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Abstract

Consider a system of conservation laws with relaxation terms. From
applications one knows these terms may be very stiff. This raises the
question if their solutions converge to the solutions of the related system
where relaxation has gone to zero. A method to investigate this question
involves approximating the original stiff system by either adding small
viscous terms or by a numerical scheme, and then letting both the approx-
imation and the relaxation parameter tend to zero. Below we announce
two such results.

1. Two equations

In this section we consider a relaxation model:

(w+v),+ f(u), =0

_ Am)—w (1.1)
Y = g(0,u,v)
with initial data
(4, )]t=0 = (uo(), vo()) (1.2)

where the positive constant ¢ is referred to as relaxation time. Later on we
state the assumptions that we make on (1.1), (1.2) in detail.
System (1.1) consists of a conservation law and an equation with a relaxation

term. In [12], [14], [16] a similar model arising in combustion

+q2),+ f(u). =0
(u+ q2) (U)Zt = halds } (1.3)
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was studied. In [3], [17], [20] other models with relaxation terms have been
considered. For ¢(d,u,v) = 0 the system (1.1) arises in chromatography, see
[17].

In [20] the question of vanishing relaxation-discretisation for (1.1), (1.2) is
considered with g = ¢ in the framework of BV solutions under the assumption
of monotonicity of f. Our proof needs no such restrictions by using a different
technique, as described next.

We study the zero relaxation limit ¢(d,u,v) — 0 by using compensated
compactness. This method has been used on models for combustion [12], [14]
for viscoelasticity and phase transitions [3]. We show that the solutions of the

viscous equations

(u4v),+ f(u)e =€+ 0)s
Alu) —v (1.4)

9(6,u,v)
converge to the solutions of the equilibrium equation

Vg = € Upy +

(u+ A(u): + f(u)s =0 (1.5)

where both ¢ and ¢ tend to zero related by § = O(e).
The method of proof is as follows: we consider the existence of viscous

solutions of the system (1.4) with initial data
(ue7 ve)\tzo — (U(E)» ’US) 9 (16)

where u§, v§ are smooth functions obtained by smoothing ug(z), vo(x) with a

mollifier, satisfying

ugy — uo(z) , vy —vo(x) , when €—0,

leug (@) <M, e, (@) <M

where M is a positive constant depending only on the bound of |u§|r~ , |v§]r=
and is independent of e. We first prove local existence using the local contraction

mapping principle. The next step is to show an a priori estimate in the L norm
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of solutions, which is obtained using the maximum principle, as in [13]. Then,

in the heart of our analysis, it is proven that for a function pair (n(u?), q(us°))

') f'(w)

h
L+ A(u) we have

which satisfies ¢'(u) =
n(u) + q(u™®), is compact in Hp}(Rx RY) . 7}

This is proven mainly through energy estimates. Finally the method of com-
pensated compactness as given in [2], [12] is used to study the convergence of
viscous solutions (u*°,v?). First the convergence of u? is shown, and then
using a lemma, the convergence of v*°. When taking § = O(e), the global weak
solution of the equilibrium (1.5) is obtained as § — 0. For details, see [8].
Finally we list the assumptions on (1.1), (1.2) needed in our proof in detail.
(A1)  f(u),A(u) € C? sat/isfying A'(u) > ¢ >0,
meas {u: (%) - 0} =0
(A2)  g(6,u,v) € C*(R?) for any fixed 4,
c1(u, )6 < g(6,u,v) < ca(u,v)d,
|9ul < €3(u, v)d, gu] < es(u, )9,
where ¢;(u, v) are positive, continuous functions, i = 1,2,3
(A3)  wu,(z), vo(x) are bounded in L™ and
Ja | A(uo(z)) — vo(z)|dz < dM(G) for any compact set G in R.

2. Three equations

In the second part of this report, we consider the Cauchy problem for the

following nonlinear system:

Uy — Uy =0
—o(v,s), +au=0
L B=iw) e

with bounded L? measurable initial data

(v, u, S)\t:o = (vo(@), uo(x), S0(x)) (2:2)
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where «, 8, 7 are nonnegative constants. When g = 0, system (2.1) can be
used to model the adiabatic gas flow through porous media [7], where v is the
specific volume, u denotes velocity, s stands for entropy and ¢ denotes pressure.
Its form in Euler coordinates is also a model of isothermal unsteady two phase
flow in pipelines [1]. We study the global generalized solution for this case.
Next we consider the case § # 0. Here again v is specific volume, u denotes
velocity but s is the mass fraction of one of the modes of a two mode gas and
f(v) is a given equilibrium distribution in v. In this case, 7 denotes a reaction
time. When written in Euler coordinates, it can be used to model chemically
reacting flow [9].
We show that the solution of the equilibrium system

Vg — Uy = 0
us—o(v,8), +au=0 } (23)

is given by the limit of the solutions of the viscous approximation

Vp — Uy = EVgy
U — (v, 8), + QU = €Uy (2.4)

LBy _ T
7

as the dissipation € and the reaction time 7 both go to zero related by 7 = O(e).
Similar results about zero relaxation systems of two equations and solutions in
L space are discussed in papers [3], [4], [9], [14]; in L space see the recent
paper [5].

In dealing with the Cauchy problem (2.1), (2.2), one basic difficulty is the a
priori estimate of the viscous solutions of (2.4), independent of € in a suitable
LP space (p > 1). Since system (2.1) in general can not be diagonalized by using
Riemann invariants, it is not to be expected that viscous solutions (v¢,u¢, s¢)
of the Cauchy problem (2.4) will be bounded in L* | uniformly in €, by using
the invariant region principle [19]. We have to search for solutions of system
(2.1) in L? space. In some sense, the a priori estimate of the solutions of (2.4)
in L? is easy to get, if we can find a strictly convex entropy for the system

(2.1). However, a new difficulty arises by considering the compactness of the
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viscous solutions in LP space by trying to use compensated compactness. To
the author’s knowledge compactness of the viscous solutions in L? space has
been shown for scalar equations in [11], for a simple model of combustion close
to a scalar equation in [12], for a system of two equations by M. Santos, H.
Frid [6], P.X. Lin [10] and J.W. Shearer [18]. Since for the parabolic viscous
system (2.4) both the L™ estimate and the one sided L™ estimates using the
Riemann invariants (as given in (1.6) of [11]) are not easy to get, here we take
the entropy - entropy flux pair as considered in [18] as the base of our paper.
For details of the proof, see [15].

We make the following assumptions about o(v,s) in (2.1) and the initial

data (2.2):
Case I. 5 >0
Al f(v)=cv

A2 o(v,s) = 0(v) — cs, where o(v) satisfies the following conditions:
a) o €C*R),o(0)=0,0" >d>c? dis a positive constant
b) " #0,0" € L' N L>®(R)
¢c) o”eLl®R), 0" <M

A3 (vo(),uo(z), So(x)) are bounded in L? and tend to zero as |z| — oo

sufficiently fast such that

hmwﬁioo(vé(x% UE(JZ) 56(13)) = (07 0, 0)
dvg(x) dug(x) dsp(e)y _
dl’ ) dlE ) dl‘ ) - (0’ 030) )

hmx—)j:oo (

where (v§(z), u§(x), s§(x)) are smooth functions obtained by smoothing the ini-

tial data (vo(z), uo(x), so(x)) with a mollifier, satisfying

(1§(z) i), 55(2))) = (00(2), wo(a), 50(x)) whem € =0

o (@) pemy <M |ug(@)|pemy <M, 156(2) p2my <M

vo(z )\Hl(R) < M(e) \UE( Ny S M(€)  I56(2)|gagry < M(e)
‘divo d uo ‘

dx? -

dSO( )\ < M), i=0,1,2

‘<M
.flf
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CaseII: =0
Al o(v,s) =0(v)g(s) —cs, g(s) € C* and g(s) > d >0
A2  o(v) satisfies (A2) a), b), ¢) in case I
A3 (vo(z),ue(x), so(x)) satisfy the same conditions as in (A3) case I.
Moreover |sq(z)] L () < M, where M is a positive constant and independent of

€, M(e) is a positive constant which depends on e.
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