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SIMULTANEOUS STABILIZATION OF SOLUTIONS
OF MIXED PROBLEMS FOR EVOLUTION SYSTEMS

*

Boris V. Kapitonov

1. Introduction

Let © be a bounded domain in R™ with sufficiently smooth boundary S. In
Q% (0,T) we consider the initial boundary value problems for a pair of evolution
systems. We assume that one of them is the damped hyperbolic system with
locally distributed damping or with boundary dissipation. Thus, the energy
E;(t) of solutions is a non increasing function of the time variable t. The
second system has principal part equal to the principal part of the first system
and for every solution the energy Fs(t) is a non decreasing function of time ¢.

Our purpose is to connect these systems (in a part of domain € or on the
boundary S) and to give sufficient conditions on this connection and damp-
ing term ensuring the uniform exponential decay of the total energy, i.e. the

existence of some constants C' > 0, v > 0 such that
E(t) = Ei(t) + E5(t) < Ce™ ™ E(0), t>0.

The case of a single damped wave equation

0*u ou
_ = > i
- Au+Q(x)at 0, Qx)>Qy in DCQ
ulg =0
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is by now well understood. Results by C. Bardos, G. Lebeau and I. Rauch [1]

show that, when  and Q(z) are of class C*, the estimate
J 1Vt < 0 [ (fuf +Vul)| o do

holds if and only if some “geometric control condition” is satisfied. The canoni-
cal example of open subset D verifying this condition is when D is a neighbour-
hood of the boundary.
The coupled system of linear thermoelasticity has beeen investigated by D.C.
Pereira and G.P. Menzala [12], J. Rivera [14], J. Rivera and Y. Shibata [15].
Exponential decay for a pair of hyperbolic systems of second order with

boundary damping only for one of them has been obtained by author [2].

2. Hyperbolic systems of second order. Locally distribut-
ed damping.

In the cylinder Q x (0,T) we consider the following initial boundary value prob-

lem:

i Za( )+t + B3 o

8t2 Z&rl < 8:@) B(w)% =0, (2.1)

ulmg = f1(2), ]9 = fa(z ) | = fa(x), 8t| = fa(z),

ulg =0, v|g =0,

where u = (ul(z, t),...,u™(z, 1)), v = (vi(z,1),...,v™(x,1), T = (T1,-- ., Tn);
A = A* B(x) = B*(x), Q(z) = Q*(z) are square matrices of order m, B(x)
and Q(z) are of class L ().

Assume that

ZAngzZGOZEsz a0>07
=1 i=1
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where & = (£},€2,...,&™) is an arbitrary vector and

M- & =&+ HnlEr, &GP =(E)+ -+ ()

Let us consider the energy
ou Ou &, 0v Ov
Pl A—. 2 2 d
/(Z o, 3 T2 am T J””') v
The formal computations show that for every solution of (2.1) the following

identity holds
t2
E(ty) — E(t;) = —2 A /QQ(:L')ut cupdrdt, ty >t > 0.
We assume that
Q()E-£>0aeinQ and Q)¢ &> aléf* ae.inD VE € R™

for some non empty subset D of €2 and some positive constant .

The aim of this section is to give sufficient conditions on the subset D (where
the damping term is effective) ensuring the uniform stabilization as ¢ — oo of
the energy E(t).

Throughout this paper H*(Q) is the usual Sobolev space. Denote by H the
real Hilbert space of quadruples w = {w1, ws, ws, w4} of m-component vector-

functions w; such that
w1, W EHI(Q), w1|S:wQIS:O7 w37w4€L2(Q).

The inner product in H is given by

(w fo—/ (Z 8w1 'afl EA(;:;.ZJE—I—UB fs+wy- f4>

Or; i=1

where w = {wy, we, ws, wa}, f={f1,f, fs, fu}-
In H we define the unbounded operator A: D(A) consists of the elements

w = {w1, ws, w3, wa} € H such that

wl,w2€H2(Q), U)3,U)4€H1(Q), w1|S:w2|S:w3|5:w4[S:O7

A{wr, we, w3, wa} = {ws, wy, Aw, — Qu; — Bwy, Aw, + Buws}
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~ o, @ ou
f , Wa, W3, € D(A). Here Au = A .
or {wy, Wy, ws, Wy} (A). Here Au ; o, ( 85@)
It can be shown that .4 and A* are dissipative. The operator .4 thus gener-
ates a strongly continuous semigroup of contractions U(t), t > 0.

As is well known, U(t)f is strongly differentiable with respect to ¢ for

f € D(A) and

d%U(t) f = AU®)f.

It follows that if {u,v,u;, v} = U(t)f then u, v is a solution to problem (2.1),

IMOLEOVer, Uy = Uy , Uy = Vs .
Let f € H. Then U(t)f satisfies the following identity:

[ w8, S+ w5, A0 bt =~ 90D,

where ¥ € Ly(0,T;D(A%)), ¥, € Ly(0,T;H), ¥(T) = 0.

Thus, U(t) f is the weak solution in H to the abstract Cauchy problem

dw
T Aw,  wl|,_, = f.
We introduce the notation

" OJu Ou

The proof of the stabilization is based on the following identity
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1
+5 CQu-u+ Cug - w+ Cvy - vldelZ] / / ®(v))dSdi+

+ [T fol—2(t + t0)Q(2)us - ur + 2(Vep, V)v - Buy — 2(V, V)u - Bu,—
—2(Ve,V)u- Qus — Cv - Buy — CBu; - u—

7289: ax] Za ATHC( u) + K(v)]dzdt.

(2.2)
Here ¢ = ¢(z) and C = C(z) are scalar funcitons in €, v is the unit outer

normal,

. o Ou Ou
K(u) = (Ap+1—-C(2)®(u) +(1+C(x) — Ap)|u|* —2 Z 9007, A@x- e
] J v

We also use the estimate

d d

where p, ¢ > 0 are constant such that (pB(x) —Q(z))¢-€ > 0, (qQ(x) — B(x))¢ -
E>0inQ, p>0,¢>0,§€ R™

Henceforth we assume that © and D (where the damping term is effective)
satisfy the following conditions:

There exists a function ¢(x) € C*(£2) such that

(i) 99 <0ons,

v
(i)  olx) > p > 0 in Q\D, where @o(z) = in 3 Z = 333]17277“ n =
(7717"'a77n):

iii A%2p —2Apy <0 in Q.
¥ ¥

Example 2.1. Q= P\G, where P,G C R" are bounded domains, G C P,
=0P, 5 =0G, 00 =S,US; =8S.
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Assume that P, G are star-shaped with respect to some point x°:
(z—2°v)>0, z€S8y; (z—2°%v)<0, €S
Assume there is R > 0 such that
Gclr:|lr—2° <R}, {z:|v—2°|<R}CP.

We set (for n > 3)

1
z) = =Rf|lx —a°|? — z—2°|*, 0<k<1.
v 2

1
2+ k
Then the subset
RF—p

1+k

1/k
D={zcQ:|z—2°| > R}, where R1—< > ,Dzpgl pe R

has the required properties.
Example 2.2. Let Q be a bounded domain in R™ with boundary S. For
2% € R™ we set

So(®)={ze€S:(z—12°v) <0}, Si(z?) = S\S(z").

Assume that for some z° € R" and R > 0, x € Sp(2°) if and only if |[z—2°| < R.
We use the same function ¢(z).

In this case we can set

o B —p k
D:{er:|x—x0| > }, where 0 < k,pu <1, u< R".

1+k
Remark 2.1. If the damping term is effective in Q (D = ), the conditions
(ii) and (iii) are not required. In this case for an arbitrary domain Q we define
a function p(x) as a solution of the problem

6_<p B 7mesQ
dv  mesS

Ap=—-1 in Q,
We set

Clx) = Ap — 2p0(z) +
(if D=Q,Cx)=C= A@—Qigfgao(x) +u, 0<p <.
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From (2.2), (2.3), the properties of p(z), C(x) we arrive at the following

assertion ([5]).

Theorem 2.1. Suppose that Q(z) and B(x) satisfy the assumptions:

1) Q@)E-€>0,(qQ(z) —B(z)-€ >0, (pB(x) —Q(x)§-£ =2 01in Q,
p>0,9>0,&€ R

2) Q@)¢-£>al¢lin D,a>0,VEe R™

Assume that there exists a function (x) with the properties (i)-(iii). Then

forall f=A{fi,fo f3,fs} €H, t>0

1
U@ £ < (2C +to)m||f”g
0 0

with 0<B<pu<1,to>t=t(QAQ,B), C, = Ci(QA,Q,B).
Corollary 2.1. U(t) takes the space H into itself and
U @)lpn < 1

for

20 1/8
t>t1:t0[<1+—1> 71].
to

Using Pazy’s theorem [11], we obtain
Corollary 2.2. Suppose f(x) € H. There exist C, v > 0 such that

IU@)f1l5 < C exp(=vt)IIfll5 -

Using the estimate of Theorem 2.1 we study the following exact controlla-
bility problem:

Given the initial distribution f(z) = {fi(2), fo(x), fs(x), fa(x)}, time T > 0,
and a desired terminal state g(z) = {g1(), g2(2), gs(x), g4(x)} with f(z), g(z)

in H, find a vector-valued function p(x,t) such that the solution of the problem
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6
ou
t Za:c, ( azz> B<x)§ =0 (2.4)
o = F13), ey = (), Delsco = o), Dol = Fula),
ulg =0, v|lg =0,
satisfies
ul,_p = g1(2), vl = g2(2), %“:T = g3(x), %‘z:T = gu(). (2.5)

Here we denote by xp(z) the characteristic function of D.

Theorem 2.2. Assume that B(x) satisfies the following assumptions:
1) B(@){-£20,2€Q, B@@)¢ &> Bolé*, 2 €D, {€R™, fy>0;
2) B(x)=0,z€Q\D.

Let Q and D be such that there exists function () with properties (i)-(iii).

Then for any T > t,, given any initial data f € H and any g € H there
exists a control p(z,t) € La(D x (0,T)) such that the corresponding solution of
(2.4) satisfies (2.5). Moreover,

IPIZ2 0,y < CULIIG + 119115)-

3. Hyperbolic systems of second order. Boundary damp-
ing.

Let Q be a bounded domain in R" with boundary S which consists of two
disjoint closed surfaces Sp and .S; (the case S; = ¢ is not excluded).

Consider the following mixed problem in the cylinder Q x (0,7):
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& ou ov
8t2 -2 oo ox; ( ”0@) Z a1, ( 1]330]-) =4

2f=1 =1

e = A(2), vy = o) a| = 5@, Dy = 1),

n (3.1)
> Awg V; + au 4 bug 4 Euelg, =0, ulg, =0,

i,j=
n

ZA”& Vi +cv—Eulg =0, v|g =0.

Here u = (ul(z, t),...,u™(x, 1)), v= (v}(z,t),...,v™(z,1)), T = (@1, T2, - - -, Tn),
A = A;i are square matrices of order m, v = (v1,...,1,) is the unit outer

normal, and a, b, ¢, & are positive constants.

Assume that
zAijgjfiZaoz|£i‘2, a0>07 gl_(gz:>€;m)ERm
35 i

Denote by H the real Hilbert space of quadruples {u, v, uy, v, } of m-component

vector-functions such that
u,v € HY(Q), ulg, =vlg, =0, wuy,v1 € Ly(Q).

We define the inner product in H by

<{u7v7u1av1}a{f>g7fl7gl}>0 :/S (auf—l—cvg)d5+

dv  Jdg
+/< z]a _I+A”a (91‘1+U1 fit+wv - gl>d$.

In H we define the unbounded operator A: D(A) consists of the elements
{u,v,u1,v1} € H such that
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u,v € HX(Q), wuy,v € HY(Q),

n

ou
> Aij%ui + au + buy + &uilg, = 0, wlg, = ulg, =0,
£, )

2,5=1

n

v
> Az’j%l/i +ov—Eurlg, =0, ti|g =v|g, =0.
i=1 J

For {u,v,us,v1} € D(A)

" . 0 ou
A y ¥y ) - ) >A aA ) h A = a.. Azi 0
{u,v,uy,v1} = {ug,v1, Au, Av}, where Au ”2:31 oz, ( J(?xj>
In a standard way, we can check that A and the adjoint operator A* are
dissipative. Thus, A generates a strongly continuous semigroup of contractions
U(t), t > 0. It follows that if {u,v,u1,v1} =U(t)f (f € D(A)) then u, v is a

solution of (3.1) and u; = uy , v+ = v, . Moreover,

d d 5. "
GEO = FIUOE =2 [ bl ds.

Observe that, for f € H, U(t)f is a weak solution in H to the abstract

Cauchy problem

d
%w =Aw, w|,_,=1Tf

in the following sense:

[ (wor 5+ W@ £.400) = ~t7,90)

for every W € Ly(0,T; D(A*)), ¥ € Ly(0,T;H), ¥(T) = 0.
The following formulas give grounds for proving stabilization of a solution
to problem (3.1):
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(T +t0)E(t) — to E(0)+
+ Jol2(Vo, VIt -t + 2(Vip, Vv - v + (0 — 1 — ) (u - ug + v - ;) dz[i=g +

+ o S b asi= = [ [ ({8 —n+2-3)(8(0) + 806)-

(Bl ) 2 3 2

i,5,p=1

T Ty B2 + D)+ [ [ {200+ 1ol + el + )~

8:1:p A”uxj Uy, + Aty U, ) AT

92 (@) + 2(u)) ~ (n— 2~ )alul? + clof?) — (0 —1 ) vt

+(TL = 1— ’Y)fut = Z 2bg0xpuwp T U — Z 2€¢”ppr Vg + Z zgﬁpﬁpvxp T U
p=1 p=1 p=1

= 2000, Uz, - U — D 2005, Vs, - V}ASE,

p=1 p=1
(3.2)
ou Ov
fg(ut Ut"‘ZAma 8x)d|
i,j=1 o (33)
0

= J3 Jso (Elug|? = Elvgl? — baty - v, — (¢ — @)uy - v — a(au -v))dSdt.
ou Ou . . .
Here ®(u Z Ayjm— , @ = ¢(x) is an arbitrary smooth function, ~ is

ox; or;

positive constant
Henceforth we assume that 2 satisfies the geometric conditions that are
listed below.

Let ¥(z) be a solution to the problem

a; ov a1 mes ) ov
AV = — Q —| =——"—, —| =0
ao’ Sy ovls, agmesSy’ Ovls, /

where a; = max |a}|, af] are the entries of the matrix A;;, and the constant

27
ao is defined as above (observe that A;; = 6;; I and a9 = a; = 1 for the wave
operator). Assign

w = max sup\\l/x a5 L) |+
G zeQ

Suppose that the domain (2 satisfies the following conditions: there is a point

2% € R™ such that
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(a) S is starlike with respect to 2° : (z — 2%,v) <0 for z € S ;

(b) forsome0<e <1,

1 mesQ
e+ nwmesSy’

(x—2°v)>— T €Sp.

Clearly, condition (b) holds if the surface Sy is starlike with respect to the
point 20

Choose the function ¢(x) in (3.2) as follows

Qo

1
i \IJ _ _ 02 .
() o (x)+29|x 2%, 6>0

We now can deduce from (3.2), (3.3) the following assertion ([2]).

Theorem 3.1. Suppose that Q satisfies the above-listed conditions with a pa-

rameter 0 < e <1 and

Sagnw Sagnw

O<a< O<e<
@ 3r ¢ 3r

0
<a—f > |Vpl6,8 > 0,2 € So, 7 = sup IW|> :

€N

Then there are t* > 0 and C* > 0 such that for ty > t*

U5 < (20" + to) ZIIF116

1
to=(t + to)
for every f € H.

We use the estimate of Theorem 3.1 to prove exact boundary controllability

for the system

%u ro8 ou 0%v L) v
v 2; o <Azga—%) =0, Tl —”z; oz, <A2J6—%> =0,

4= =1,
ou ov
u‘t:O = g1($), 7}|t:0 = h1($), 7|t:0 = gQ(x)7 7‘1&:0 = h2(x)7
ot ot
. ou (3.4)
D Aya—ui+au + Eulg, = p(z,t), ulg, =0,
=1 Oz -
ke ov

Aij=—vi+cv—Eulg =0, v|g =0
171221 Jax] So S1
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where {g1,h1, g, ho} € H. For every element {Gy, Hy, Gy, Hy} € H, we have to
find vector-function p(z,t) such that the solution of problem (3.4) satisfies

ou ov
ult:T = Gl(x), U|t:T = Hl(x), E p = G2($)7 E b = HQ(.QZ') (35)

for T > t; . Here t; is such that [|U(t)||yon < 1fort>t;.

Theorem 3.2. Assume that the coefficients a and c in boundary conditions of
(3.4) satisfy the assumptions of Theorem 3.1.

Suppose that 1 satisfies the above-listed conditions. Then for any T > iy,
given initial data  {g1,h1,92,he} € H and any {Gy, Hi,Gs, Ho}
{u,v, %, %} T {G1, Hy, Go, Hy} at time T'. Moreover,

D117, (s0x 0,77y < CUH{1, Pas g2, ho} G + {G1, Hy, G, H M [P).-

Theorem 3.2 implies a simultaneous exact boundary control. Consider the

following two mixed problems in Q x (0,7):

ou
8t2 Z

ou
3 (M) =0 o= 0@, Floo=nl

ulSO :p(x7t)7 u‘sl = 0;

v dvu
T 3 e (Arme) =0 vy =), Gy =),

(3.7)
ov
Z A”a vi+cvlg, = q(z,t), wlg =0.

i,j=1

Theorem 3.3. Suppose that Q2 satisfies the above-listed conditions and the
coefficient c satisfies the assumptions of Theorem 3.2. Then for any T > t;,
given initial data {g1, b1, g2, ha} € H and any {G1, Hi, G2, Ha} € H there exists
a vector-function p(x,t) € Ly(So x (0,T)) transferring system (3.6) to the state
{G1, G5} at time T:

ou

u|t:T = Gl (SE’), a e
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Moreover, pi(x,t) belongs to Ly(So x (0,T)) and q(z,t) = pi(x,t) transfers
system (3.7) to the state {Hy, Ha} at the same time T':

v
U|t:T:H1(x)7 Et:TZHQ(I').

We remark that simultaneous boundary control for the wave equation has
been established by Lions [10] using Hilbert Uniqueness Method ([9], [10]).
Controllability of the coupled system of thermoelasticity has been proved by
Zuazua [16].

Remark 3.1. All assertions of this section are valid for the pair of systems of

elasticity theory.

4. Maxwell’s equations. Boundary damping.

Let © C R? be a bounded domain with sufficiently smooth boundary S. In
Q2 x (0,7) we consider the initial boundary value problem for a pair of the

Maxwell systems
{ u = curl(pu?), u? = —curl(\u'), divu! = divu? =0,
(4.1)

u? = curl(put), uf = —curl(M\u?), divu® = divu! =0,

ul(:v,O) = fl(.%'),UZ(.Q?,O) = fQ(x),u3(:c,()) = f3(x),u4(x70) = f4(.f13)7 (4'2)

{ [u27y]—a[y,[ul,y]]+f[y7[y7u3“:07
(2,0) €S % (0,T)  (43)

[u47y] - ﬁ[% [UgaVH - 5[”7 [Vvulﬂ = 07
where u' are three-dimensional vector-valued functions of t, z = (21,22, 23),
v is the unit outer normal, |-, -] is the vector product, u = u(z) and A = A(z)

are scalar functions in Q, and o = a(z), § = f(z), £ = £(z) are continuously

differentiable functions on S with Rea > 0, Re 8 > 0.
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For ¢ = 0 boundary conditions (4.3) (the Leontovich conditions) mean that
surface S is a conductor and complex-valued function «(z) (and g(z)) is a
surface impedance.

If ¢ = 0 the mixed problem (4.1)-(4.3) disintegrates into two initial boundary
value problems for Maxwell’s equations. In the case of damping boundary

conditions (Rea > 0, Re 8 > 0) exponential decay of the total energy (£ = 0)
Bt) = [+ ')+l + )] de

has been proved by the author [3].

Our purpose is to prove the uniform simultaneous stabilization as ¢ — oo
of the total energy E(t). It means that (4.3) are damping boundary conditions
only for the first half of system (4.1): Rea > 0, Re § = 0,

%E(t) = 2 [ Reallu’, /] ds.
Using this result we study the exact controllability problem for (4.1) with

boundary control
{ [uQ,V]—iImoz[V, [Ul,l/ﬂ—l—f[l/, [l/,u?’]]:p(a:,t),

[u47V] - ﬂ[y, [ug’y]] - 5[1/’ [V’ ulﬂ = 0.

(4.4)

The exact controllability problem for the Maxwell system (A(z) = Ao, u(z) =
o for z € Q) with boundary control by means of currents flowing tangentially

in the boundary of the region
[v,u'] = q(z,t) (z,t) € S x(0,T)

has been studied by Russell [13] for a circular cylindrical region, by Kime [7] for
a spherical region, and by Lagnese [8] for an arbitrary domain. In [8] control
problem is solved by the Hilbert Uniqueness Method introduced by Lions [9],
[10].

Let A(z) and p(z) be continuously differentiable functions in  satisfying

the conditions

0<)\0§)\(l’)§/\1, 0</L0§,LL(.’E)SM1
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We denote by H the Hilbert space of quadruples v = {u!, u? u® u*} of three-

component complex-valued functions u' € Ly(£2) with the inner product
(u,0ho = [ AL, T) + pu(u?, 72) + A7) + alut, 7)) de
Q

In H we can define the unbounded operator A in the same way as in [3],
[4]. It can be shown that .4 and the adjoint operator A* are dissipative for
Rea(x) > 0, Ref(x) > 0. From it follows that .4 generates a strongly contin-
uous semigroup of contractions U(t), t > 0.

Let M be the orthogonal complement of the kernel of A* in H. We note
that U(t)f for f € M is a weak solution of (4.1)-(4.3).

We now define a special class of domains which includes starlike domains.

Consider the problem

0 mes €)
AP =1inQ), —| = ]
R Oovls mesS

We define the following quantity:

k()= sup 2Red,, &8, £=(,6%,¢) e

TEQ =1

We shall say that  is substarlike if:
(i) k(Q)<1,or

(i)  k(Q) > 1; there exists a point 2° € Q such that for some 0 <& < 1

1 mes €
k+e—1mesS’

The following proposition is proved in [3].

(x —2°v) >

Lemma 4.1. Assume that 2 is substarlike domain. Then there exists a function
o(z) € C3HQ) N CHQ) such that

(i) (Ve,v) >0 on Sy,

(i)  2Reuq, &€ — (Ap = D[P < (1 —w)[¢]? in Q, where 0 <w < 1.
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We now assume that Rea(z) > ag > 0, Re5(z) =0, Re&(x) > & > 0.
The proof of the next theorem is based on the invariance of the Maxwell

system in vacuum relative to the group of dilations in all variables ([6]).

Theorem 4.1. Assume that Q is substarlike, (V, VA) < AMw—7), (Vo, Vi) <
w(w — ), where o(z), w are defined in Lemma 4.1,0 <y < 1. Then for all
feM,t>0

2d 1 1
U< | —+2C+1t) | —  — o
10O < (= +20+10) o5 1B

Here d = sup |[Vl|, C = C(p, \, i1, ), to = to(p, A, i1, &) are constants.
Q

Corollary 4.1. Suppose f(x) € M. There exist C1, 8 > 0 such that
E(t) < O exp(—B1)E(0).

We use the estimate of Theorem 4.1 to prove exact controllability to an
arbitrary state of solutions of (4.1), (4.2), (4.4) ([6]).

Theorem 4.2. Assume that Q is substarlike, Ima, 3,& € C*(S), Ref = 0,
Re& > & > 0. Suppose that N(x) and p(x) satisfy the conditions of Theorem
4.1. There is a Ty > 0 such that, for any T > Ty, given [ = {f1, fo, f3, fa},
9 =1{91,92, 93,9} € M there exists a boundary control p(x,t) € Ly(S x (0,T))
such that the corresponding solution of (4.1), (4.2), (4.4) satisfies
{u' (2, 7),v(z,T), v’(2, T),u'(x, T)} = {g' (), g*(2), 9*(x), g"(2)}-
Moreover,
1Dl 1 5% 0y < CUIFIIE + 1glls)-

Using this result we obtain simultaneous exact control for the following

problems (Re 8 = 0):

e; = curl(ph), hy = —curl(Ae),dive = divh = 0,

8($, 0) = fl(x)v h(.ﬁL’,O) = fQ(‘,L')? (45)

[v,e] = p(z,t), (x,t) €S x(0,T);
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Ey=cwl(A\H), H,=—cwl(pE), divE=divH =0,
E(I,O) . f3(£L’), H(:L‘,O) = f4(.’L'), (4.6)
[H,V]—ﬂ[u,[E,l/”zq(l',t), (CL’,t)ESX(O,T)

For any T' > Ty, given f = {f*, %, f* '}, g = {9, 9%, 9%, 9"} € M there
exists a control p(z,t) driving the system (4.5) to the state ¢!, g* at time T

e(L T) = gl(x)v h(iL’, T) — gz(x)a

while the function ¢ = [y, p] drives the system (4.6) to the state ¢°, g* at the

same time 7'

Blo, Dy =g'e), HmT)=g" =)
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