

SIMULTANEOUS STABILIZATION OF SOLUTIONS OF MIXED PROBLEMS FOR EVOLUTION SYSTEMS

Boris V. Kapitonov *

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n with sufficiently smooth boundary S. In $\Omega \times (0,T)$ we consider the initial boundary value problems for a pair of evolution systems. We assume that one of them is the damped hyperbolic system with locally distributed damping or with boundary dissipation. Thus, the energy $E_1(t)$ of solutions is a non increasing function of the time variable t. The second system has principal part equal to the principal part of the first system and for every solution the energy $E_2(t)$ is a non decreasing function of time t.

Our purpose is to connect these systems (in a part of domain Ω or on the boundary S) and to give sufficient conditions on this connection and damping term ensuring the uniform exponential decay of the total energy, i.e. the existence of some constants C > 0, $\gamma > 0$ such that

$$E(t) \equiv E_1(t) + E_2(t) \le C e^{-\gamma t} E(0), \quad t \ge 0.$$

The case of a single damped wave equation

$$\frac{\partial^2 u}{\partial t^2} - \Delta u + Q(x) \frac{\partial u}{\partial t} = 0, \quad Q(x) \ge Q_0 \quad \text{in} \quad \mathcal{D} \subset \Omega$$

$$u|_S = 0$$

^{*}Part of this research was supported by CNPq, project 301022/94-1/NV.

is by now well understood. Results by C. Bardos, G. Lebeau and I. Rauch [1] show that, when Ω and Q(x) are of class C^{∞} , the estimate

$$\int_{\Omega} (|u_t|^2 + |\nabla u|^2) \, dt \le C e^{-\gamma t} \int_{\Omega} (|u_t|^2 + |\nabla u|^2)|_{t=0} \, dx$$

holds if and only if some "geometric control condition" is satisfied. The canonical example of open subset \mathcal{D} verifying this condition is when \mathcal{D} is a neighbourhood of the boundary.

The coupled system of linear thermoelasticity has been investigated by D.C. Pereira and G.P. Menzala [12], J. Rivera [14], J. Rivera and Y. Shibata [15].

Exponential decay for a pair of hyperbolic systems of second order with boundary damping only for one of them has been obtained by author [2].

2. Hyperbolic systems of second order. Locally distributed damping.

In the cylinder $\Omega\times(0,T)$ we consider the following initial boundary value problem:

$$\frac{\partial^{2} u}{\partial t^{2}} - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(A \frac{\partial u}{\partial x_{i}} \right) + Q(x) \frac{\partial u}{\partial t} + B(x) \frac{\partial v}{\partial t} = 0,$$

$$\frac{\partial^{2} v}{\partial t^{2}} - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(A \frac{\partial v}{\partial x_{i}} \right) - B(x) \frac{\partial u}{\partial t} = 0,$$

$$u|_{t=0} = f_{1}(x), v|_{t=0} = f_{2}(x), \frac{\partial u}{\partial t}|_{t=0} = f_{3}(x), \frac{\partial v}{\partial t}|_{t=0} = f_{4}(x),$$

$$u|_{S} = 0, \quad v|_{S} = 0,$$
(2.1)

where $u = (u^1(x,t), \ldots, u^m(x,t)), v = (v^1(x,t), \ldots, v^m(x,t)), x = (x_1, \ldots, x_n);$ $A = A^*, B(x) = B^*(x), Q(x) = Q^*(x)$ are square matrices of order m, B(x) and Q(x) are of class $L_{\infty}(\Omega)$.

Assume that

$$\sum_{i=1}^{n} A\xi_i \cdot \xi_i \ge a_0 \sum_{i=1}^{n} |\xi_i|^2, \quad a_0 > 0,$$

where $\xi_i = (\xi_i^1, \xi_i^2, \dots, \xi_i^m)$ is an arbitrary vector and

$$\eta_i \cdot \xi_i = \eta_i^1 \xi_i^1 + \dots + \eta_i^m \xi_i^m, \quad |\xi_i|^2 = (\xi_i^1)^2 + \dots + (\xi_i^m)^2.$$

Let us consider the energy

$$E(t) = \int_{\Omega} \left(\sum_{i=1}^{n} A \frac{\partial u}{\partial x_i} \cdot \frac{\partial u}{\partial x_i} + \sum_{i=1}^{n} A \frac{\partial v}{\partial x_i} \cdot \frac{\partial v}{\partial x_i} + |u_t|^2 + |v_t|^2 \right) dx.$$

The formal computations show that for every solution of (2.1) the following identity holds

$$E(t_2) - E(t_1) = -2 \int_{t_1}^{t_2} \int_{\Omega} Q(x) u_t \cdot u_t \, dx dt, \quad t_2 \ge t_1 \ge 0.$$

We assume that

$$Q(x)\xi \cdot \xi > 0$$
 a.e. in Ω and $Q(x)\xi \cdot \xi > \alpha |\xi|^2$ a.e. in $\mathcal{D} \ \forall \xi \in \mathbb{R}^m$

for some non empty subset \mathcal{D} of Ω and some positive constant α .

The aim of this section is to give sufficient conditions on the subset \mathcal{D} (where the damping term is effective) ensuring the uniform stabilization as $t \to \infty$ of the energy E(t).

Throughout this paper $H^k(\Omega)$ is the usual Sobolev space. Denote by \mathcal{H} the real Hilbert space of quadruples $w = \{w_1, w_2, w_3, w_4\}$ of m-component vector-functions w_i such that

$$w_1, w_2 \in H^1(\Omega), \quad w_1|_S = w_2|_S = 0, \quad w_3, w_4 \in L_2(\Omega).$$

The inner product in \mathcal{H} is given by

$$\langle w, f \rangle_0 = \int_{\Omega} \left(\sum_{i=1}^n A \frac{\partial w_1}{\partial x_i} \cdot \frac{\partial f_1}{\partial x_i} + \sum_{i=1}^n A \frac{\partial w_2}{\partial x_i} \cdot \frac{\partial f_2}{\partial x_i} + w_3 \cdot f_3 + w_4 \cdot f_4 \right) dx,$$

where $w = \{w_1, w_2, w_3, w_4\}, f = \{f_1, f_2, f_3, f_4\}.$

In \mathcal{H} we define the unbounded operator $\mathcal{A}: \mathcal{D}(\mathcal{A})$ consists of the elements $w = \{w_1, w_2, w_3, w_4\} \in \mathcal{H}$ such that

$$w_1, w_2 \in H^2(\Omega), \quad w_3, w_4 \in H^1(\Omega), \quad w_1|_S = w_2|_S = w_3|_S = w_4|_S = 0,$$

$$\mathcal{A}\{w_1, w_2, w_3, w_4\} = \{w_3, w_4, \tilde{A}w_1 - Qw_3 - Bw_4, \tilde{A}w_2 + Bw_3\}$$

for
$$\{w_1, w_2, w_3, w_4\} \in \mathcal{D}(\mathcal{A})$$
. Here $\tilde{A}u = \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(A \frac{\partial u}{\partial x_i} \right)$.

It can be shown that \mathcal{A} and \mathcal{A}^* are dissipative. The operator \mathcal{A} thus generates a strongly continuous semigroup of contractions U(t), t > 0.

As is well known, U(t)f is strongly differentiable with respect to t for $f\in\mathcal{D}(\mathcal{A})$ and

$$\frac{d}{du}U(t)f = \mathcal{A}U(t)f.$$

It follows that if $\{u,v,u_1,v_1\}=U(t)f$ then u,v is a solution to problem (2.1), moreover, $u_t=u_1$, $v_t=v_1$.

Let $f \in \mathcal{H}$. Then U(t)f satisfies the following identity:

$$\int_0^T \left\{ \langle U(t)f, \frac{d\Psi}{dt} \rangle_0 + \langle U(t)f, \mathcal{A}^*\Psi \rangle_0 \right\} \! dt = - \langle f, \Psi(0) \rangle_0 \,,$$

where $\Psi \in L_2(0,T;\mathcal{D}(\mathcal{A}^*)), \ \Psi_t \in L_2(0,T;\mathcal{H}), \ \Psi(T) = 0.$

Thus, U(t)f is the weak solution in \mathcal{H} to the abstract Cauchy problem

$$\frac{dw}{dt} = \mathcal{A}w, \quad w|_{t=0} = f.$$

We introduce the notation

$$\Phi(u) = \sum_{i=1}^{n} A \frac{\partial u}{\partial x_i} \cdot \frac{\partial u}{\partial x_i}.$$

The proof of the stabilization is based on the following identity

$$(T+t_0)E(T) - t_0 E(0) + \int_{\Omega} [2(\nabla \varphi, \nabla)u \cdot u_t + 2(\nabla \varphi, \nabla)v \cdot v_t + \frac{1}{2} CQu \cdot u + Cu_t \cdot u + Cv_t \cdot v] dx|_{t=0}^{t=T} = \int_0^T \int_S \frac{\partial \varphi}{\partial \nu} (\Phi(u) + \Phi(v)) dS dt + \int_0^T \int_{\Omega} [-2(t+t_0)Q(x)u_t \cdot u_t + 2(\nabla \varphi, \nabla)v \cdot Bu_t - 2(\nabla \varphi, \nabla)u \cdot Bv_t - 2(\nabla \varphi, \nabla)u \cdot Qu_t - Cv \cdot Bu_t - CBv_t \cdot u - \sum_{i=j}^n \frac{\partial C}{\partial x_j} u \cdot A \frac{\partial u}{\partial x_j} - \sum_{j=1}^n \frac{\partial C}{\partial x_j} v \cdot A \frac{\partial v}{\partial x_j} + \mathcal{K}(u) + \mathcal{K}(v)] dx dt.$$

$$(2.2)$$

Here $\varphi = \varphi(x)$ and C = C(x) are scalar functions in Ω , ν is the unit outer normal,

$$\mathcal{K}(u) = (\Delta \varphi + 1 - C(x))\Phi(u) + (1 + C(x) - \Delta \varphi)|u_t|^2 - 2\sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial x_i \partial x_j} A \frac{\partial u}{\partial x_j} \cdot \frac{\partial u}{\partial x_i}.$$

We also use the estimate

$$\int_0^T \int_{\Omega} Bv_t \cdot v_t \, dx dt \le 2E(0) + \int_0^T \int_{\Omega} (2q + 4p)Qu_t \cdot u_t \, dx dt, \qquad (2.3)$$

where p,q>0 are constant such that $(pB(x)-Q(x))\xi\cdot\xi\geq0,\ (qQ(x)-B(x))\xi\cdot\xi\geq0$ in $\Omega,\ p>0,\ q>0,\ \xi\in R^m.$

Henceforth we assume that Ω and \mathcal{D} (where the damping term is effective) satisfy the following conditions:

There exists a function $\varphi(x) \in C^4(\Omega)$ such that

(i)
$$\frac{\partial \varphi}{\partial \nu} \leq 0 \text{ on } S$$
,

(ii)
$$\varphi_0(x) \geq \mu > 0 \text{ in } \Omega \backslash \mathcal{D}, \text{ where } \varphi_0(x) = \inf_{|\eta|=1} \sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \eta_i \eta_j, \ \eta = (\eta_1, \dots, \eta_n),$$

(iii)
$$\Delta^2 \varphi - 2\Delta \varphi_0 \leq 0 \text{ in } \Omega.$$

Example 2.1. $\Omega = \mathcal{P} \backslash G$, where $\mathcal{P}, G \subset \mathbb{R}^n$ are bounded domains, $\overline{G} \subset \mathcal{P}$, $S_0 = \partial \mathcal{P}, S_1 = \partial G, \partial \Omega = S_0 \cup S_1 \equiv S$.

Assume that \mathcal{P} , G are star-shaped with respect to some point x^0 :

$$(x-x^0,\nu) \ge 0, \ x \in S_0; \ (x-x^0,\nu) \le 0, \ x \in S_1.$$

Assume there is R > 0 such that

$$G \subset \{x : |x - x^0| < R\}, \quad \{x : |x - x^0| < R\} \subset \mathcal{P}.$$

We set (for $n \geq 3$)

$$\varphi(x) = \frac{1}{2}R^k|x - x^0|^2 - \frac{1}{2+k}|x - x^0|^{2+k}, \quad 0 < k \le 1.$$

Then the subset

$$\mathcal{D} = \{x \in \Omega : |x - x^0| > R_1\}, \quad \text{where} \quad R_1 = \left(\frac{R^k - \mu}{1 + k}\right)^{1/k}, \ 0 < \mu \le 1, \mu < R^k$$
 has the required properties.

Example 2.2. Let Ω be a bounded domain in \mathbb{R}^n with boundary S. For $x^0 \in \mathbb{R}^n$ we set

$$S_0(x^0) = \{x \in S : (x - x^0, \nu) \le 0\}, \quad S_1(x^0) = S \setminus S_0(x^0).$$

Assume that for some $x^0 \in \mathbb{R}^n$ and R > 0, $x \in S_0(x^0)$ if and only if $|x - x^0| \le R$. We use the same function $\varphi(x)$.

In this case we can set

$$\mathcal{D} = \left\{ x \in \Omega : |x - x^0|^k > \frac{R^k - \mu}{1 + k} \right\}, \text{ where } 0 < k, \mu \le 1, \ \mu < R^k.$$

Remark 2.1. If the damping term is effective in Ω ($\mathcal{D} = \Omega$), the conditions (ii) and (iii) are not required. In this case for an arbitrary domain Ω we define a function $\varphi(x)$ as a solution of the problem

$$\Delta \varphi = -1$$
 in Ω , $\frac{\partial \varphi}{\partial \nu} = -\frac{\text{mes }\Omega}{\text{mes }S}$ on S .

We set

$$C(x) = \Delta \varphi - 2\varphi_0(x) + \mu$$
(if $\mathcal{D} = \Omega, C(x) \equiv C = \Delta \varphi - 2 \inf_{\Omega} \varphi_0(x) + \mu, \ 0 < \mu \le 1$).

From (2.2), (2.3), the properties of $\varphi(x)$, C(x) we arrive at the following assertion ([5]).

Theorem 2.1. Suppose that Q(x) and B(x) satisfy the assumptions:

- 1) $Q(x)\xi \cdot \xi \ge 0$, $(qQ(x) B(x))\xi \cdot \xi \ge 0$, $(pB(x) Q(x))\xi \cdot \xi \ge 0$ in Ω , $p > 0, q > 0, \xi \in \mathbb{R}^m$;
- 2) $Q(x)\xi \cdot \xi \ge \alpha |\xi|^2 \text{ in } \mathcal{D}, \alpha > 0, \forall \xi \in \mathbb{R}^m.$

Assume that there exists a function $\varphi(x)$ with the properties (i)-(iii). Then for all $f = \{f_1, f_2, f_3, f_4\} \in \mathcal{H}, t > 0$

$$||U(t)f||_0^2 \le (2C_1 + t_0) \frac{1}{t_0^{1-\beta}(t+t_0)^{\beta}} ||f||_0^2$$

with $0 < \beta < \mu \le 1$, $t_0 \ge t^* = t^*(\Omega, A, Q, B)$, $C_1 = C_1(\Omega, A, Q, B)$.

Corollary 2.1. U(t) takes the space \mathcal{H} into itself and

$$||U(t)||_{\mathcal{H}\to\mathcal{H}} < 1$$

for

$$t > t_1 = t_0 \left[\left(1 + \frac{2C_1}{t_0} \right)^{1/\beta} - 1 \right].$$

Using Pazy's theorem [11], we obtain

Corollary 2.2. Suppose $f(x) \in \mathcal{H}$. There exist $C, \gamma > 0$ such that

$$||U(t)f||_0^2 \le C \exp(-\gamma t)||f||_0^2$$
.

Using the estimate of Theorem 2.1 we study the following exact controllability problem:

Given the initial distribution $f(x) = \{f_1(x), f_2(x), f_3(x), f_4(x)\}$, time T > 0, and a desired terminal state $g(x) = \{g_1(x), g_2(x), g_3(x), g_4(x)\}$ with f(x), g(x) in \mathcal{H} , find a vector-valued function p(x, t) such that the solution of the problem

$$\frac{\partial^{2} u}{\partial t^{2}} - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(A \frac{\partial u}{\partial x_{i}} \right) + B(x) \frac{\partial v}{\partial t} = \chi_{\mathcal{D}}(x) p(x, t),$$

$$\frac{\partial^{2} v}{\partial t^{2}} - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(A \frac{\partial u}{\partial x_{i}} \right) - B(x) \frac{\partial u}{\partial t} = 0,$$

$$u|_{t=0} = f_{1}(x), \ v|_{t=0} = f_{2}(x), \ \frac{\partial u}{\partial t}|_{t=0} = f_{3}(x), \ \frac{\partial v}{\partial t}|_{t=0} = f_{4}(x),$$

$$u|_{S} = 0, \ v|_{S} = 0,$$
(2.4)

satisfies

$$u|_{t=T} = g_1(x), \ v|_{t=T} = g_2(x), \ \frac{\partial u}{\partial t}|_{t=T} = g_3(x), \ \frac{\partial v}{\partial t}|_{t=T} = g_4(x).$$
 (2.5)

Here we denote by $\chi_{\mathcal{D}}(x)$ the characteristic function of \mathcal{D} .

Theorem 2.2. Assume that B(x) satisfies the following assumptions:

1)
$$B(x)\xi \cdot \xi \ge 0, x \in \Omega, B(x)\xi \cdot \xi \ge \beta_0 |\xi|^2, x \in \mathcal{D}, \xi \in \mathbb{R}^m, \beta_0 > 0;$$

2)
$$B(x) \equiv 0, x \in \Omega \backslash \overline{\mathcal{D}}.$$

Let Ω and \mathcal{D} be such that there exists function $\varphi(x)$ with properties (i)-(iii). Then for any $T > t_1$, given any initial data $f \in \mathcal{H}$ and any $g \in \mathcal{H}$ there exists a control $p(x,t) \in L_2(D \times (0,T))$ such that the corresponding solution of (2.4) satisfies (2.5). Moreover,

$$||p||_{L^2(\mathcal{D}\times(0,T))}^2 \le C(||f||_0^2 + ||g||_0^2).$$

3. Hyperbolic systems of second order. Boundary damping.

Let Ω be a bounded domain in \mathbb{R}^n with boundary S which consists of two disjoint closed surfaces S_0 and S_1 (the case $S_1 = \phi$ is not excluded).

Consider the following mixed problem in the cylinder $\Omega \times (0, T)$:

$$\frac{\partial^2 u}{\partial t^2} - \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial u}{\partial x_j} \right) = 0, \quad \frac{\partial^2 v}{\partial t^2} - \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial v}{\partial x_j} \right) = 0,$$

$$u|_{t=0} = f_1(x), \quad v|_{t=0} = f_2(x), \quad \frac{\partial u}{\partial t}|_{t=0} = f_3(x), \quad \frac{\partial v}{\partial t}|_{t=0} = f_4(x),$$

$$\sum_{i,j=1}^n A_{ij} \frac{\partial u}{\partial x_j} \nu_i + au + bu_t + \xi v_t|_{S_0} = 0, \quad u|_{S_1} = 0,$$

$$\sum_{i,j=1}^n A_{ij} \frac{\partial v}{\partial x_j} \nu_i + cv - \xi u_t|_{S_0} = 0, \quad v|_{S_1} = 0.$$
(3.1)

Here $u = (u^1(x,t), \ldots, u^m(x,t)), \ v = (v^1(x,t), \ldots, v^m(x,t)), \ x = (x_1, x_2, \ldots, x_n),$ $A_{ij} = A_{ji}^*$ are square matrices of order $m, \quad \nu = (\nu_1, \ldots, \nu_n)$ is the unit outer normal, and a, b, c, ξ are positive constants.

Assume that

$$\sum_{i,j} A_{ij} \xi_j \xi_i \ge a_0 \sum_{i} |\xi_i|^2, \quad a_0 > 0, \quad \xi_i = (\xi_i^1, \dots, \xi_i^m) \in \mathbb{R}^m.$$

Denote by \mathcal{H} the real Hilbert space of quadruples $\{u, v, u_1, v_1\}$ of m-component vector-functions such that

$$u, v \in H^1(\Omega), \quad u|_{S_1} = v|_{S_1} = 0, \quad u_1, v_1 \in L_2(\Omega).$$

We define the inner product in \mathcal{H} by

$$\langle \{u, v, u_1, v_1\}, \{f, g, f_1, g_1\} \rangle_0 = \int_{S_0} (au \cdot f + cv \cdot g) dS +$$

$$+ \int_{\Omega} \left(A_{ij} \frac{\partial u}{\partial x_j} \cdot \frac{\partial f}{\partial x_i} + A_{ij} \frac{\partial v}{\partial x_j} \cdot \frac{\partial g}{\partial x_i} + u_1 \cdot f_1 + v_1 \cdot g_1 \right) dx.$$

In \mathcal{H} we define the unbounded operator $\mathcal{A}: \mathcal{D}(\mathcal{A})$ consists of the elements $\{u, v, u_1, v_1\} \in \mathcal{H}$ such that

$$u, v \in H^2(\Omega), \quad u_1, v_1 \in H^1(\Omega),$$

$$\sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_j} \nu_i + au + bu_1 + \xi v_1|_{S_0} = 0, \ u_1|_{S_1} = u|_{S_1} = 0,$$

$$\sum_{i,j=1}^{n} A_{ij} \frac{\partial v}{\partial x_j} \nu_i + cv - \xi u_1|_{S_0} = 0, \ v_1|_{S_1} = v|_{S_1} = 0.$$

For $\{u, v, u_1, v_1\} \in \mathcal{D}(\mathcal{A})$

$$\mathcal{A}\{u, v, u_1, v_1\} = \{u_1, v_1, \tilde{A}u, \tilde{A}v\}, \text{ where } \tilde{A}u = \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial u}{\partial x_j}\right).$$

In a standard way, we can check that \mathcal{A} and the adjoint operator \mathcal{A}^* are dissipative. Thus, \mathcal{A} generates a strongly continuous semigroup of contractions $U(t),\ t>0$. It follows that if $\{u,v,u_1,v_1\}=U(t)f\ (f\in\mathcal{D}(\mathcal{A}))$ then u,v is a solution of (3.1) and $u_t=u_1$, $v_t=v_1$. Moreover,

$$\frac{d}{dt}E(t) \equiv \frac{d}{dt}||U(t)f||_0^2 = -2\int_{S_0} b|u_1|^2 dS.$$

Observe that, for $f \in \mathcal{H}$, U(t)f is a weak solution in \mathcal{H} to the abstract Cauchy problem

$$\frac{d}{dw}w = \mathcal{A}w, \quad w|_{t=0} = f$$

in the following sense:

$$\int_0^T \left(\langle U(t)f, \frac{d\Psi}{dt} \rangle_0 + \langle U(t)f, \mathcal{A}^*\Psi \rangle_0 \right) \, dt = - \langle f, \Psi(0) \rangle$$

for every $\Psi \in L_2(0,T;\mathcal{D}(\mathcal{A}^*)), \Psi_t \in L_2(0,T;\mathcal{H}), \Psi(T) = 0.$

The following formulas give grounds for proving stabilization of a solution to problem (3.1):

$$(T + t_{0})E(t) - t_{0}E(0) + \\ + \int_{\Omega}[2(\nabla\varphi, \nabla)u \cdot u_{t} + 2(\nabla\varphi, \nabla)v \cdot v_{t} + (n - 1 - \gamma)(u \cdot u_{t} + v \cdot v_{t})dx|_{t=0}^{t=T} + \\ + \int_{S_{0}} \frac{n - 1 - \gamma}{2}b|u|^{2} dS|_{t=0}^{t=T} = \int_{0}^{T} \int_{\Omega} \{(\Delta\varphi - n + 2 + \gamma)(\Phi(u) + \Phi(v)) - \\ - (\Delta\varphi - n + \gamma)(|u_{t}|^{2} + |v_{t}|^{2}) - 2\sum_{i,j,p=1}^{n} \frac{\partial^{2}\varphi}{\partial x_{p}\partial x_{i}} (A_{ij}u_{x_{j}} \cdot u_{x_{p}} + A_{ij}v_{x_{j}} \cdot v_{x_{p}})\} dxdt + \\ + \int_{0}^{T} \int_{S_{1}} \frac{\partial\varphi}{\partial\nu}(\Phi(u) + \Phi(v))dSdt + \int_{0}^{T} \int_{S_{0}} \{-2(t + t_{0})b|u_{t}|^{2} + \frac{\partial\varphi}{\partial\nu}(|u_{t}|^{2} + |u_{t}|^{2}) - \\ - \frac{\partial\varphi}{\partial\nu}(\Phi(u) + \Phi(v)) - (n - 2 - \gamma)(a|u|^{2} + c|v|^{2}) - (n - 1 - \gamma)\xi u \cdot v_{t} + \\ + (n - 1 - \gamma)\xi u_{t} \cdot v - \sum_{p=1}^{n} 2b\varphi_{x_{p}}u_{x_{p}} \cdot u_{t} - \sum_{p=1}^{n} 2\xi\varphi_{x_{p}}u_{x_{p}} \cdot v_{t} + \sum_{p=1}^{n} 2\xi\varphi_{x_{p}}v_{x_{p}} \cdot u_{t} - \\ - \sum_{p=1}^{n} 2a\varphi_{x_{p}}u_{x_{p}} \cdot u - \sum_{p=1}^{n} 2c\varphi_{x_{p}}v_{x_{p}} \cdot v\} dSdt,$$

$$(3.2)$$

$$\int_{\Omega} \left(u_{t} \cdot v_{t} + \sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial v}{\partial x_{i}}\right) dx|_{t=0}^{t=T} = \\ = \int_{0}^{T} \int_{S_{0}} (\xi|u_{t}|^{2} - \xi|v_{t}|^{2} - bu_{t} \cdot v_{t} - (c - a)u_{t} \cdot v - \frac{\partial}{\partial t}(au \cdot v)) dSdt.$$

Here $\Phi(u) = \sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_j} \cdot \frac{\partial u}{\partial x_i}$, $\varphi = \varphi(x)$ is an arbitrary smooth function, γ is positive constant.

Henceforth we assume that Ω satisfies the geometric conditions that are listed below.

Let $\Psi(x)$ be a solution to the problem

$$\Delta\Psi = \frac{a_1}{a_0}\,,\quad x\in\Omega,\quad \frac{\partial\Psi}{\partial\nu}\Big|_{S_0} = \frac{a_1}{a_0}\frac{\operatorname{mes}\Omega}{\operatorname{mes}S_0}\,,\quad \frac{\partial\Psi}{\partial\nu}\Big|_{S_1} = 0,$$

where $a_1 = \max |a_{ij}^{pq}|$, a_{ij}^{pq} are the entries of the matrix A_{ij} , and the constant a_0 is defined as above (observe that $A_{ij} = \delta_{ij} I$ and $a_0 = a_1 = 1$ for the wave operator). Assign

$$w = \max_{i,j} \sup_{x \in \overline{\Omega}} |\Psi_{x_i x_j}(x)|.$$

Suppose that the domain Ω satisfies the following conditions: there is a point $x^0 \in R^m$ such that

- (a) S_1 is starlike with respect to $x^0:(x-x^0,\nu)\leq 0$ for $x\in S_1$;
- **(b)** for some $0 < \varepsilon \le 1$,

$$(x-x^0,\nu) > -\frac{1}{\varepsilon + nw} \frac{\operatorname{mes}\Omega}{\operatorname{mes}S_0}, \quad x \in S_0.$$

Clearly, condition (b) holds if the surface S_0 is starlike with respect to the point x^0 .

Choose the function $\varphi(x)$ in (3.2) as follows

$$\varphi(x) = \frac{a_0}{a_1} \Psi(x) + \frac{1}{2\theta} |x - x^0|^2, \quad \theta > 0.$$

We now can deduce from (3.2), (3.3) the following assertion ([2]).

Theorem 3.1. Suppose that Ω satisfies the above-listed conditions with a parameter $0 < \varepsilon \le 1$ and

$$0 < a < \frac{\delta a_0 n^2 w}{3r}, 0 < c < \frac{\delta a_0 n^2 w}{3r} \left(\frac{\partial \varphi}{\partial \nu} \ge |\nabla \varphi| \delta, \delta > 0, x \in S_0, r = \sup_{x \in \overline{\Omega}} |\nabla \varphi| \right).$$

Then there are $t^*>0$ and $C^*>0$ such that for $t_0\geq t^*$

$$||U(t)f||_0^2 \le (2C^* + t_0) \frac{1}{t_0^{1-\varepsilon}(t+t_0)^{\varepsilon}} ||f||_0^2$$

for every $f \in \mathcal{H}$.

We use the estimate of Theorem 3.1 to prove exact boundary controllability for the system

$$\frac{\partial^{2} u}{\partial t^{2}} - \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(A_{ij} \frac{\partial u}{\partial x_{j}} \right) = 0, \quad \frac{\partial^{2} v}{\partial t^{2}} - \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(A_{ij} \frac{\partial v}{\partial x_{j}} \right) = 0,$$

$$u|_{t=0} = g_{1}(x), \quad v|_{t=0} = h_{1}(x), \quad \frac{\partial u}{\partial t}|_{t=0} = g_{2}(x), \quad \frac{\partial v}{\partial t}|_{t=0} = h_{2}(x),$$

$$\sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_{j}} \nu_{i} + au + \xi v_{i}|_{S_{0}} = p(x,t), \quad u|_{S_{1}} = 0,$$

$$\sum_{i,j=1}^{n} A_{ij} \frac{\partial v}{\partial x_{j}} \nu_{i} + cv - \xi u_{i}|_{S_{0}} = 0, \quad v|_{S_{1}} = 0$$
(3.4)

where $\{g_1, h_1, g_2, h_2\} \in \mathcal{H}$. For every element $\{G_1, H_1, G_2, H_2\} \in \mathcal{H}$, we have to find vector-function p(x, t) such that the solution of problem (3.4) satisfies

$$u|_{t=T} = G_1(x), \ v|_{t=T} = H_1(x), \ \frac{\partial u}{\partial t}\Big|_{t=0} = G_2(x), \ \frac{\partial v}{\partial t}\Big|_{t=0} = H_2(x)$$
 (3.5)

for $T > t_1$. Here t_1 is such that $||U(t)||_{\mathcal{H} \to \mathcal{H}} < 1$ for $t > t_1$.

Theorem 3.2. Assume that the coefficients a and c in boundary conditions of (3.4) satisfy the assumptions of Theorem 3.1.

Suppose that Ω satisfies the above-listed conditions. Then for any $T > t_1$, given initial data $\{g_1, h_1, g_2, h_2\} \in \mathcal{H}$ and any $\{G_1, H_1, G_2, H_2\}$ $\{u, v, \frac{\partial u}{\partial t}, \frac{\partial v}{\partial t}\}\Big|_{t=T} = \{G_1, H_2, G_2, H_2\}$ at time T. Moreover,

$$||p||_{L_2(S_0\times(0,T))}^2 \le C(||\{g_1,h_1,g_2,h_2\}||_0^2 + ||\{G_1,H_1,G_2,H_2\}||_0^2).$$

Theorem 3.2 implies a simultaneous exact boundary control. Consider the following two mixed problems in $\Omega \times (0, T)$:

$$\frac{\partial^2 u}{\partial t^2} - \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial u}{\partial x_j} \right) = 0, \quad u|_{t=0} = g_1(x), \quad \frac{\partial u}{\partial t}|_{t=0} = g_2(x),
 u|_{S_0} = p(x,t), \quad u|_{S_1} = 0;$$
(3.6)

$$\frac{\partial^2 v}{\partial t^2} - \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(A_{ij} \frac{\partial v}{\partial x_j} \right) = 0, \quad v|_{t=0} = h_1(x), \quad \frac{\partial vu}{\partial t}|_{t=0} = h_2(x),$$

$$\sum_{i,j=1}^n A_{ij} \frac{\partial v}{\partial x_j} \nu_i + cv|_{S_0} = q(x,t), \quad v|_{S_1} = 0.$$
(3.7)

Theorem 3.3. Suppose that Ω satisfies the above-listed conditions and the coefficient c satisfies the assumptions of Theorem 3.2. Then for any $T > t_1$, given initial data $\{g_1, h_1, g_2, h_2\} \in \mathcal{H}$ and any $\{G_1, H_1, G_2, H_2\} \in \mathcal{H}$ there exists a vector-function $p(x,t) \in L_2(S_0 \times (0,T))$ transferring system (3.6) to the state $\{G_1, G_2\}$ at time T:

$$u|_{t=T} = G_1(x), \quad \frac{\partial u}{\partial t}\Big|_{t=T} = G_2(x).$$

Moreover, $p_t(x,t)$ belongs to $L_2(S_0 \times (0,T))$ and $q(x,t) = p_t(x,t)$ transfers system (3.7) to the state $\{H_1, H_2\}$ at the same time T:

$$v|_{t=T} = H_1(x), \quad \frac{\partial v}{\partial t}\Big|_{t=T} = H_2(x).$$

We remark that simultaneous boundary control for the wave equation has been established by Lions [10] using Hilbert Uniqueness Method ([9], [10]). Controllability of the coupled system of thermoelasticity has been proved by Zuazua [16].

Remark 3.1. All assertions of this section are valid for the pair of systems of elasticity theory.

4. Maxwell's equations. Boundary damping.

Let $\Omega \subset R^3$ be a bounded domain with sufficiently smooth boundary S. In $\Omega \times (0,T)$ we consider the initial boundary value problem for a pair of the Maxwell systems

$$\begin{cases} u_t^1 = \operatorname{curl}(\mu u^2), u_t^2 = -\operatorname{curl}(\lambda u^1), \operatorname{div} u^1 = \operatorname{div} u^2 = 0, \\ u_t^3 = \operatorname{curl}(\mu u^4), u_t^4 = -\operatorname{curl}(\lambda u^3), \operatorname{div} u^3 = \operatorname{div} u^4 = 0, \end{cases}$$
(4.1)

$$u^{1}(x,0) = f^{1}(x), u^{2}(x,0) = f^{2}(x), u^{3}(x,0) = f^{3}(x), u^{4}(x,0) = f^{4}(x),$$
 (4.2)

$$\begin{cases} & [u^2, \nu] - \alpha[\nu, [u^1, \nu]] + \xi[\nu, [\nu, u^3]] = 0, \\ & (x, t) \in S \times (0, T) \end{cases}$$

$$(4.3)$$

$$[u^4, \nu] - \beta[\nu, [u^3, \nu]] - \xi[\nu, [\nu, u^1]] = 0,$$

where u^i are three-dimensional vector-valued functions of t, $x=(x_1,x_2,x_3)$, ν is the unit outer normal, $[\cdot,\cdot]$ is the vector product, $\mu=\mu(x)$ and $\lambda=\lambda(x)$ are scalar functions in Ω , and $\alpha=\alpha(x)$, $\beta=\beta(x)$, $\xi=\xi(x)$ are continuously differentiable functions on S with $\operatorname{Re} \alpha \geq 0$, $\operatorname{Re} \beta \geq 0$.

For $\xi \equiv 0$ boundary conditions (4.3) (the Leontovich conditions) mean that surface S is a conductor and complex-valued function $\alpha(x)$ (and $\beta(x)$) is a surface impedance.

If $\xi \equiv 0$ the mixed problem (4.1)-(4.3) disintegrates into two initial boundary value problems for Maxwell's equations. In the case of damping boundary conditions (Re $\alpha > 0$, Re $\beta > 0$) exponential decay of the total energy ($\xi \equiv 0$)

$$E(t) = \int_{\Omega} [\lambda(|u^{1}|^{2} + |u^{3}|^{2}) + \mu(|u^{2}|^{2} + |u^{4}|^{2})]dx$$

has been proved by the author [3].

Our purpose is to prove the uniform simultaneous stabilization as $t \to \infty$ of the total energy E(t). It means that (4.3) are damping boundary conditions only for the first half of system (4.1): Re $\alpha > 0$, Re $\beta \equiv 0$,

$$\frac{d}{dt}E(t) = -2\int_{S} \operatorname{Re} \alpha |[u^{1}, \nu]|^{2} dS.$$

Using this result we study the exact controllability problem for (4.1) with boundary control

$$\begin{cases} & [u^2, \nu] - i \text{Im } \alpha[\nu, [u^1, \nu]] + \xi[\nu, [\nu, u^3]] = p(x, t), \\ & [u^4, \nu] - \beta[\nu, [u^3, \nu]] - \xi[\nu, [\nu, u^1]] = 0. \end{cases}$$

$$(4.4)$$

The exact controllability problem for the Maxwell system $(\lambda(x) \equiv \lambda_0, \mu(x) \equiv \mu_0$ for $x \in \Omega$) with boundary control by means of currents flowing tangentially in the boundary of the region

$$[\nu, u^1] = q(x, t) \quad (x, t) \in S \times (0, T)$$

has been studied by Russell [13] for a circular cylindrical region, by Kime [7] for a spherical region, and by Lagnese [8] for an arbitrary domain. In [8] control problem is solved by the Hilbert Uniqueness Method introduced by Lions [9], [10].

Let $\lambda(x)$ and $\mu(x)$ be continuously differentiable functions in Ω satisfying the conditions

$$0 < \lambda_0 \le \lambda(x) \le \lambda_1$$
, $0 < \mu_0 \le \mu(x) \le \mu_1$.

We denote by \mathcal{H} the Hilbert space of quadruples $u = \{u^1, u^2, u^3, u^4\}$ of three-component complex-valued functions $u^i \in L_2(\Omega)$ with the inner product

$$\langle u,v\rangle_0 = \int_{\Omega} [\lambda(u^1,\overline{v}^1) + \mu(u^2,\overline{v}^2) + \lambda(u^3,\overline{v}^3) + \mu(u^4,\overline{v}^4)] dx.$$

In \mathcal{H} we can define the unbounded operator \mathcal{A} in the same way as in [3], [4]. It can be shown that \mathcal{A} and the adjoint operator \mathcal{A}^* are dissipative for $\operatorname{Re} \alpha(x) \geq 0$, $\operatorname{Re} \beta(x) \geq 0$. From it follows that \mathcal{A} generates a strongly continuous semigroup of contractions U(t), t > 0.

Let M be the orthogonal complement of the kernel of \mathcal{A}^* in \mathcal{H} . We note that U(t)f for $f \in M$ is a weak solution of (4.1)-(4.3).

We now define a special class of domains which includes starlike domains. Consider the problem

$$\Delta \Phi = 1 \text{ in } \Omega, \quad \frac{\partial \Phi}{\partial \nu} \Big|_{S} = \frac{\text{mes } \Omega}{\text{mes } S}.$$

We define the following quantity:

$$k(\Omega) = \sup_{x \in \Omega_{|\xi|=1}} 2 \operatorname{Re} \Phi_{x_i x_j} \xi^i \overline{\xi}^j, \qquad \xi = (\xi^1, \xi^2, \xi^3) \in C^3.$$

We shall say that Ω is substarlike if:

- (i) $k(\Omega) < 1$, or
- (ii) $k(\Omega) \ge 1$; there exists a point $x^0 \in \Omega$ such that for some $0 < \varepsilon \le 1$

$$(x-x^0,\nu) > -\frac{1}{k+\varepsilon-1} \frac{\operatorname{mes}\Omega}{\operatorname{mes}S}.$$

The following proposition is proved in [3].

Lemma 4.1. Assume that Ω is substarlike domain. Then there exists a function $\varphi(x) \in C^2(\Omega) \cap C^1(\Omega)$ such that

- (i) $(\nabla \varphi, \nu) > 0 \text{ on } S_0$,
- (ii) $2 \operatorname{Re} \varphi_{x_i x_i} \xi^i \xi^j (\Delta \varphi 1) |\xi|^2 \le (1 w) |\xi|^2 \text{ in } \Omega, \text{ where } 0 < w \le 1.$

We now assume that $\operatorname{Re} \alpha(x) \ge \alpha_0 > 0$, $\operatorname{Re} \beta(x) \equiv 0$, $\operatorname{Re} \xi(x) \ge \xi_0 > 0$.

The proof of the next theorem is based on the invariance of the Maxwell system in vacuum relative to the group of dilations in all variables ([6]).

Theorem 4.1. Assume that Ω is substarlike, $(\nabla \varphi, \nabla \lambda) \leq \lambda(w-\gamma)$, $(\nabla \varphi, \nabla \mu) \leq \mu(w-\gamma)$, where $\varphi(x)$, w are defined in Lemma 4.1, $0 < \gamma \leq 1$. Then for all $f \in M$, $t \geq 0$

$$||U(t)f||_0^2 \le \left(\frac{2d}{\sqrt{\lambda_0 \mu_0}} + 2C + t_0\right) \frac{1}{t_0^{1-\gamma}} \cdot \frac{1}{(t+t_0)^{\gamma}} ||f||_0^2.$$

Here $d = \sup_{\overline{\Omega}} |\nabla \varphi|$, $C = C(\varphi, \lambda, \mu, \xi)$, $t_0 = t_0(\varphi, \lambda, \mu, \xi)$ are constants.

Corollary 4.1. Suppose $f(x) \in M$. There exist C_1 , $\beta > 0$ such that

$$E(t) \le C_1 \exp(-\beta t) E(0)$$
.

We use the estimate of Theorem 4.1 to prove exact controllability to an arbitrary state of solutions of (4.1), (4.2), (4.4) ([6]).

Theorem 4.2. Assume that Ω is substarlike, $\operatorname{Im} \alpha, \beta, \xi \in C^1(S)$, $\operatorname{Re} \beta \equiv 0$, $\operatorname{Re} \xi \geq \xi_0 > 0$. Suppose that $\lambda(x)$ and $\mu(x)$ satisfy the conditions of Theorem 4.1. There is a $T_0 > 0$ such that, for any $T > T_0$, given $f = \{f_1, f_2, f_3, f_4\}$, $g = \{g_1, g_2, g_3, g_4\} \in M$ there exists a boundary control $p(x, t) \in L_2(S \times (0, T))$ such that the corresponding solution of (4.1), (4.2), (4.4) satisfies

$$\{u^1(x,T), u^2(x,T), u^3(x,T), u^4(x,T)\} = \{g^1(x), g^2(x), g^3(x), g^4(x)\}.$$

Moreover,

$$||p||_{L_2(S\times(0,T))}^2 \le C(||f||_0^2 + ||g||_0^2).$$

Using this result we obtain simultaneous exact control for the following problems (Re $\beta \equiv 0$):

$$\begin{cases} e_t = \operatorname{curl}(\mu h), & h_t = -\operatorname{curl}(\lambda e), \operatorname{div} e = \operatorname{div} h = 0, \\ e(x, 0) = f^1(x), & h(x, 0) = f^2(x), \\ [\nu, e] = p(x, t), & (x, t) \in S \times (0, T); \end{cases}$$
(4.5)

$$\begin{cases}
E_t = \operatorname{curl}(\lambda H), & H_t = -\operatorname{curl}(\mu E), & \operatorname{div} E = \operatorname{div} H = 0, \\
E(x, 0) = f^3(x), & H(x, 0) = f^4(x), \\
[H, \nu] - \beta[\nu, [E, \nu]] = q(x, t), & (x, t) \in S \times (0, T)
\end{cases} \tag{4.6}$$

For any $T > T_0$, given $f = \{f^1, f^2, f^3, f^4\}$, $g = \{g^1, g^2, g^3, g^4\} \in M$ there exists a control p(x,t) driving the system (4.5) to the state g^1 , g^2 at time T:

$$e(x,T) = g^{1}(x), \quad h(x,T) = g^{2}(x),$$

while the function $q = [\nu, p]$ drives the system (4.6) to the state g^3 , g^4 at the same time T:

$$E(x,T) = g^{3}(x), \quad H(x,T) = g^{4}(x).$$

References

- [1] C. Bardos, G. Lebeau and J. Rauch, *Contrôle et Stabilisation dans les Problèmes Hyperboliques*, Appendix II in J.L. Lions [7].
- [2] B. V. Kapitonov, Uniform stabilization and simultaneous exact boundary controllability for a pair of hyperbolic systems, Siberian Mathematical Journal, 35 (4), (1994), pp. 722–734.
- [3] B. V. Kapitonov, Stabilization and exact boundary controllability for Maxwell's equations, SIAM J. Control Optim., 32 (1994), pp. 408–421.
- [4] B. V. Kapitonov, On exponential decay as t → ∞ of solutions of an exterior boundary value problem for the Maxwell systems, Math. USSR Sb. 66 (1990), pp. 475–498.
- [5] B. V. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic system, Computational and Applied Mathematics, to appear.

- [6] B. V. Kapitonov, Stabilization and simultaneous boundary controllability for a pair of Maxwell's equations, Computational and Applied Mathematics, to appear.
- [7] K. A. Kime, Boundary controllability of Maxwell's equations in a spherical region, SIAM J. Control Optim., 18 (1990), pp. 294–319.
- [8] J. E. Lagnese, Exact boundary controllability of Maxwell's equations in a general region, SIAM J. Control Optim., 27 (1989), pp. 374–388.
- [9] J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1. Contrôlabilité Exacte, Masson, Paris, Collection R.M.A., 1988.
- [10] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), pp. 1–68.
- [11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer, Berlin-New York, 1983.
- [12] D. C. Pereira and G.P. Menzala, Exponential decay of solutions to a coupled system of equations of linear thermoelasticity, Mat. Aplic. Comp., 8 (3) (1989), pp. 193–204.
- [13] D. L. Russell, The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region, SIAM J. Control Optim., 24 (1986), pp. 199–229.
- [14] J. M. Rivera, Energy decay rates in linear thermoelasticity, Funkcialaj Ekvacioj, 35 (1) (1992), pp. 19–30.
- [15] J. M. Rivera and Y. Shibata, A linear thermoelastic plate equation with Dirichlet boundary condition, Preprint.

[16] E. Zuazua, Contrôlabilité de système de la thermo élasticité sans restriction sur les paramètres de couplage, C.R. Acad. Sci., 318, Série I (1994), pp. 643–648.

Sobolev Institute of Mathematics
Siberian Branch of Russian Academy of Sciences and
Department of Mathematics
University of Santa Catarina
Cx. Postal 476, Trindade
88040-900 Florianópolis - SC, Brazil
e-mail: boris @ mtm.ufsc.br

Received December 18, 1995 Revised May 30, 1996