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A NOTE ON THE BLOW-UP OF A NONLINEAR
EVOLUTION EQUATION WITH NONLOCAL
COEFFICIENTS.

F. Linares® G. Ponce M. Scialom *®

Abstract

In this work we consider the cauchy problem associated to a nonlinear
model of partial differential equations with non local coefficients. We
show that for a class of initial data, the solutions blow-up in finite time.

Resumo

Consideramos neste trabalho o problema de Cauchy associado a um
modelo de equagdes diferenciais parciais ndo lineares com coeficientes
nao locais. Mostramos que para uma classe de dados iniciais, as solu¢oes
apresentam “blow-up” em tempo finito.

1. Introduction

In this note we are interested in the study of blow-up present in solutions of the

initial value problem

Oyu + Z(—A)_%u cOpu=0, z€ R", L € R, 3 €[0,n).
i=1
u(z,0) = uo(x),

(1)

with

(AP f() = e [ Ty, (R)
In [P], Ponce showed that for ug € C§°(IR™) and 3; € [1,n), this problem

has unique global solution

u € C([0,00) : H*(IR")), forany s€ Z™.
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We will focus our attention on problem (1) with 8; € (0,1).
We first consider the Euler equation for an incompressible homogeneous
inviscid fluid flow,
O+ (u-V)u=Vp, =€ R* L€ R. )
divu=0, u(z,0)=uoz),
where © = (u1,us3) is the velocity field and p the pressure. In this case the

evolution of the vorticity w = V x u = dyus — dyuy is given by the problem

{atw+(u~V)w=0,

w(z,0) = wo. (8)
The Biot-Savart law of fluid dynamics (see for instance [M]) allows us to recover
the velocity field u in terms of the vorticity w, i.e., u = (V+(=A) " )w. Thus

the problem (3) can be written in a self-contained manner as

Ow + (VH(=A)HwVw =0
{ w(z,0) = wo(x). 4)

Then, we can think problem (1) as an intermediate model between the inviscid
Burgers equation,

Ou+ud,u=0, z€ IR, t € R, (5)

and model (4) above.

Note that (1) appears as a model which feature both integral differential
equation and nonlocal differential equation. It has the advantage that the non-
local operator (—A)~#/2 called Riesz potential (see [S]) defined in (R) is positive
preserving.

For 3; = 1, the number of derivatives involved in the nonlinear term is zero.
This is the extremal case for which global existence in [P] was established. For
n =1and $; = 0 it is well known that blow-up occurs in (5) for any initial
data ug € C§°(IR). Concerning problem (1), the case 0 < §; < 1 was left open
in [P].
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In this note we shall show that at least for n = 1 and 8 € (0, 1), the solutions
of (1) with uy € C§°(IR) may blow up in finite time.

The next theorem is our main result.

Theorem. Letn =1 and (€ (0,1). There exist a ug € C(IR) and a T* > 0
such that the solution u(x,t) of (1) with initial data ug satisfies

Jim [[zu(-, )|z = oo.

Remarks.

1) In our proof we will use the characteristics, so it is useful to notice the
following: for any 3; € (0,n) it is clear from the characteristic method that as

far as the solution u(z,t) of (1) exists, then
[lu(s )l = [luol |-

2) This result shows that the solution of (1) with appropriate data behaves
like the solution of (5) with same initial data. In fact, our proof below can be
adapted to obtain blow up result for any data wo € C§°(IR), with ug > 0. At
this point we do not know whether or not the blow up occurs in any solution
corresponding to arbitrary data in C§°(IR).

3) In the case n > 1, our argument below, although the computations seem
take very involved, suggests that for particular kind of data in C§°(IR™) the
blow-up of the classical solutions of (1) should occur for 3; € (0,1) for some
t€{l,...,n}.

4) We observe that (4) can be seen as the extremal case in two dimensions.

Notice also that the best bound known for the global solution w(z,1) (see Kato

[K]) is

102 w(t)]]1e < €l|Ozw(0)]| e .
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Proof of the Theorem. We consider a function g as in the Figure 1

that is,
g is nonincreasing in (az2(0), @, (0)) and nondecreasing in (a4(0), a5(0))
satisfying
Hy { uo(z) =1 for a3(0) <z < ay(0),
0 <up(z) <1 for au(0) <z < a3(0) and az(0) < z < ay(0),
ug(z) =0 for z < ay(0) and x> ay(0).

Now we use characteristics to compute the evolution on time of the difference
a1(t) — az(t). In what follows we may write a;, @ = 1,2,3,4, instead of a;(t)

for simplicity of the formulas. Then,

d
4 o0 = aa)(1) = (=8P ul(on(0), 1) ~ [(~A)u](@s(1)1).
The definition of Riesz transform implies
d u(y, t)
E(O&](t) (/ |O[1 _y|(1 8) y / |O£2 I(l ﬁ)d )

as(t) u(y, 1) u(y,t)
=C ( ’ - : )d
/am) jon(8) =y Joa(t) — y 7)Y

az(?) u(y,t) u(y,t)
c ( _ )d
/asm Jar (8) — g7 Jaa(t) — g7/

(1) u(y, 1) u(y, 1)
+C ( ! - ! )d
oo \Jar(8) =y Jaa(t) — g7/ "

= L(t) + L(t) + L(t).
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Using the characteristics, the fact that the function u(y,t) is monotone in-
creasing (resp. decreasing) in y if the initial data wuo(y) is increasing (resp.
decreasing) between the points where the characteristics intersect the t-axis,

and the hypothesis H; on ug we have,
uo(s uo(s(y,t))
o 2
o - y|1 aa =y )"

az 1 1
= o[ (e )
: os Nz —y]"?  Jaz—y/) "

0(5(!/76))>
= Al <|a1—y|1ff oz — -2 =

where I; = I;(t), 1 = 1,2,3, and s(y, () is the point in the t-axis which lies on

L 0

IA

0

IN

the characteristic passing through (y,1).

We claim

Given T > 0 there exist a1(0), az(0), a3(0), aa(0)
G such that oy(t) — az(t) < az(t) — as(t) for any t € [0,7].

Assuming this for the moment, we find that

1 1
L<C ( )d .
? az—(an—az) \ |y — y|1~ 2 oz — y[1=F y

Therefore,
aq — 2 p
L(on(t) () < =020V 0 ) (6)

The explicit solution of

d . <oy (@a(t) = aa(t))
a(oﬁ () —a@at) ="——F——(2°-2).

is such that there exists a

B(61(0) — a5(0)1=F)

e C I .
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Hence we have proved the existence of a time ¢ < ¢* where the characteristics
crossed each other provided Cy holds.
Next we look for conditions on ug such that Cy satisfies.

First we prove the following inequalities,

S0l = aa(0) = ~(ealt) = a0’ (4)
and
9 (as(t) — aa(t)) < (a5 — ) P(0) + 2(1 — )Y (B)
di = 3 '

Using the definition in (R) and the characteristics we can write

ia — o — = u(y, 1) _ u(y,t) !
(o) = ostt) = [ = s

a2(t) u(y,t) u(y, 1)
+/ ( - )d:l/
as(t) \|oo(t) =y~ Jag(t) — y[*=F

. aw)( u(y, 1) u(y, 1) ) :
o) \Joa(t) — y[P  Jaa(t) — =7/

Hypothesis H; on ug implies that the second integral on the r.h.s. of the previous
inequality is zero and the third integral is positive, therefore inequality (A)

follows from

d

s (t) dy (az=aa)(®) v
Haat) —as@) 2 — [ = = (B
dt(al( ) Ol3( )) =, - |a3(t) — y|1_ﬁ o |’U|1_ﬁ ( )
To prove inequality (B), notice that
d cot(eo=as) uo(s(y, 1)) i uo(s(y, 1))
2 b — @ = / BLCISACIL VR +/ Uo\S\Y, 1)) 4
dl( ’ 4)( ) oy |0‘3([) ] g ast(az—ay) |az — y[1=P =

/Qg uols(y,t) /al uo(s(y, 1))

s Joa®) — g1 T S Jaa(t) — g P

= Ji(t) + Jo(t) — Ja(t) — Ju(1),
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where s(y, 1) is as before.

We claim that Jy(t) — J4(t) <0, for ¢ € [0,¢*]. In fact, consider the change of

variables y = z — (aq — a3) in Jy(1). Then,

]Z(t) B ]a1+a4—a3 uO(S(Z + a3 — (14,t))d2 S /ozl uo(s(z + a3 — (14,t))d2.

- (z — as())'-P a (2 — au(t))=*
Therefore
a1 ug(s(z + az — ag, b)) — up(s(z, 1)
Jo(t) — Ja(t) < /a = a4(t3;1_ﬁ )iz <.

The inequality above is a consequence of the hypothesis H; on ug and
(a5 —ay)(t) > 0.
Using also the fact that —.J5(¢) < 0, we can write

d ag+(az—aq) uo( y, 1 dy
az — ay)(t S/ ! 2/
gl s | e o) — 91"

Computing the last integral with the simple change of variables z = as(t)—y,
we obtain

d

7 (as — ag)’(1).

—(az —ag)(t) <

o

The inequality (B) follows then by solving the above differential inequality.
Now, combining the inequality (A) and (B) we have,

Glee = a0l 2 ~5((aa = a0 + S0 -0 ()
Integrating (9) in [0, {] we obtain
(a2 —as)(t) = (o2 —a3)(0) — %((ad —ag)179(0) + 2 ﬁ)t)f (10)

+ %((13 — (14)(]_ﬁ)(0).
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Note that the second term of the inequality is a decreasing function of ¢, then

substituting ¢ by ¢* as in (7) on the right hand side of (10), we obtain

(02— 05)(1) > (a2 — 5)(0) — ({05 — ) =(0) (11)
+ 2 (a1 — ) )(0)) ™7 + 1(a3 —ag)17P(0) for all ¢ € [0,1*]
26 2 2 e

To finish the proof it is enough to choose ug as in the figure 1 satisfying

hypothesis H; and a;(0), a2(0), a3(0) and a4(0) such that

(a2 — a3)(0) — 1((043 = a4)(1_ﬁ)(0)i

2 S—glan —an) O (12)

‘%(% —as)7(0) > (an — a2)(0).

This combined with (11) implies

(g —a3)(t) > (g — ap)(t) for all ¢ €0,17],

since (a; — ay)(1) is a decreasing function. Thus, we have that C5 is verified for

¢ in [0,¢*] and the proof of the theorem is completed.
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