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INITIAL BOUNDARY VALUE PROBLEM FOR A
CLASS OF QUADRATIC SYSTEMS OF
CONSERVATION LAWS
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Abstract

This paper concerns the Initial Boundary Value Problem for a class
of systems of conservation laws with a quadratic flux and a characteris-
tic boundary condition. We prove the existence of solution in L, with
the boundary condition strongly satisfied in L?. We use the Godunov’s
numerical method to obtain approximate solutions, and we obtain the so-
lution as limit of these approximate solutions. The limit in the interior is
given by the theory of compensated compactness and by a priory uniform
estimate of the approximate solutions in L>°. The limit at the boundary
is obtained by solving analytically the lateral Riemann problem with the
given boundary condition.

Resumo

Este artigo consiste do Problema de Valor Inicial e de Fronteira para
uma classe de sistemas de leis conservagao quadraticos com uma condicao
de fronteira caracteristica. Provamos a existéncia de solu¢do em L,
com a condigdo de fronteira sendo satisfeita fortemente em L2. Usamos
o método numérico de Godunov para obter solugoes aproximadas e obte-
mos a solugdo como limite destas solugoes aproximadas. O limite no
interior é dado pela Teoria de Compacidade Compensada, e por estima-
tivas uniformes das solugoes aproximadas no L*°. O limite na fronteira é
obtido resolvendo-se analiticamente o Problema de Riemann lateral com
a condigao de fronteira dada.
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1. Introduction

Consider the symmetric quadratic systems of conservation laws

(1.1)

u+z(a? +0%), =0
v + (w), =0,

where > 0, >0, U = (u,v) € R2 ¥ {(u,v) € R?; v>0},and 1 <a < 2.
These systems are the case III of symmetric quadratic system introduced in
[14]. The quadratic systems arise from 2 X 2 systems of nonstrictly hyperbolic
conservation laws by neglecting high order terms in the Taylor series of the flux
functions, and they can be used as model to oil recovery [14]. The solution
of their Cauchy or Riemann problem presents complexities that distinguish its
own theory, see e.g. [1, 2, 5, 9, 10, 11, 13, 14]. In this paper we consider a
boundary condition besides an initial condition for the systems (1.1).

We prescribe the initial data for the systems (1.1)
U(z,0) = Uy(x), (1.2)

where Up(z) € R? for all > 0 and U € L? N L™, and the following boundary
condition
Vau(0,t) —v(0,t) = 0. (1.3)

We prove the existence of a solution (u,v) to the Initial Boundary Value
Problem (IBVP) (1.1)—(1.3). We use the Godunov numerical scheme to obtain
an approximate solution U¢(z,t) and then we take the limit as € goes to zero
to obtain an exact solution.

Once the Godunov scheme is defined, we have an approximate solution
U#(z,t) for (1.1)-(1.3). We prove that U® is uniformly bounded in L*(R?2) with
respect to £. Then [1, 2] prove that U converges pointwise a.e. in z > 0, ¢ > 0
to an interior solution U for (1.1)—(1.3), that is, to a solution U for the Cauchy
problem (1.1)—(1.2). The boundary condition (1.3), as we shall see, is satisfied

in the following sense

L[ 2= vans + (Vau—vs.dudt + [~ (20— vav)s) (@,0)dr = 0
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for all ¢ € C}(R?), which implies that
* — lim 1/0 (\/Eu(:a ) —v(z, ~))2d:1: =0, (1.4)
§—0+ 0 Jo
where * — lim stands for the weak-* limit in L*°(¢ > 0) (see section 4).
In the forthcoming paper [12] we extend the boundary condition (1.3) to
a class of boundary conditions for which the Godunov scheme is well defined,
and show the existence of trace vq at the boundary x = 0 of entropy fluxes
q composed with an interior solution. The existence of this trace ~q holds for

general n X n systems of conservation laws
U+ FU),=0,1t>0, x>0, (1.5)
and it satisfies the inequality
14 < q(Us) +n(Uo) - {vF — F(Us)} (1.6)

for any entropy—entropy flux pair (7, ¢) of (1.5). Here we assume that (1.5) has
a solution U that is the limit a.e. in x > 0, ¢ > 0 of approximate solutions
U= generated either by Godunov scheme or an appropriate vanishing viscosity
method as in [7], ¢(Uy) and n(U,) are respectively the weak-+ limit of ¢(U#(0, -)
and n(U¢(0,-)) at the boundary x = 0, and F is the trace of the flux F' at the
boundary x = 0. The trace g can be computed by the formula
1 o
7g =+~ lim 5 L q(U(z, ")) dz. (1.7)

6—

Besides, if the interior solution U is generated by Godunov scheme then we have
vF = F(U0)>
so (1.6) reduces to

v < q(Uo)

in this case. These facts will be proved in [12].
From (1.4) and (1.7) we see that the boundary condition is also satisfied in
the sense that the trace of (y/au(z,t) — v(z,t))? at the boundary z = 0 exists
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and it is equal to zero. Note that (y/au — v)? is an entropy flux for the system
(1.1) associated with the entropy 2(u — /av).

We point out that the condition (1.4) also underlines a phenomenon of reg-
ularity of the solution: Although the functions u(z,t) and v(z,t) may oscillate
when 2 goes to the boundary x = 0, the quantity (v/au(z,t) — v(x,t))? has a
weak limit as  goes to zero in the sense of (1.4). Actually, the existence of the

trace g for the n x n systems of conservation laws (1.5) implies that

| e

is a function of bounded variation in z > 0 for any ¢ € C}(t > 0) [12].

This paper is organized as follows. In section 2 we recall preliminaries results
about the systems (1.1). In section 3 we give an explicit parametrization of the
Hugoniot loci of (1.1) that helps to provide a rigorous analytical solution of
the the Riemann problem for (1.1). In the last section, 4, we give the solution
of the lateral Riemann problem for (1.1), show the Godunov scheme for (1.1)-
(1.3), and prove that the approximate solutions for (1.1)—(1.3) obtained by the
Godunov scheme are uniformily bounded in L*°. This uses Hoff’s theorem [8]
on invariant regions for Riemann problems. To apply this theorem we give a
formula for the third derivatives of the difference between rarefaction and shock
curves at the initial point: see Proposition 4.4 below. We also prove in section
4 the existence of solution of the IBVP (1.1)—(1.3).

2. Preliminaries

In this section we recall some basic facts on the system (1.1). For the details
we refer the reader to [10], section 2 of [11], and [1, 2].
The eigenvalues of (1.1) are
1
M= {(a + u+ (—1)k/(a — 122 + 41;2}7 2.1)

k = 1,2. According to their signs, the upper half plane is divided in three
regions: K; ¥ {U € R2; \(U) < M(U) < 0}, Kr € {U € R, (V) <
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ot

0 < M(U)}, and K3 <€ (U € R%;0 < A\(U) < M(U)}. Corresponding
eigeinvectores are

r12 = (v, A2 — au). (2.2)
It is easy to check that r; - V; # 0, j = 1,2, for all (u,v) such that v > 0, that
is, the systems (1.1) are genuinely nonlinear for v > 0. Then we normalize 71 2
by the condition

TJV)\] = 1, j: ].727
in R?/{(0,0)}. Integrating these fields on the plane, we get the rarefaction
curves of (1.1). See [10].

Associates to the rarefaction curves, we have a pair of Riemann invariants

wy, we, that is, a pair of real functions on R? such that
Vwi-rj:0, Z#], Z,j=1,2 (23)

Besides we can choose (wy,ws) such that Vw, - r; > 0, ¢ = 1,2. We note that
the conditions (2.3) mean that the rarefaction curves are the level curves of w;

and ws.

3. Hugoniot loci

Let Uy = (uo, o) be a point in R2 % {(u,v) € R? v > 0}. The Hugoniot
locus H(Up) for the systems (1.1) is the set of points U = (u,v) in the plane

satistying the Rankine—Hugoniot relation based at Up, that is, the equations
2s(u — up) = au® +v? — aul — v3, (3.1)

$(v — o) = uv — ugvo, (3.2)

for some real number s = s(Up; U), the shock speed between the states U and
UQ. If Vo = 0 then

H(Up) = {(u,v) € R?; v =0}
U{(u,v) € R?; (2 — a)u =g & /(a — 1)2u3 + (2 — a)v2}.

(3.3)
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In particular,

H((0,0) = {(u,v) € R*; v =0} U{(u,v) € R*; v =£1/(2—a)u}. (3.4)

Now let vgp > 0 and 0 < v # v,. Canceling s in (3.1)—(3.2), we obtain the

quadratic equation in wu,
(avo + (2 — a)v)u® — 2ue(v + vo)u + 2ulvo — (v — o) (v — au — v2) = 0, (3.5)

which has discriminant A given by

A= 4ud(v+v)? —4(avy + (2 — a)v) [2u3v — (v — vo) (v — aul — v})]
= 4{(2—a)v* +2(a — Vvov® + (a — 1)*ud(v — vy)?
—202v% — 2(a — 1)viv + avi}.
(3.6)
From (3.6) we can easily check that vo is a root of second order of A. So we

can divide (3.6) by (v — v9)? to obtain
A = 4(v — vy)? {(a —1)%ug + (v +vo)(avo + (2 — a)v)} .

Note that A > 0 since v, vo > 0, and 1 < a < 2. Then the roots of (3.5) are

given by the formula

1
m {uo(v + o)

(3.7)
+(v = vo)y/(a — 1)2uf + (v + vo) (avo + (2 — a)v) }.

The formula (3.7) expresses the Hugoniot locus H(Up) in terms of two functions

of v. We rewrite it as

u—u():&{(a—l)uo+(—l)k\/7}, (3.

avg + (2 —a)v
where k£ = 1,2, and

Vo Jla— D23+ (04 o) (ave + (2 - o). (8]

We note that in the case vZ — (2 — a)u? = 0, we have

\r—\/Qia(vw@—a)v)Q—\/21—(v0+(2—a)v), (3.9)

—a
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where we used that (v + (2 — a)v) > 0, so

v — Vo PR |
avo+(2—a)v{(a_1)u0+(_1) —a

U— Uy = (vo + (2 —a)v)},

i

k =1,2. From (3.9), if £ =1 and uo > 0 we have

(2= a)vov — (2 — a)v? + 203

T V2—alave+ (2—apw)

equivalently,

== U+ v
u—t __ e 0

v — avo+(2—a)v;
if k=1 and up < 0 we have

o—m  w2—a
if £ =2 and ug > 0 we have

u—u 1

v—1y V2—a

and if kK = 2 and ug < 0 we have

(2 — a)vov — (2 — a)v? + 2(a — 1)1

V2 —a(ave + (2 — a)v) ’

u =

equivalently,

U—Uozm v+ Vo

v — U avo + (2 —a)v’

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Definition 3.1. Let Uy = (uo, vo) with vo > 0. We define T*(Uy) to be the set
of points U = (u,v) € R? satisfying (3.7), and v > vy, and T*(U,) to be the
set of points U = (u,v) € R? satisfying (3.7)y and 0 < v < vy (T?(Uo) = 0 if

Vo 20)

In this section we prove that 7% is a curve of k—shocks in the sense of Lax,

that is,
Al(U) <8 < )\2([])7

s < )\1(U0)7

(3.16)

(3.17)
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for all U € TH(Uj), and

Xo(U) < s, (3.18)

)\1(Uo) <s < )\2(U0), (319)

for all U € T2(Uo), where A\; and A, are the eigenvalues of (1.1). We also prove

other results that will be useful in the next sections.

The eigenvalues \i, k = 1,2, are the roots of the polynomial in A,

def

P(MU) =

au— A v
v u— N\

= AN —[(a+ DX+ [aw® — v = (A= M) (A= A2).
Note that (3.16) is equivalent to
P(s;U) <0, YU € TH(Uy), (3.16")
and (3.19) is equivalent to

P(s5;Up) <0, YU € T*(Up). (3.19)

Lemma 3.2.

P(s;U) <0, YU € T*(Up).

Proof:

PAU)= M —(a+1)(u—up)A— (a+ Dugh + alu — up)?
+2auuy — aug — v?

= N —(a+1)(u—uo)A— (a+ uoA + a(u — uo)? (3.20)
+2auo(u — u) + aug — v2.
From (3.2) we have
o= UV — UgUg — (u—u0> g, 1)
vV = o v —
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From (3.20) and (3.21) we have

u— ug\ 2 U—u
v? (—0> +2uov< 0> —l—ug
vV — Vo —

—(a+1)v(v — 1) <u—u0) — (@ + L)uo(v — w) <u —uo>

~(a-+ Duow (4= f)——vza + 1+ afo - w)? (% U::;EUS
+2aug(v — 1) (Z : B

- [1}2 —(a+ 1w — o) +a(v — UO)Q] (u — u0)2
+ [2uv — (@ + Duo(v — vo) — (a + L)ugv

+2am0(v — vo)] (u — u0> —
UV — Vo

P(s;U)

—I—auo—v

Thus

P(s(U;Up);U) = P(sU)
vo(avo + (1 — a)v) (Z — Zg) (3.22)

u
+(1 = (L)’I.L()Uo (U

From (3.7), we have

u—uy 1
v—1vy ave+ (2 —a)v

%a—nm+ﬂ%f¢—},vwmﬂfﬂ.(3ﬁh

where v is defined in (3.8). So

U — U 1 2 9
<v — ’Uo> T (avo+ (2 — a))? {Q(a ek (3.24)
+(v 4 vo)(avo + (2 — a)v) + (—1)*2(a — 1)u0\/—}

for all (u,v) € T*. Substituting (3.23); and (3.24); into (3.22), we obtain

P(5U) = oo T e {Af + B},

avo + (2 —a)v

A _9(a — Dugue(ave + (1 — a)v) — (1 — a)uevo(ave + (2 — a)v)
= (a— Dupvo(—2avy — 2(1 — a)v + avy + (2 — a)v)
= ala — 1)uove(v — 1g).
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and

B<= 2(a—1)%w@vo(avy + (1 — a)v)
+uo(v + o) (ave + (2 — a)v)(ave + (1 — a)v)
—(a — 1)*udvo(ave + (2 — a)v) — v*(avo + (2 — a)v)?
= (a—1)*udvo(2avo +2(1 — a)v — avg — (2 — a)v)
+(ave + (2 — a)v)(avdv + (1 — a)vov® + avd
+(1 — a)vav — avev? — (2 — a)v?)
= —a(a — 1)*udvo(v — vo)
+(avo + (2 — a)v)((a — 2)v* + (1 — 2a)vev? + V3V + avy)
= (v—"o) [~a(a — 1)*uguy
+(ave + (2 — a)v)((a — 2)v? — (a + D)ugv — avd)],

Hence,

Plg:) = {f_B cy, (3.25)

(a’Uo +
where
A ala—1)uve, B ala—1)*uu,,
and
C Y (avo + (2 — a)v)((2 — a)v? + (a + 1)vov + ar?)

Since v > vo on T, we finish the proof if
o ~ 2
Ay < (B+C)

(note that B > 0 and C > 0). That is, if

a*(a — l)4u§v§ + a%(a — 1)?udvE (v + vo)(avy + (2 — a)v)

< a?(a—1)*ugvd
+2a(a — 1)2udvo(ave + (2 — a)v)((2 — a)v? + (a + 1)vev + avd)
+(avo + (2 — a)v)*((2 — a)v® + (a + L)vov + avf)

< a(a—1)*ugvo(—avev — av] + 2(2 — a)v® + 2(a + 1)vv + 2av])
+(avo + (2 —a)v)((2 — a)v® + (a + 1)vov + av) > 0
< a(a—1)2udve(2(2 — a)v? + (2 + a)vov + avd)

+(avo + (2 — a)v)((2 — @)v? + (a + 1)vov + av) > 0.

Lemma 3.3.

P(S; U()) <0, VYU € 7-2(U())
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Proof: From the definition of P we have
P(s;Us) = s* — [(a + 1)ug)s + [au — v]]. (3.26)

From (3.21) and (3.26) we have

P(s(U;Uo); Uo) = P(s;Up) )
e <ﬂ> i — (u - U0> . (3.27)

vV — Vo vV — Vo

for all U, Up. Substituting (3.23), and (3.24) into (3.27), we obtain

{A+Bf}

P(s;Up) = W

where

A 2> — 1)2u202 + (v + vo) (avo + (2 — a)v)o?
—(a — 1) *uv(avy + (2 — a)v) — vi(avy + (2 — a)v)?
= (a—1)*uqv(2v — avy — (2= a)v)
+(avy + (2 — a)v) (v + vev? — avy — (2 — a)vdv)
= a(a—1)*u3v(v —vo) + (avo + (2 — a)v)(v? + 2vev + avd) (v — 1)
— (v w)l(a— 1)%ud + (ato + (2.— a)0)(0? + 2000 + ard)),

and
BY 2(a—1)upv? + (1 — a)uev(avy + (2 — a)v)
= (a—1Duev(2v — avo — (2 — a)v)
= ala —Duev(v — vp).
Hence,
vV — Vo
P(s;Uy) = ———1A B+ € 3.28
(5:00) = o e | 1/ +B+c}, (3.28)
where
AY aa—Duy, BEala—1)%
and

C Y (ave + (2 — a)v) (v + 2000 + ar?).

Since v < v on T2, we finish the proof if

(i) ) < (B+0)
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(note that B > 0 and C > 0). That is, if
a*(a — 1)*ugu® + a*(a — 1)*ugv® (v + vo) (avo + (2 — a)v)

< a*(a —1)*upv? + 2a(a — 1)%udv(avy + (2 — a)v)(v? + 205 + avd)

+(avy + (2 — a)v)*(v? + 2090 + av})?

<~ 0<ala—1)2udv(—av? — avov + 20* + 4vev + 2a0?)
(avy + (2 — a)v) (v + 2upv + avd)?
<~ 0<ala—1)%udv((2 - a)v® + (4 — a)vov + av?)
(

O

Lemmas 3.2 and 3.3 prove (3.16) and (3.19). Next we deduce some additional

properties of the “Lax curves” 7' and 72, from which we can infer in particular
(3.17) and (3.18).

Lemma 3.4. For fized k € {1,2}, we have
U+ Uy
2

qmaﬁzm< >VU67W%)

Proof: We will prove the case k = 1. Similarly we can prove the case k = 2.
In [9] is proved that

s:M<U;%),VUeHWQ

where either p = 1 or 2. So we have to prove that p = 1 if U € T'. First we
note that the case Uy = (0, 0) can be easily verified by using the formulas for s

and A in this case. Thus we assume Uy # (0,0). Then we have

Uhr{} s(U;Uo) = Mi(Up) (3:29)
UeT (Vo)

[15], since the system is strictly hyperbolic at Uy # (0,0). Now we suppose that
p =2 for some U € T*(Uy), and we shall get a contradiction. Let U, = (u.,v.)
be the first point in 7% where the condition p = 1 fails. If U, = U, then, by
(3.29) and continuity, we have A;(Uy) = A2(Up), which is contradiction because
Uo # (0,0). If U, # Uy, by continuity, we have

A (U* +U0) ~ (U* +U0> ’

2 2
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which is also a contradiction, because “£% £ (0,0), since U,, Uy € R} and

UO 7é (07 0)

Lemma 3.5.
<0on T

a)d—u
gllv
b) &5 >0on 77

(
(
Proof: From (3.7), we have

du  avg+ (2 —a)v— (2—a)(v — vp) k
dv (avy + (2 — a)v)? (@ —1)ug + (—1) \/7}

v — o k(2= a)u+ o
1 +avo+(2a)v{( V= }
- (ave + (2 — a)v)2V {2((1 - DUOUO\/»
+ (=1)* [2(@ — 1)?udvo + 2up(v + vo) (avo + (2 — a)v)
4 +(avo + (2 — a)v)(v — vo)(vo + (2 — a)v)]}
(avo + (2 — a)v)2V

where

A ¥ 2(a— DuweV + (—1)%2(a — 1)2uvg
+(=1)*(ave + (2 — a)v)((2 — a)v* + (a + V)vov + v3),

k=1,2. Then (—1)*2* > 0 if and only if
(-1)k4; > 0. (3.30)

Since v > 0, and 1 < a < 2, (3.30) is equivalent to

(—1)*12(a — DugueV < (avp + (2 — a)v)((2 — a)v® + (a + 1)vov + v2)
+2(a — 1)%udvy;

s0, squaring and using the definition of v, we get that (=1)* A, > 0 if

4(a — 1) ugvd +4(a — 1)*uvi (v + vo)(avy + (2 — a)v)
< 4(a — 1) *ugvd
+4(a — 1)?udvo(avo + (2 — a)v)((2 — a)v* + (a + 1)vov + avy)
+(avo + (2 — a)v)?((2 — a)v?® + (a + 1)vov + avd)?
— 0<4(a—1)%udv((2 — a)v? + avp)
+(ave + (2 — a)v)((2 — a)v® + (a + D)vgv + avd)?
< 0<4(a—1)%udvov+ ((2 — a)v? + (a + Dwvov + v3)2.

i
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du
For future reference, we write down the formula for 0’ computed in the

proof above:

ot _ L e {Z(a ~Dugto|  + (=1)2(a — 1)%du

v (avo + (2 — a)v)?
+H(=1)*(avo + (2 — a)o)((2 — a)v® + (a + Lvov +13) }

(3.31)
where v is defined in (3.8).

d
In the proof above, we got the following formula for d—zz

ds 1

T G ey Dy (0 [ala— 1P
+(avo + (2 — a)v)((2 — a)v? + (a + 1)vev + avd)] }.

(3.32)

Lemma 3.6. Let Uy = (ug,vo) such that vo > 0 and vo # —v/2 — aug (respect.
Vo # V2 —aug). For any U € TH(Uy) (respect. T*(Uy)), U — Uy is not parallel
to 1 (U) (respect. ro(U)).

Proof: We will prove only that U — Uy is not parallel to m(U), since the
proof of the rest is similar. Suppose that U — Uy is parallel to r1(Up) at some
point U = (u,v) € U € T*(Uy), and we shall get a contradiction. Since r;(U)
is perpendicular to ro(U) because the Jacobian matrix of the system (1.1) is

symmetric, and
1
ra(U) = (v, A —aut /(o= 122 + 41/2}>
(see (2.2) ) then we have

(U*U())'T'Q(U):O

PR P @,%{(1 et io— 1)2—1—4112}) =10

U — Up
<— 20

1—a)u = —/(a— 1) + 42
U—U0+( a)u (a—1)2+
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— N2 _
— 4o? <u> +4(1 — a)uv (u uo) + (1 = a)?u? = (1 — a)®u® + 4°
v — o U ="

<:>v<u_u0>2+(1fa)u<u_uo>fv:O;

UV — Vo vV — Vo

since

u= <U_u0> (U*UO)“V‘UO
vV — Vo

from the last equation we have

W+ (1— a)(v — w)) (“ _“°>2 +(1— a)ug (“ - “°> _p=0. (3.38)

vV — Vo V— Vo

Now we take <Z : ZO) from (3.7); and substitute into (3.38) to get
(w4 (1 —a)(v—w))(2(a — 1)%ud
+(v+ o) (avo + (2 — a)v) — 2(a — LugV" )
+(1 — a)ug (avy + (2 — a)v) ((a — 1Dup — \/_)
—v (avo 4 (2 — a)v)? = 0,

(3.34)

that is,

(a—1)*ud(2 — a)(v —vo) + (@ — 1)vo(vo — v) (avo + (2 — a)v)

—(a—Du(2—a)v—v)V =0
SO
(a— 1)u2(2 — a) +vo (avo + (2 — a)v) = u(2 — @)V ;

squaring we obtain

(2—a)*(a—1)%ug —2(2 — a)(a — )udvy (avo + (2 — a)v)
+02 (avo + (2 — a)v)?
— (2= ) ((a— 1% + (v + 1) (a0 + (2 — a)0)

—  —2(2—a)(a—1)udvo + v2 (avo + (2 — a)v) = (2 — a)2ud(v + vo)
= —(2—a)udue (2a—1)+(2—a) + (2—a) (v§ - 2 - a)ud) v+af =0
= ala—2)udvo+ (2 — a) (v — (2 — a)ud) v+ avf = 0

= ((2—a)v +av) (v — (2 —a)u3) = 0. (3.35)

From (3.35) we have v2 — (2 — a)u2 =0 or v = — (a/(2 — a)) vy < 0. This last

is a contradiction because 7' C Ri so v > 0. Therefore, to end the proof, it
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just remains to consider that v2 — (2 — a)u2 = 0 and also get a contradiction.
In this case we have uy > 0 since, by hypothesis, vy # —v/2 — aup and vy > 0.
Substituting (3.11) into (3.33) we have

(v+wp)?
(v+ (1 —a)(v—1w)) (201(;)0m
—(1—a)uo 2—am —v =0,

which gives after simplifications
vo{(a — 2)v* + (1 — a)vov + v} = 0;

since vy > 0, we obtain

1
a—2

<0 or v=u1y,

which yields the desired contradiction.
O

The next lemma shows the behavior of the shock speed s = s(U; Up) on the
T* = T*(Uy) curve, where Uy = (uo, Vo).

Lemma 3.7. d
% <oon T

(a) &
s

b) —— > 0on 72

(b) - >0on

Proof: If vZ = (2 — a)u2, the result follows easily from (3.11), (3.12), (3.13),
(3.15), and (3.21). Otherwise, we combine Lemma 3.6 with the Bethe-Wendroff
theorem [6, 17] or tangency rule [9] to get the result. Here we used that at the
starting point vy we have ds/dv < 0 if k = 1, and ds/dv > 0 if k = 2; see

Corollary 17.13 of [15].

Corollary 3.8.
(a) S(U7 Uo) < )\1(Uo), YU e TI(U()),
(b) S(U, UQ) -2 )\1([]())7 VYU € TQ(UO)
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Proof: If Uy = (0,0), the proof is straightforward. Consider U, # (0,0). Since
the system (1.1) is strictly hyperbolic in a neighborhood of Uy, Lax’s theory

imply the result near Uy. Use Lemma 3.7 to complete the proof.

Lemma 3.9.

(a) M(aU) = an(U), k=1,2, VU, Uy € R?, Va > 0;

(6) M (Y52) > LIN(U) + N(Up)), eitheri = j =k =1 ork =2 and
(1,7) # (2,2), YU, Uy such that ugv # uvg;

(c) M (U+U°) LNU) + X (Uo)), eitheri=j=k=2o0rk=1 and
(1,7) # (1,1), YU, Uy such that ugv # uvg

If upv = vy, we have equalities in (b) and (c).
Proof: The eigeinvalues A\g, k = 1,2, are given by

M(U) = %{(a—i—l)u—&- (=1 (o 1)2u2+41}2} (3.36)

(see (2.1)) which yields (a) trivially. To prove the remainder, note that

U+ U
Ak< L

1 1 o
) = 3 @)+ X - 34, ijk=1.2,

where
AY (C1) (e —1)2u? + 42 + (1) \/(a — 1)2ud + 402
—(=1)*\/(a = 1)?(u + u0)? + 4(v + vo)?
= (—=1)'B+(-1yYB, — (—1)*C (B, B, C >0).
First we verify that A = 0 if and only if ugv = uvy, Vi, 7,k = 1,2. We have
C?’= (a—1)2(u+ug)?+4(v+vo)?
= B2+ B? +2(a — 1)%uug + 8vvg

and
(B+B)*= B>+ B} £ 2BB,

> C?=(B+B)
< 2(a—1)%uug + 8vyy = j:2\/(a —1)2u2 + 41}2\/(a —1)2u2 + 403
< (a— 1)*(uug)? + 16(vvy)? + 8(a — 1)%uugvuy
= (a — 1)*(uug)? + 16(vv)? + 4(a — 1) [(uwg)? + (vug)?]
— (U’UO — UUQ)2 =0.
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Next, assuming ugv # uvg, we prove the case (b) for ¢ = j = k = 1. In this

case, we have A < 0 if and only if
0>C—-B—-DB < C*<(B+By)?

< (a— 1)*uuy + 4vvy < BB,. (3.36)
Since BB; > 0, squaring both sides of (3.36) we have A < 0 if

(@ — 1)*(uug)? +8(a — 1)uugvvy + 16(vvy)?
< (a—1)*(uup)? + 16(vvo)? + 4(a — 1)2 [(uwo)? + (vuo)?]

which is equivalent to

0 < (uvo — vup)™.

Then A < 0 and this proves (b) for i = j = k = 1. The proof of (c) for
i =j =k =2 is the same (replace A by —A). The proof of the other cases is

similar.

Lemma 3.10. i\
(a) C?Tvl <0on T}
(b) % >0on T2

Proof: From (3.36) we have

d\, 1 du i
22— =—-(A— —1)%4
dv P { + (-1 U}

where

p & (a —1)%u? + 40?2

and
A¥ (a+Dp+ (—1)¥(a - 1)
Note that A > 0 because
[(Dfa—12] < (a+DoP,
(a—1D*? < (a+1)%(a—1)%u®+4(a+1)%7,
0 < da(a—1)%u*4(a+1)%2
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; pdu " ;
Since (—1) > 0 on T* (see Lemma 3.5), the proof is completed.

Corollary 3.11. \(U) < M\ (Up), k = 1,2, VU € T*(Up).

Proof: We have v > v9 on 7' and v < vo on 72. Then, Lemma, 3.10 yields the

result.

Remark 3.12. Lemmas 3.4 and 3.9, and Corollary 3.11, give another proof of
half of (3.16), and (3.19). Indeed, applying these results we have

= By <U+ UO) > 2 () + M (U0) > M(D)

2
on 71, and
U+Up\ 1
o= ( ] °> < 5 Dall) + 2a(U0)] < XalU)
on T2.

It remains to prove the inequality (3.18).

Lemma 3.13.
P(s;U) >0, YU € T?(Up).

Proof: A review at the proof of Lemma 3.2 shows that

Here A, B, and C are the same as in formula (3.25). Since A, B, and C > 0,
and 0 < v < vy on T2, the proof ends.

Corollary 3.14.
X(U) <s, YU EeTHU).
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Proof: Lemma 3.4 yields
5= (U;U‘J) , YU e T*(U).

From this and (2.1) we obtain

5= i{(a—}— 1)(u+uo) + C} and i (U) = %{(H 18— B}

where

C = /(a — 1)2(u+uo)? + 4(v + )2 and B = y/(a — 1)2u? + 402,

Then
a+1

1.
s>MU) = (uo—u)+§C+B>O. (3.37)

From (3.7), we have that ug —u > 0 on T2, so (3.37) implies that s > \(U)
on 72. Now apply Lemma 3.12.

It will be useful to define the reverse curves T*(Us), k = 1,2:

Definition 3.15.
Uo) = {(u,v) € RZ; (3.7)1 is satisfied and 0 < v < vg }

T
T2(Uo) = {(u,v) € RZ; (3.7), is satisfied and v > v}

Lemma 3.16. For any Ur = (ug,vr) such that vg >0, T*(Ug), k =1,2, is a

curve of Lax k—shocks.

Proof: By the definition of 7'(Ug), if Uy, = (uy, vi) € T*(Ug) then 0 < vy, <
vg and

B SOV (3.38)
Vr, — VR

But TH(Ug) C H(Ug) and U, € H iff Up € H. Since vy > 0, it follows that
Ur satisfies (3.7),, with Uy = Ug, where either £k = 1 or k = 2. From (3.38) we
have k = 1, so Ug € T*(UL), which proves that Uy, is connected to Ug by an
1-shock. Similarly we prove that 72(Ug) is a curve of 2-shocks.
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4. Boundary condition, Riemann problems, and Godunov
scheme

The first step in defining the Godunov scheme is to solve the Riemann problem,
and the lateral Riemann problem. The Riemann problem for (1.1) is solved in
[10]. We solve below the lateral Riemann problem for (1.1) in the upper half
plane {v >} with the boundary condition (1.3).

We recall the construction of the solution of the Riemann problem for (1.1)
in the upper half plane. It consists of rarefaction waves, Laz shock waves and
compressive shock waves. Let Uy € R%. We denote by R'(Up), S*(Uy), and
C(Uv), the 1-rarefaction wave curve of Uy, the Lax 1-shock curve of Uy, and the
compressive shock curve of Uy, respectively. We also denote by R% (Uy), S2(Up),
and C_(Uy), the reverse 2-rarefaction shock curve of Uy, the reverse Lax 2—shock
curve of Uy, and the reverse compressive shock curve of Uy, respectively. These
curves are defined by the following conditions, where U denote an arbitrary
point in Ri:

Ue Rl(U()) iff ’LU2(U) = UIQ(UQ) and /\1(U) e /\1(U0),
U € S'(Up) iff (3.16)—(3.17) is satisfied,
U e C(Uo) iff )\Q(U) < S(Uo, U) < )\1(U0),
Ue R%(Ug) iff wl(U) = wl(U()) and )\Q(U) < )\Q(UO),
U € S%(Up) iff (3.18)-(3.19) is satisfied,
U e C,(Uo) iff )\Q(U(]) < S(U, Uo) =8 )\1(U)

We proved in section 3 that if Uy = (ug, v9) and vy > 0, then T'(U,) =
SY(Uy) and T2(Uy) = 8% (Uy). The curves wy = w;(Up) and wy = wy(Up) are
shown in Figure 1 of [10]. Besides we can easily compute all the curves above in

Ri for the case Uy = (uo, Vo) with v = 0. In conclusion we have the following.

Case vy > 0:

RN Us) = { U = (u,v) € RZ; wy (U) = w1 (Up) and 0 < v < vy},
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RE(Up) = { U = (u, v) € RZ; we(U) = wy(Up) and 0 < v < v}
S'(Uo) = TH(Uo), S2(Uo) = T2(Uo),
C(Uo) = C_(Up) = 0:

Case vy =0 and ug > 0:

R (Uo) = 0,

RZ,(UO):{Uz(u,v)eRi;v:Oandoguguo},

S'(Uo) =T (W),

S2(Uo) = T2 ((3% 0, 0))
U{U = (u,v) e RY; v=0and up < u < 3% up},
C ((uo, 0)) = {(u,v) €R?; v =0 and u < 2_%0},
C_ ((uo, 0)) = {(u,v) € R*; v =0 and u > 5 auo}

Case vy =0 and ug < 0:
RYUy) = {(u, v) € R?; v =0 and up < u < 0},

R (Uo) =0,

(
U{U=(u,v) €eRY;v=0and 32u < u < up},

S2(Uo) = T2(Uo),

€ ((uo, 0)) = {(u,0) € R*; v =0 and u < 5 . ~ug},

C_ (o, 0)) = {(u,0) € R2; v = 0 and u > 2= Y}

Case 19 =0 and ug = 0:
RN (Uo) = R2(Uy) =0,

SHUy) = {(u, v) e R%; v =—Vv2 — au},
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S2(Up) = {(u, v) e R%; v =2 —au},
C((0,0)) = {(u,v) € R?; v =0 and u < 0},

C_((0, 0)) = {(u,v) € R*; v =0 and u > 0}.

Proposition 4.1 (Solution of the Riemann problem) [10]. Let
W (Uo) & RY(Up) US (Uo) U C(Th)

(the 1-wave curve of Uy) and

def

W2 (Us) = R2(Us) U S (Up) UC_(Up)

(the reverse 2—wave curve of Up). Then for any Ur, Ug € Ri, there is a unique

solution U(x,t) = U(x/t) of (1.1) with initial data

- Uy, <0
U(l’,O) o { Ur, >0
such that U(z/t) € WH(Uy) for x/t <~ and U(z/t) € W2(Ug) for x/t > v,
where —oo < v < oo s uniquely determined as a function of Uy and Ug. We
denote this solution U by R(UL, Ug).

Proposition 4.2 (Lateral Riemann problem). For any Ur = (ug,vg) €
R2 there is a unique Up = (up,vg) € R:(Ur)US?(Ug) such that v/augp—vp =
0 and the Riemann solution U = R(Up, Ug) satisfies U(0,t) = Ug for allt > 0,
that is, U satisfies the boundary condition (1.3) for allt > 0.

Proof: The line \/au — v = 0 crosses any curve R2 (Ug) U S? (Ug) at exactly
one point Up. If Up € R%(Ug) then the Riemann solution U = R(Up, Ug) is a
2-rarefaction wave. Since \y(Upg) > 0 we have U(0,t) = Up for all ¢ > 0. On
the other hand, if Up € S8?(Ug) then the Riemann solution U = R(Up, Ug) is
a 2-shock wave with shock speed s > A\ (Ug) = 0. Thus we have U(0,t) = Ug
for all ¢t > 0.
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To define the approximate solution and obtain a L* a priori estimate, we
prove that any compact convex region in Ri bounded by rarefaction curves is

an invariant region of the Riemann problem for (1.1).

Lemma 4.3. For arbitrary uy < 0, ug > 0, let S = S(ui;uz) be the closed
region defined by

SE{U € R ; wi(U) 2 wi((w,0)) and wy(U) < wy((us,0))}.

Then S is an invariant region of the Riemann problem for (1.1), that is, if
U, Ug € S then R(UL,Ug)(z,t) € S for all z,t > 0.

To prove the above Lemma we will use the following Proposition.

Proposition 4.4. Consider a n x n system of conservation laws
Ui+ FU),=0, z€R, t>0, U= (u,v) € R? (4.1)

that is strictly hyperbolic and genwinely nonlinear in a neighborhood of a point
Uy, € R%  Assume that dF (Uo) is a symmetric matriz. Then we have the

following formula for the third derivative at Uy of the shock curve based at Uy:

(M=) (T =, ) = 8 {(dri)ri, 75), (4.2)
j#£k, 4,k = 1,2 Here (,) denotes the usual inner product in R", Ay < Ao
are the eigenvalues of dF', ri, ro are the respective eigenvectors normalized by
VA -r; =1, 7 =12, a dot over a letter means a derwatiwe along the k-
shock curve U = U(e) based at Uy with respect to a parameter € such that
U(0) = Uy, U(0) =14, and U(0) = 74, (cf. p.330 of [15]).

Proof: As in the proof of Corollary 17.13 in [15], we obtain the following

equations evaluated at Upy:

35:U + 36U + s, U= dF + 2dFU + dF U, (4.3)

S = )\k, U= Tk, U= ’f“k, QSk = }\k, (44)
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dFry, + 2dF 7y 4+ dFFy = el + 20T + M. (4.5)

From (4.3)-(4.5) we get
(3=§k — )\k)rk = ékf'k = (dF s )\k)(U *’Fk)

which gives (4.2) after taking the inner product with ;.

Remark 4.5. If dF' is symmetric in a neighborhood of U, then
((dri)re, r3) = = ((drs)re, Te) ,
as can be seen by differentiating (r;, ) = 0 along rx. So formula (4.3) becomes
(A — Xe) (T =, 15) = & ((dr)re, 7) , (4.6)

J#k, j,k = 1,2 Assume that A\; — A\, and 3, have the same sign at Up,
and the j-rarefaction curve of Uy is convex curve near U. Then formula (4.6)
implies that, in a neighborhood of Uy, the k—shock curve of Uy enters the and

remains in the convex side of the j-rarefaction curve of Uy.

Proof of Lemma 4.3: Since all wave curves used in the construction of the
Riemann solution R(Up, Ug) of (1.1) for any Uy, Ur € RZ are contained in

Ri, we have that Ri is an invariant region, so it is enough to prove that

def i
is also an invariant region, where ¢; = (—1)"w;((u;,0)), (=1)'w; >0, i = 1,2.
To prove this it is enough to check the following (cf. [6]):

l) if Uy € 0B, then Sl(Uo) UC(U()) C Bs;
ll) if If Uy € 0B; then SE(U()) UC_(U()) C By.
We recall that C(Up) = C_(Up) = 0 if Uy = (uo,vo) and vo > 0. From the
fact that 75 - (1,0) > 0 on the positive axis {v = 0, u > 0}, we have that ws

restricted to it is an increasing function. Since C ((uo,0)) is a half line on the left
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of ug in the axis {v = 0}, we have C_ ((uo,0)) C By if (uo,0) € 0B,. Similarly
we prove that C_ ((ug,0)) C By for (ug,0) € 0B;.

Now let us prove that SY(Us) C Bs if Uy € 0By and Uy = (ug, vp) with
vo > 0. We omit the proof that S*(Uy) C By if Uy € 9B, for it is similar. Take
k=1 and ry = Vw, in (4.2). Then we have

()\1 - )\2) <U —’F17 Vw2> = 5’1 <(d’f’1)’f‘1, Vw2> 5 (47)

Differentiating
<7'1, vw2> =0

along r; we have
<(d7"1)7“1, Vw2> — —d2w2(7'1,7“1). (48)

Substituting (4.8) in (4.7) we obtain

()\2 — )\1) <U —7:1, Vw2> = d2w2(7"1,?”1). (49)

Now we note that for a parametrization U = U(e), € < 0, of S'(Us) such that
U(0) =0, U(0) = ry, and U7(0) = 7y, we have

1
we(U) = o+ g’ibg(O)eS + O(e*) (4.10)
where we used that

Uy € 0By 50 we(0) = we(U(0)) = 2 = wa((u2,0)),

w(0) = (Vws, U(0)) = (Vuws, 11) = %(0) -0,
and ) _ B
5(0) = dPws(U(0), U(0)) + (Vo U((2))>
= d2w2 s (7"1,’/"1) + <V’UJ27 T'1> = %(0) =0

d3
—w;(O) =0 we get

Regarding the third derivative ws (0), from =
IL

iy (0) = (U —#1, Vaws). (4.11)



QUADRATIC SYSTEMS OF CONSERVATION LAWS 27

From (4.10) and (4.11) we have

1 s
wy(U) = ¢o + 3 <U —'ps Vw2> €+ 0(e*). (4.12)

By (4.9) we have that <U —T, Vw2> > 0. Since € < 0, from (4.12) we have that
wo(U) < 0 for all U € S*(Uy) near Uy, that is, S (Uy) C By in a neighborhood
of Up. Now we assume by contradiction that there is a point U; € S(Up)
such that we(U1) = ¢o. Then we have another point U, € S*(Up) such that
we(Up) = <Vu]27 U2> = 0, so SY(Up) is tangent to an integral curve of r; at
U,. Then by the tangency rule (cf. proof of in [9], and cf. Bethe-Wendroff’s
theorem [6, 17]) we have either U, — Uy parallel to r; at Us or $(Us) =0 . But
by Lemma 3.6 we have that U — U, is not parallel to r(U) for any U € S*(Uy)
(note that vy # —v/2 — aug for uy > 0 and Uy € 9B,) and by Lemma 3.7, § # 0
for all point in 8'(Up). Thus we have a contradiction and finish the proof.

O

We can now define an appproximate solution of Godunov type. We fix an
invariant region S such that Up(x) € S for all x > 0 and the intersection of the
wave curve R2 (Ug) U S%(Ug) with the line \/au — v = 0 is contained in S for
all Ur € S. Let

{(jAz,nAt); (j,n) € N*}, N={1,2,...},
be a net in Ry x Ry = {(z,t) € R?; £ >0, ¢ > 0} such that § % At/Ax is

constant and satisfies the CFL condition
dsup{|\(U)|; k=1,2, U e S} < 1.

An approximate solution U®, ¢ LAt = 0Az, is defined as follows: First we
approximate the initial data Uy by
& def =
Us(2) = X_ UnX(ejne,@i+2)a0](T);
§=0

where

Uy

o 1 (2j+2) Az
&t / Uo(z)dz.

7= 2]A$ 2Ax
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Since Up(z) € S for all x > 0 and S is convex, we obtain Uy; € S for all
j € Nand so Us(x) € S for all z > 0.
Now we suppose that U* is defined in some strip R x [0, nAt)
and U*(z,nAt) € S for all x > 0, and we show how to define U® in R, x
[nAt, (n + 1)At). First we define U on R, x {nAt} by
Us(z) & Z UnjX(2j 0, (2+2) 2] (),
j=0
where
1 (2j+2)Ax
Uny ¥ [ * (@, nAt — 0)da.
i = 3% Josne U (z,nAt — 0)dz
Next we define U* in the mesh ((25 — 1)Axz, (25 + 1)Ax) x (nAt, (n + 1)At),
j =1, by
U (z,t) = R(Uy j1, Upj) (x — jAZ, T — nAT)
where R(Uy, Ug) is defined in Proposition 4.1. Finally we define U* in [0, Az) x
(nAt, (n + 1)At) by
U (z,t) = R(Upn, Uon)(z,t — nAt)
where Up,, € W2 (U,) satisfies B(Up,) = 0 and is given by Proposition 4.2.
By Lemma 4.3, we obtain that the sequence (U¥) is bounded in L*°. From
[1, 2] we have that it converges a.e. to a solution of (1.1)-(1.2) as & goes to
zero. We devote the rest of this section to prove that U satisfies the boundary
condition (1.3).
Let B(u,v) % \/au—v. If we denote the flux coordinates of (1.1) by ¢, and
q2, that is,

then B2 is a linear combination of ¢; and g,, namely, B? = 2(q; — v/ag). By

Green’s theorem we have [3]
/ / (U0 + BAU")s ) dudt
<U€>¢><x 0)do+ [~ (B*(U)9)(0, )t (4.13)
+ / S (s[0(U7)] ~ [BHU ot + L(4).

shocks
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for all ¢ € C}(R?), where
L) [T oo natnU i, (4.14)
n=1

and n(U) = 2(u — y/av). By the construction of U we have B%(U#(0,t)) = 0,

and by the Rankine-Hugoniot relation, we have

s(n(U*) = [B*(U) =0

Therefore if we prove that L(¢) goes to zero as e — 0+ for each ¢ € C¢(R?),
then we obtain by taking lim. ,o4 in (4.13) that U = lim._,o, U® is a solution
to the IBVP (1.1)—(1.3), satisfying the boundary condition (1.3) in the the

following sense:

// 2(u — v/av)d; + (vau — v)*¢,dxdt
+/ u—\/_v )( 0)dz = 0,

for all ¢ € C}(R?). We remark that the equation (4.15) implies that

* — lim 1/6 (\/Eu(x,t) —v(z, t))2dx =0.

=0+ 60 Jo

(4.15)

Indeed, if we take ¥(x,t) = £(x)C(t) in (4.15), where £(x) is a smooth approxi-
mation of (6 — z)xo,5, and ¢ € C;((0,00)), then

/ / (2u — Va)(§ — 2)C'(t) — (Vau — v)?¢(t)dzdt = 0,

S0
/ / au — v)2¢ (1) dadt = O(62).
Next we prove that lim._,04 L(¢) = 0. We follow [3, 16], and use that
2(j+1)Ax) ey
L e imade =0 (4.16)
2jAx
for all n, j. This a direct consequence of the definition of Uy; and the linearity
of 7. From the definition of L in (4.14), and (4.16) we have
N

L= > [T (ol man

n=1,j=0"2jAz
—6((2) + 1)Az, nAb) (In(U*)]iZhar50) de
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for some N = N(¢,¢) € N. Then

POTETATD Sl ik

t=nAt—0
Ue) t:nAt+0‘ dz

n=1,7=0
(j+1)Az) .T) _
< e oo A Ue t:nAt—OQ d
ot > [10 (R + VB =iy ) as
N ]+1)Aa:
—mxuqﬁznm{ S oaers Y [V nomin }
n=1,7=0 n=1,;=0" 22
(4.17)

The last term in braces is majored by a constant because N = O (1/(Ax)?) and

because we have [3]

N 2(j+1) Az
Z s/QJAZ

n=1,j=0

UN=A| de < const.,

due the existence of an strictly convex entropy for the system (), namely, n(U) =
|U|2. From (4.17) we have lim. oy L(¢) = 0.

References

[1] Chen,G. Q., and Kan, P. T., Hyperbolic conservation laws with umbilic
degeneracy I, Preprint (1993)

[2] Chen, G. Q., and Kan, P. T., Hyperbolic conservation laws with umbilic
degeneracy 11, Preprint.

[3] DiPerna, R. J., Convergence of approximate solutions to conservation laws,
Arch. Rat. Mech. Anal. 82 (1983), 27-70.

[4] Dubois, F., and LeFloch, P., Boundary conditions for nonlinear hyperbolic
systems of conservation laws, J. Diff. Eq. 71 (1989), 93-122.

[5] Frid, H., and Santos, M.M., Nonstrictly hyperbolic systems of conservation
laws of the conjugate type, Comm. Part. Diff. Eq. 19 (1&2) (1994),
27-59.

[6] Gomes, M. E., Problema de Riemann singular para wm modelo de quarta

ordem em escoamento multifdsico, Thesis, 1987 (in Portuguese)



QUADRATIC SYSTEMS OF CONSERVATION LAWS 31

[7] Heidrich, A., Global weak solutions to initial boundary value problems for

the onedimensional quasilinear wave equation with large data, Arch. Rat.
Mech. Anal.

[8] Hoff, D., Invariant regions and finite difference schemes for systems of con-

servation laws, Trans. Amer. Math. Soc. 289 (1985)(2), 591-610.

[9] Isaacson, E., Marchesin, D., Plohr, B., and Temple, B., The Riemann

[11]

[12]

[13]

problem near a hyperbolic singularity: the classification of solutions of
quadratic riemann problems I, STAM J. Appl. Math. 48 (5) (1988), 1009
1032.

Isaacson, E., and Temple, B., The Riemann problem near a hyperbolic
singularity II, STAM Appl. Math. 48 (6) (1988), 1287-1301.

Kan, P. T., On the Cauchy problem of a 2 x 2 system of non-strictly

hyperbolic conservation laws, Thesis, New York University, (1989).

Kan, P.T., Santos M.M., and Xin, Z. Initial boundary value problem and

boundary behavior for conservation laws, in preparation.

Marchesin, D., Paes-Leme, P.J.; Schaeffer, D. G., and Shearer, M., Solu-
tion of the Riemann problem for a prototype 2 x 2 system of non—strictly
hyperbolic conservation laws, Arch. Rat. Mech. Anal. 97 (1987), 299-320.

Schaeffer, D. G., and Shearer, M., The classification of 2 X 2 systems of
non-strictly hyberbolic conservation laws with application to oil recovery,
with Appendix by Marchesin, D., Paes—Leme, P.J., Schaeffer, D.G., and
Shearer, M., Comm. Pure Appl. Math. 40 (1987), 141-178.

Smoller, J., Shock waves and reaction—diffusion equations, Springer—
Verlag, (1982).

Takeno, S., Initial boundary value problems for isentropic gas dynamics,
Proc. Royal Soc. Edinburgh, 120A (1992), 1-23.



32 P. KAN M. SANTOS Z. XIN

[17] Wendroff, B., The Riemann problem for materials with nonconvezr equa-
tions of state II: general flow, J. Math. Anal. Appl. 38 (1972), 640-658.

Pui Tak Kan Marcelo M. Santos

Department of Mathematical Sciences Departamento de Matematica
Indiana University-Purdue University Universidade Federal da Paraiba
402 N. Blackford Street Joao Pessoa, PB 58 059-900
Indianapolis, IN 46202 Brazil

USA e-mail: ccendm20@brufpb.bitnet

e-mail: pkan@math.iupui.edu

Zhouping Xin

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street

New York, NY 10012

USA

e-mail: xinz@cims.nyu.edu

Received October 31, 1995



