢" =P .
(2.3)

By using these approximations, the authors proved in [7] a local in time existence

theorem for (2.2). The result is (with slight modifications in presentation).

Proposition 2.1. Let Q be a bounded domain in R™ (N = 2 or 3) with
CYY boundary; we suppose v,k satisfying (2.1), g € L=(0,T;(L*(Q)N, f €
L*0,T; L*(Q)), o:f € L*0,T; L*Q)); h € L*0,T; (L2(Q)N); uo € V, oo €
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H(Q) N HX(Q). Then there exists a positive number T* < T such that the

problem (2.2) has a unique solution (u,p) satisfying

w € L0, T V)N L*0,T* (H*(Q))Y); du e L*0,T*; (L*(Q)Y) (2.4)
@ € L™(0,T* H*()); 8y € L=(0,T*; L*(2)) (2.5)
u(t) = uo strongly in V. and o(t) — @o weakly in H*(Q) ast — 0 42.6)

The proof of Proposition 2.1 follows by proving estimates for the approxima-

tions (u™,¢™) that are uniform in n. They are then carried to (u, ) in the
limit.

In the case in which uop € VN (H?*(Q)V) and g and h are more regular, we
can obtain estimates for |Au"(¢)|, uniformly in n which are shown in the same
way as it was done for |[Ap™ ()| in [7], Theorem 2.2. These estimates imply the

following result.

Proposition 2.2. Under the conditions of Proposition 2.1, if 9,9 € (L*(0,T;
LX(Q)N), ah € (L*(0,T; L*(Q)Y) and uo € V N (HX(Q)N), then there is
T* > 0 such that (u, @) satisfies (2.5); (2.6) and

we L0, T (HAQ)N); d € L2(0,T* (L)) (2.7)
u(t) — uo weakly in (H*(Q))Y ast — 0+. (2.8)

Now, we state the first new result in this paper.

Theorem 2.3.  Let Q be a bounded domain in RY (N =2 or 8) with
C* boundary. Assume v,k of class C*™ satisfying (2.1), g,h € (C=(Q x
0, TN, feC®Qx[0,T]), wo€ HNQ)NH2(Q) and up € V N (H2(Q))V.
Then, the solution (u, @) obtained in Proposition 2.1 is a classic solution, that is,
u € (C=(Qx (0, T*NVN(C(@Ox[0, T*)N and p € C*(QAx[0, T*])NC(Qx [0, T*]).

We first state some lemmas which are necessary for proving this theorem.

Below, dF¢p represents the Kt derivative of ¢ with respect to t, and 9%y is an
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arbitrary M order derivative of ¢ with respect to the spatial variables. Similar

notation are used with u.

a

Lemma 2.4. Let h be any function of class C*, k > 1 such that Sup{|(fl:(s)\,

SEB} <C<400;1=0,1,...,k.
Let @ be a function in C*([0,T); H*()). Define
¢
Mo(p(®) = D10l , te[0,T] , £=0,1,....k.
i=0
Then, we have the following estimate
0Fh(0(t))]oo < Te(Mi—1((t))) + CilOy o (t)]oo

for allt € [0,T]. Where Jy is a continuous increasing function and Cy is a

positive constant which depends on h.

Proof. We proceed by induction on k. If £k = 1, we can take J; = 0 and
Cy > supp |W(s)|]. So, suppose the result is true for any j € IN such that
0 < j < k. Then, we have

k-1
OFh(p) = OF YW (p)dwp) = > C(j)AAN (9)0F
7=0
= Y CHAN ()0 o+ N (p)dep .
j=1

Thus, by the inductive hypothesis and Sobolev imbedding H?(Q) < L>(f),

we have

105 h(0) |

k—1

> CUIO (9) ool ™ Ploo + CilOF 0o

=1

IN

k-1

CUHNJT;(M=1(p)) + C;180l0)10F ™ ploo + CklOf ¢loo

IN

=1

k—1

> CUH)(Ij(Mi-1(9)) + C;K My—1(9)) K Mye—1(p) + Cr|0F oo

Jj=1

IN

= Jo(Mi—1(9)) + Crl0F0loo,
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and the lemma is proved. m|

Similarly, we can show:

Lemma 2.5. If h satisfies the conditions of Lemma 2.4, then for all ¢ €
C*([0,T); H*(Q)) we have

105 h(()] 4 < Li(Mi—a(0(t))) + ClVOF@(t)]a + CildF (1) ool Vo (t) |4
for all t € [0,T). Where Ly, is a continuous increasing function.

To obtain a classical solution, we need estimates of the solution’s higher
order derivatives. We work first to establish the regularity of w and ¢ with
respect to t. Our main task is to prove further estimates for the Galerkin

approximations.

Lemma 2.6. Under the conditions of Proposition 2.2. For every j =0,1,2,...
and every 0 < e < T*; there erist continuous functions Fj;(t,e),G;(t,€) and
H;(t,€) of t € [e,T*], such that

Vojw @) + [Vole" 0 + [ (Bojun? +180jm)ds (2.9)
< Fte)
O + 10 OF + [ (VAT + Vol g P)ds (210)
< C;j(t,s)
and
AGiur(B) + 188" (O < Hy(t,e) (2.11)

fort € [e,T*]. The functions F;(-,€), G;(-,€) and H;(-,€) do not depend on n.
The right endpoint T*, of the interval on which the estimates (2.9)—(2.11) hold,

18 the same as for the Proposition 2.2.

Proof. The estimates (2.9)—(2.11) will be proved by induction on j. For j = 0;
estimates (2.9)—(2.11) can be deduced from the proof of Proposition 2.2, see [7];
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p. 14 (in fact, the proof also follows by taking k = 0 in the next estimates).
Moreover, in this case we can take € = 0.

Let k£ > 1 be a natural number; we have to prove that (2.9)—(2.11) are true
for j = k.

As induction hypothesis, let us suppose that these estimates are true for any
j € IN such that 0 < j < k (independently of n).

To obtain the estimates for j = k, we proceed as follows: by differentiating
(2.3) k-times with respect to t and then taking v = —AdFu(t) (to easy the
notation, on what follows we will suppress the superscript n), we obtain

: %Wafu\? + (div O (v(9) V), Adfu) (212)

= (9 (uVu), Adfu) — (9 (apg) + OFh, Adfu) .
Most of the right-hand side terms are essentially the terms found by differ-

entiating k-times with respect to ¢ the Galerkin approximation for the usual

Navier-Stokes equation. We can use the estimates of Heywood [4]

|(GjuVor " u, Adfu)| < |9juls|VOF " uls| Ao} ul (2.13)
< C5| VOt A u)? + 8| AdFul?
for 1 <i <k, and
|(uVOFu, AdFu)| < |ulo| VOFul| AdFul (2.14)
< Cs|Aul?|VoFul? + 6|Adkul? .

Next, we estimate the new terms on the right-hand side of (2.12) as follows

|(0F ' Oig, ABFu)| < |0ig| |0 0|0l ADFu|? (2.15)
< Csl0ig? |AGF gl + 5| Adful?
for 0 < ¢ <k, and
(0509, Adfu)| < |g] 10F ploe| ADFul (2.16)

< Clg| [VOreldd Adfu| < Clgl| [Vkp|Y*| AdF oI/ Adfu|
< Cs|gB|VaFe|? + 8| Adkul? + 6|AdFg|? .
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To estimate the new term on the left side of (2.12), we observe that

k
div 9f (v(p) V) = div (v(p)Vfu) + - C(i)div (8iv()VIE ")
=1
and
div (9v(9) VO ~u) = Fu(p) A, ™ u + Vu(p) VO, u (2.17)

where VOiv(p)VOF~"u denotes the vector fields which jm component is given
by [VOju(p) VI ~"u]; = (VOv(p), VO u) pv.

From the above, we obtain the following estimates

(div (9(0)VA—u), Adku)| < Colofv(o) L IAG "l (2.18)
+Cs|V O (@) VIR ul2 + 5| Adtul?

for1 <i<k.
In the following, we use Lemmas 2.4 and 2.5 and Sobolev embeddings to

conclude that for i = 1,...,k — 1 there hold

|0iv(0) 2 |ADE " ul? < Ji(Mi—1())| ADFul?,
(2.19)

V(@) IV uli < L(Mi-1(9))| A0 ul?,

where J;(7) = (Ji(7) + C;i7)? and L;(7) = (Li(7) + Ci7 + Ci72)2.

When i = k, we have the estimates

|05 v ()% Aul® < (Je(Mi—1(0)) + Clorel%,)| Auf? (2.20)
< Jo(Mi—a(9))|Aul® + CIVOF || AGY @2 Aul?
< Jo(Mi—1(9))|Aul® + Cs| VI o*| Aul® + 6|A0F oI
and

V(@) i Vuli < (Li(Mi-1(9)) + CIVE; li + Clof el Vel D) Auf?
Li(Mi—r(0))|Aul? + CIVOF@la(| Auf + [V l3| Auf?) (2:21)
Li(Mi—1(9))|Aul® + Co| VO o (IVul? + [Vepli| Aul?)! + 6| Adf .

IN

IN
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Combining estimates (2.13)—(2.21) with (2.12), we conclude

3 dt\VakuF (div(v(p)VoFu), AdFu) (2.22)

< Os5(J (M1 ( Z|A8lu\2+ Z |VOF—*u| | A ul?)

+05(Z |08l 180l® + |OFhI® + | Aul*|VOFul?)

£=0
+C5(lg + [Bul* + | Aul [ApP)! VO ol®) + 6| Adful® + 6| AdF ol .

In the following, we use the decomposition AdFu+ Vg = —AdFu (see Temam
[12]) for the second term on the left side of (2.22).
(div(v()VaFu), Adku) (v(0) AdFu, AdFu) + (V' (0) VoV aFu, AdFu)
~(v(9)A0fu, Adfu) = (V) VL g, Adfu) + (v (9) VeV tu, Adfu).

By using estimates similar to the ones used in Theorem 2.2 of [7], we arrive at

the following estimates

(V' (p)VpVaku, Adku)| < Cs|Ve2|VaFul2 +6/2|AdFul?
Cs|IV o3I VoFul? + 6| Adful?,

IN

|(v(0) VO q, Adfu)| (0 g, div(v(p)Adfu)|

|(0Fq, V' (9) VpAdtu)|

C|0¢qlalVepls| Adyul

Ce|Vplal VOEu| Adfu|7* + €| Vip|a| Adf uf?

Cs|VolS|Vaku|? + 6| Adkul? .

VAN VAR

IN

Theses estimates together (2.22) imply

|V8’“u|2 + 1o AdFu|? < CsJ (Mi—1(0), Me—q( Z |0F~g|?)

| =
&‘Q

+C5|0Fh[? + CsL(gl, | Aul, |A])(|VOF@|* + |VOFul?) + 6| Adkul® +
10| A
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where J and L are continuous increasing functions. M;_(¢) and M,_;(u) are
as in Lemma 2.4.
The proof of the following inequality is completely analogous to the previous

one

| =

[VOFI? + ko ADF @I < Cs iy (My—1(1p), M1 (w)) + C50" f|?

DO =
QL

t

+L1(|Aul, |2 (IVOFul® + VO @l?) + 8lAGFRI .

Finally, by adding the above inequalitie and by choosing a suitable small 9,
we deduce the following differential inequality (we put back the superscrip n,
in order to be clear that the estimates to be obtained in the following are

independent of n):

INU D +77(0) < DM ("), M (") + (CIERI? + 12 11)
Fha(lgl 1B, [ DA™ (), (2.23)

where
N(@) = [Vaur @) + [VOF ()1 5 7"(t) = |Aru™ (1) + |A8F" (1) .

and jg, f,g can be taken as continuous increasing functions (which are indepen-
dent of n).

Next, we must find estimates, holding independently of n, for the “initial
values” of N(t). We recall that our induction hypothesis is that the estimates
(2.9)—(2.11) are true for any j such that 0 < j < k, independently of n. Thus,
by using the induction assumption (2.10), for every € > 0, one obtains

[ (VP + VO )ds < Gia(./2)
for t € [¢/2,T*], independently of n. From this, we conclude that for each
Galerkin approximation (u™, ¢™) there exists a number 7, with /2 < 7, < ¢,

such that

N™() = VO (m)® + VO @™ ()] < (£/2) 7' Gra(e,6/2) . (2.24)
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One can integrate (2.23) from 7, to t and apply Gronwall’s Lemma to find

N(@) + [, T(s)ds ) i
< At 7a) exp ([, La(lg(s)], [Aun(s)], |Ap™(s)])ds].

where

At ) = N () + [, (o (Mico1(97(5)), Mia (u(s))) + (C|8FR(s) 2
+ ot f(s)[*)ds

From (2.24) and the induction hypothesis (we observe that the functions Mj_;
depend only on the the norms of |/¢"| and |3ju"|, for 0 < j < k —1, which are
uniformly bounded by the induction hypothesis), the terms in the right-hand
side of the above inequality are bounded independently of n. Thus, there is a

continuous increasing function Fy(t,¢), independent of n such that
)+ / s)ds < Fy(t,e)
TYn

for t € [y,, T*]. Since 7, < &, we obtain (2.9).
In the following, we prove (2.10). Differentiating (2.3) k + 1-times with
respect to ¢ and then taking v = 9f*'u(t), one obtains

1d
2 dt

Using estimates similar to the ones used by Heywood [4] for the Navier-Stokes

— 0 ulP+ (0 (v(9) V), VO ) = (O (uVutg+h), O M) . (2.25)

equations, we can obtain a bounds for the terms on the right side of (2.25). The
other terms on the left of (2.25) can be estimated in the same way as we shown
(2.23), for example we get
(0 (2) VO, VO, )| < 107 () ool VOl VO ul (2.26)
< Cs(Jem1 (Mi1(9)) + 105 03) [V Oeul® + 6| VO;

[ )VU Vo)l = 1(0F (V' (9) D) Vu, VO )| (2.27)
|ZC 81 / ak+1 ZQDVU vak+1 )l

k
< Cs(IVulglor ol + 3 J (Mia(9))Vul3lor '~ olf)

i=1

+C5|05 @2 |0l Vuli + 8IVOEul® + 6|V o ol
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Thus, we can obtain the following inequality.

o

1d
- dt|a’“+1u|2+y0\va’““u|2 < CsJ(Mi—1(9)) S (IVOul® + |Vul3| Vpl?)
(=1

k
+C5(3_ |V Oul| VO~ ul® + Z 107917V Oyl

=1 =1

+C5|A0F P (IVBu|* + |VOip|?|Vul2) + Cs|oF T h)?
+Cs(1g1*Ault)| + [0 pl? + Cs|Vul |0 ul? + 3|V O +uf? + 6|Vl

Similarly, we have

1 d

k
5 dtla’““ef)\“r ko| VoI o2 < Csd (My-1(9)) Y (V8 o? + Vo2 Vel
=1

k
+C5(Q_ VO VOF 1~ ul? + | A8y o[ VOp* (1 + [Vl}))
=1

+Cs|Ap|* IV o + [V ul?) + Cs|0y*! £17 + 86|V
+6|VoFpl? .
Then, for appropriate 6 > 0 we find
d R n
TN +77(8) < Js(Mia(97), X (VO™ ) (2.28)
=1
+C (0L f 1 + 105 RI%) + CLs(Ig], 1 Au™|, |AQ" DT (2)
+O| A Q" P(IVOu"? + VO™ P) (1 + Au"? + [Ap™[?)
where
NI() = 1oF @ + (07T e O 5 (1) = [Vor Tt ()P + [Vorten (1))

and J3, L3 are continuous functions.

Now, we observe the equality
05 P = (div(Bu(p™)Vur), ™) + (05 (99™) + O h— OF (u"Vu™), 0y 1)

which is obtained by differentiating (2.3) k-times with respect to ¢ and taking
v = OFtlun(t). We use the estimates (2.13)-(2.21) together (2.23) in order to

conclude that
17
/ O+ 2ds < I(t, €)
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for t € [¢,T*], € > 0. Analogously, we get
t
[ 18t s < Lty )

Thus, proceeding as before, we conclude that for each Galerkin approxima-

tion (u", "), there exists a number =, with £/2 < ~,, < ¢, such that
05 U™ (1) P + 105 0" ()| < (6/2) " Ik(t,6/2) -

Then, since ¢ is arbitrary, by integrating (2.28) from =, to ¢ we obtain (2.10).
Finally, we observe that inequality (2.23) implies

To(t) + C1OER(E)* + 10F F (D) + La()N™ (¢

2(35 (), Adfu(t)) +2(8; o (t), AdF (1)

o) + COFRE) + 19F F (1)) + La(N™ (1)

CYNI () (1) -

Since N7 (t) is bounded, we obtain estimates (2.11). This completes the proof

(1)

IN

)
)

IN +

+

of lemma. m]
As an immediate consequence of Lemma 2.6 we obtain

Corollary 2.7. The solution (u, @) obtained in Proposition 2.2 satisfies (u, @) €
C((0, T; (H*(@)¥*+) ne([o, T*; (WH4(Q))V ).

Proof. We follows Rautmann [11] p. 433 in applying the theorem of Ascoli

and Arzeld, in order to conclude that
(u, ) € C"((0,T*]; V x (H3(Q)N) forany n=0,1,2. (2.29)

Next, we observe that estimates (2.9) and (2.10), for the solution, imply
OFu, OFp are almost everywhere equal to functions of C((0,T*]; H2(12)), for any
k=0,1,2,.... Thisfact together (2.29) imply (u, p) € C>((0, T"]; (H2(2))N+1).
By Proposition 2.2 we have (u(t), p(t)) — (uo, o) weakly in (H?(Q))¥*+1) as
t — 0T, then by Sobolev’s embedding (u, ) € C([0,T*]; (Wh4(Q))N*1). O
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Now, we are in a position to prove the full classical regularity of the solution.
Proof of Theorem 2.3. By the usual Sobolev imbeddings we note that it is
sufficient to show

u € C((0, T*]; (HH2(Q)N) ; € C=((0,T*]; WH24(Q)) (2.30.0)

forany £ =0,1,2,....
The proof of (2.30.¢) is done by induction on £. We begin by observing that

for any fixed ¢, and for any k = 0,1,2,...,0%u and 9y are solution of

~div(v(p)VoFu) + VOF p = ky,

div 9Fu = 0, i
—div(k(p)VOFp) = fr in Q,
OFu =0,

Fp=0 on 0Q,

kr = Z D) (OiuNV O + O pdig)

=0

- Z i) div(8iv(p)VOF—u) + 0Fh — OF

5 &

Fo = S CO@UVIt) + 3 CONNGIE)VO ) + 0L — 3y
i=0 i=1
Because f, € C((0,T*]; L*()) and by regularity properties in the stationary
case (see [6], Theorem 2.3), we can conclude that ¢ € C((0,T*]; W**(2)). This
fact together with the known regularity of (u, ) imply that f; € C((0, T*]; L*());
thus, we can apply the LP-regularity on the stationary problem once again, to
obtain dyp € C((0,T*]; W>4(Q)). By induction one see dF ¢ € C((0,T*]; W24(Q))
for k=0,1,2,.... It follows (2.30.0).

Now, we suppose (2.30.£ — 1) holds (that is, u € C>=((0,7*]; H*(Q)) and
© € C=((0,T*]; W4(Q)). Then a slight modification of Theorem 2.3 in [6]
allows us to conclude ¢ € C((0,T*]; W*24(Q)) and u € C((0,T*]; H2(Q)).

Next, by induction on % (combining arguments of the proof of [6] Theorem
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2.3 and of Lemma 2.6 in order to prove f, € C((0,T*); W*4(Q)) and h,, €
C((0,T*); H*(92))), we obtain dF¢ € C((0, T*]); W 24(Q)) and dFu € C((0, T*;
H*2(Q)) for any k = 0,1,.... This proves Theorem 2.3. |

Remark. In a standard way we can obtain information on the associated
pressure. In fact, under the hypothesis of Theorem 2.3, if the classical (u, )
is the solution of (2.2), there exist p € C®(Q x (0,T*]), [qp(t,z)dz = 0 for
any t € (0,7%] such that (u,p,p) is solution of (1.1), (1.2). This is a direct

consequence of regularity results (see Amrouche and Girault [2]).

3. Global Existence

In this section we present a sequence of estimates for the (strong) solutions
of (2.2) and their spectral approximations. These estimates are important to
obtain a global solution, an also they are used in a essencial way to get uniform
in time error bounds for the spectral approximation (see [8])

We have the folling result

Theorem 3.1 Let Q be a bounded domain in IR with C' boundary, we
suppose v, k satisfying (2.1). Assume also that g € L*(0,00; L3(Q)), h €
L>(0,00; L3(Q2)), f € L>(0,00; L3()), 0:f € L>(0,00; L*(2)), uop € V and
o € Hy(Q) N H* Q). If [Vuol, [Apol, ||fllzeeo,c0ir2@)), 110:f1]Lo(0,00:22(02))
||| oo 0,00:22(02)) @ @]|g]|Loo(0,00:02(02)) (where v is the parameter associated to
the volume expansion) are sufficient small. Then the solution (u, @) described in
Proposition 2.1 exists globally in time. Moreover, there exist some finite positive

constants 8 and M = M (uo, @0, f, h,ag) such that
sup|Ap(t)| < B, sup{|Vu(t)| + [Ve(t)]} < M (3-1)

Also, the same kind of estimate hold uniformly in n for the spectral Galerkin

approximations.

Proof. The estimates will be proved for the approximation (u", ¢"); as usual

they can be carried to (u,¢) in the limit. Also, when one obtains the above
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estimates (specifically the fact that |Vu(t)| does not blow up in finite time), the
existence of global solutions in time is immediate. To prove the estimates, we
work as in the proof of local existence theorem (Proposition 2.1, see [8]; p. 14),
to find

d = -
SIVU? + A < OVarl® + Clag Pl B P

+Calg|?|Ag™? + C|hl?, (3.2)
0P < C(IAu P + CIVG" LA + ClglP |V

+C|Au"* + C|hP, (3.3)
L low? + Vo < CIV"Ploar? + CIV o Plag™?
+C10:fI?, (3.4)
0? < OVl + 180" PG +-OIFP +Clag',  (35)
I8gF < OV + 180" PG +CIFP +ClowE. (36)

We observe that, since the parameter « is one of the parameters that must be

controled, we have explicited it in (3.2). Also, the constants C' in the above

estimates are independent of n. These estimates can be obtained in standard

way; for example, estimate (3.6) is obtained by taking £ = —A¢™ in (2.3).
Now, by combining (3.2)-(3.4), we obtain

d -
E(IW"\2 +[0s0"?) + |Au" | + [V

< ClAQ"? Vo™ + ClafI* + ClAg™?| Aur?

+C(1+ ClAG™ ) (IVu"[® + |Ag" PIAu"? + al A" Plg|* + |R[%),

which, by adding suitable positive terms to the right-hand side of the last in-

equality and rearranging, it can be rewritten as

GV 410" ) + | B + | V2

< (CIAG"P) (2 + (Clag" 1A + Vo) (37
O+ (CIAG PV P + 10"

HEIAG L+ (CIAG" P)algl? + C[1 + (g PR + ClafP,
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where the positive constant C' is independente of n and of the initial conditions.
Also, by taking the larger one, we can consider the constant C' appearing in (3.7)
the same as the constant C' appearing in (3.6). We stress this point because
this constant will play a special role in what follows.

Now, we will choose the constant 5 > 0 for which the stated result is true.

Fix /8 as a positive constant satisfying
1
Cp < o (3.8)

where C is the positive constant appearing in (3.7) (and (3.6)).
In the following, we will show that, when the initial data and external fields

are suitably small, there hold
sup |Ap"(8)[* < 8 (3.9)
>0

and |[Vu™(t)| + |V¢™(t)|} < M for all t > 0 and some M > 0.

In fact, let the initial condition p(0) satisfy |Ap(0)[*> < B. Then, by our
choice of basis function, it is true that |Agp™(0)|*> < 3 for any n.

Observe that (3.9) means that, for small initial data and external force fields,
©(t) exists globally in time and satisfies the stated estimate.

To prove this, we start by remarking that

" (t) =D (Y (x)
i=1

where the ¢?(t) are found by solving a system of ordinary differential equations,
and therefore continuous in ¢ in the interval of existence [0, t5), where 0 < 5 <

oo. Thus,

Ap™(t) = 3 & (DA (z)

i=1
is also continuous on [0, 3) with values in L%(Q); since |Ap™(0)]* < S, either
SUPiso |A@™(t)]* < B or all t € [0,15)), which means that there is no blow-up
and in fact {4 = oo and (3.9) is true, or there is {7, with 0 < ¢} < ¢%, a time for
which we have |[Ap™(t)|*> < B for t € [0,#7) and |Ap™(t7)|*> = .
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Let us show, arguing by contradiction, that this late possibility does not
hold for small initial data and external force fields. For this, assume that ()
satisfies the second possibility.

Introduce the auxiliary variable
Ma(t) = [Vu" (1) + 00" (1),

and observe that due to the assumption that |[Ag™(t)] < 8 for t € [0,t}], on
this interval we have C|Ap(t)]? < CB < 1/8 (according to our choice of 3 in
(3.8). Thus, on the interval ¢ € [0,t}], we can estimate the right-hand side of
(3.7) to obtain

d

1 -
=+ §(|Au”l2 + Vo ?) < 2Cn} + 2C(algl?8 + |h]> + 0. 1) (3.10)

Now we observe that there exists C; > 0, which is independent of n such that

LIV + 18ip™ ) < S (18U + [V [?).

[NRI

Then, (3.10) implies that on the interval [0, t7] it holds

d
@’ =
77"(0)

A

2002 — Cin + G,
[Vug | + 0" (0) %,

where
€ = 20suplalg ()8 + AP + 05O,
The comparison theorem for differential inequalities implies 7, (t) < ¢(t) for

all ¢ in the interval [0, 1] where ¢ satisfies

d 3

E(ﬁ = 20¢° — Ci¢ + Cy = R(¢, Cs),

¢(0) = |Vuol* + |9p(0)[*.
(Observe that, again by our choice of basis functions, |[Vug|*> + |9,¢0™(0)]* <

[Vuo|? + |0:(0)|% also, observe that C' and C; do not depend on the initial

data and the external force field.)
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Next, we observe that R(¢,0) = 2C¢* — C; ¢ has three simple roots: r1(0) =

C\"? - Ci\'"?
— <%> , which is unstable, r5(0) = 0, which is stable, and 73(0) = <%> ,
which is unstable. For Cy > 0 small, R(¢,Cs) has one unstable simple root
71(Cy), a stable simple root 73(Cs) and a unstable simple root r3(Cy), satisfying
71(Cs) < 0 < 12(Cy) < 11(Cy), and, moreover, 12(Cy) — 0+ (in a monotonically
decreasing way) as Cy — 0+. Also, for such small values of Cy > 0, R(¢, C3) > 0
for ¢ € (0,72(Cy)).

Thus, there exists § > 0 such that, if the following assumption holds
Cy <d and 1,(0) < ¢(0) <ry(Ca), (3.11)
then we have
0 < 7a(t) = [Vu" ()] + 100" () < 6(t) < 72(C2) (3.12)

for all ¢ in the interval [0, ¢7].

Now, the assumption that |Ap(t)|? < 3 for ¢ € [0,17] permit us to estimate
inequality (3.6), on [0, 7], as

A (B)]* < (ClAE™(H)1?)|Vur ()] + (ClA™ (1)?)|Ag™ (1)

+CIf () + Clowp™ (1))
< (1/8)|[Vur®t)? + (1/8)| Ap™(#) 1> + Clowe™()1* + C| f(1)]%,

which implies for ¢ € [0, ¢}] that

A (B < (1/7)Vur (B + B8C/7)|owe" (D + (8C/T)If (1)
< max{1/7,8C/7}rs(Co) + (8C/ ) f () '
< (1/2)8,
if we take f, h and al[g[7w (g oo:z2(q)) Sufficiently small such way that there hold
the following:
Cy = 20supeo{alg(®)°8 + MOF + 0SB}
= QC[ﬁaHQH%w(o,w;L?(Q)) 2 HhH%O"(O,x;Lz(Q)) + 10 f 1700 (0,00,L2(0)) < 9

(where § is given by (3.11)) and

BC/DIf e 0,002y < B/A
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and

max{1/7,8C/T}ra(Ca) + (8C/ | fl[Lo0,00:120) < B/4-

In particular, (3.130 implies that |Ag™(¢7)] < B/2, which is in contradiction
with our choice of t7.

Thus, for such small initial data and external fields, we conclude that the
approximate solutions exist for all time (¢j = oo) and also that |Ap"(t)|> < 8
for all ¢ > 0. Therefore, we can proceed as above to obtain 7, (t) < rq(Cs) for
all ¢ > 0, and now, the definition of 7,(t), implies that [Vu™(t)]> < na(t) <
r9(Cy) again for all t > 0. These two estimates implies the stated one for the
approximated solutions.

As we said in the beginning of the proof, these estimates can be carried over

to the solution in the limit, and the theorem is proved. m]

Also, by arguing as above, it is possible to prove a result on global existence
in time for the solutions obtained in the case uy € V N H?(Q) (Proposition 2.2,
see [8]; p- 7). In fact, it holds

Theorem 3.2 Under the conditions of the Theorem 3.1, assume that
0yg € L>(0,00; L2(2)), 0,h € L>(0,00; L*(Q)) and up € V N H?.
Then, if ||uollm2@) and ||0h||Lc(0.00;02(0)) @re small enough, the solution

described in Theorem 3.1 satisfies the aditional estimates
sup |Au(t)] + |dpu(t)] < +oo
>0

for any v > 0. Also, the same kind of estimates hold uniformly in n for the

spectral Galerkin approximations.
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