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PHASE TRANSITIONS AND OSCILLATION WAVES
IN AN ELASTIC BAR

Hermano Frid* and I-Shih Liu*

Abstract

In this note we present the results of a study of numerical solutions for
a system representing a rate-type viscoelastic model describing the evolu-
tion of a material point in a bar of a material capable of phase transition.
The appearance of the so-called oscillation waves is investigated and its
mathematical meaning is understood, regarding the viscoelastic system
and the passage to the limit when the relaxation time goes to zero. We
call attention to the resemblance between the pattern associated with
the oscillation waves and the experimentally observed laminated micros-
tucture of alternating phases in single crystal samples of shape memory
alloy. A number of numerical experiments concerning the asymptotic be-
havior of many important physical quantities, such as stress, strain and
phase fractions, is shown and the results are seen to be consistent with
the expected ones, resulting from physical considerations.

Resumo

Neste artigo apresentamos os resultados de um estudo sobre a solucao
numérica de um sistema representando um modelo viscoeldstico “rate-
type” para o movimento de pontos materiais em uma barra elastica capaz
de realizar mudanca de fase. Quando o pardmetro de relaxacdo vai para
infinito o sistema se reduz a um sistema 2 x 2 modelando elasticidade ndo-
linear com funcdo de tensao nao-monétona. Ao perturbar um estado na
regido das misturas de fase observa-se a ocorréncia de oscilagoes persis-
tentes, denominadas ondas de oscilacio. Mostra-se que tais ondas estdo
associadas a solugoes no sentido de fungoes a valores-medidas do sistema
limite 2 x 2. Para a obten¢do dos valores esperados de fungoes de estado
de interesse, como tensdo, energia, fracao de fase, etc., correspondentes as
solucoes a valores-medidas associadas as ondas de oscilagdo, um método
numérico baseado nos resultados teéricos mencionados é fornecido, e os
resultados analisados, obtendo-se plena coeréncia com os fatos fisicos
conhecidos.
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1. Introduction

We give a numerical treatment of phase transition in elasticity with a non-
monotone stress-strain relation [1]. It is obtained from a sequence of solutions
for a rate-type viscoelastic problem, for which in the limit as the relaxation pa-
rameter tends to zero the viscoelastic problem reduces to the rate-independent
elastic problem. It is interesting to note that numerical solutions may present
an evolution marked by the appearance of a progressive chain of stationary
jump discontinuities, which we call oscillation waves. Jump discontinuities in
strain, between two values representing two different phases, resemble the ex-
perimentally observed interface patterns of phase mixtures in single crystals of
shape memory alloys during martensitic transformation [2].

For one dimensional motion of a solid body in the absence of external forces,

we have

p O — Opoe(e) =0,
at«, = 0I’L‘ = 0,

where p is a constant representing the reference mass density, v the velocity,

(1)

¢ the Lagrangian strain, and o = o.(¢) the stress-strain relation for an elastic
body. The system (1) is hyperbolic if do./de is positive, and elliptic if do. /de is
negative. It is well-known from stability analysis that the states with negative
do./de are not stable equilibrium states.

We shall consider the initial value problems for (1) with initial data
v(x,0) = vo(x), e(x,0) =co(z), =€ R. (2)

In order to describe phase transitions and for simplicity in our numerical ex-
periments, we shall take a non-monotone piecewise linear stress-strain relation:
Eie, e <€y,
oe(e) =% Frea— M(e — e4), €a < €< e, (3)
Eies— M(em —ea) + Ex(e —em), € > e,
where 0 < ¢4 < e, and Ey, Fy, and M are positive material constants.
Our approach to find the numerical solution of the elastic problem (1), (2)

will proceed by means of a numerical scheme which is primarily intended to
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approximate the solution which describes the one dimensional motion of a vis-
coelastic body by replacing the elastic stress-strain relation with a rate type
viscoelastic relation (see [3]):
p O — 0yo.(e) =0,
Oe — Opv =0, (4)
0o — E0yv = —k (0 — 0.(e)),
where £ > 0 is a Maxwell-type viscosity constant, or 1/ is referred to as the
relaxation time parameter. We shall refer to o.(¢) as the equilibrium stress-

strain relation. Note that the system (4) is strictly hyperbolic, and we shall

consider the following initial data corresponding to (2):
v(x,0) =vo(z), e(z,0) =co(z), o(x,0)=0c(co(x)), 2z€R. (5)

Intuitively, if one can obtain a sequence of solutions, (v*,e", %), for the vis-
coelastic problem (4), (5), as parameter £ — oo, one would expect that the

sequence (v”, ") might converge to a solution of the elastic problem (1), (2).

2. Approximate Solutions of Riemann Problems

We shall consider Riemann problems for (1), which can be written as a 2 x 2

system of conservation laws in the form,

w4 0, F(u) =0, u € R, (6)

with initial data,
o Jug, for x <0, .
u(“L’O)_{ up for >0, (M

where w = (v,¢) and F(u) = (—o.(g),—v). Such a problem has the property
that if w(x,!) is a solution then so is u(ax,at) for any a € IR. We shall refer
to this as the scaling property. Numerically, this property implies that ap-
proximate solutions for successive refinements of grid spacings can be obtained
simply by scaling from a solution based on a fixed grid spacing at successive

time steps.
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Following the idea stated in the previous section, we shall consider successive
approximate solutions of the corresponding Riemann problem for the hyperbolic
viscoelastic system (4), (5) as the Maxwell viscosity £ — oo in such a way that
the grid spacing is inversely proportional to . In this manner, owing to the
scaling property mentioned above, one can construct a sequence of approximate
solutions for successive refinements of grid spacing and increasing x simultane-
ously from a fixed one at successive time steps, for certain given x and grid
spacing.

Let Az, At be grid spacings and o = kAl. For some given «, the approxi-

mate solution at the grid points, x = 1Az and { = jAL, is defined as
va(z,t) = v, ea(z,t)=€l, 0oalz,t) =0l (8)
Using the characteristic variables,
p=0+co, q=0—cv, r=o0— Ke,
where ¢ = V/E, the system (4) becomes
Op — cOpp = —G(p,q,71),
0+ cOrq=—£G(p,q,r), (9)
Or = —kG(p,q,r),
where G(p,q,r) = (p+ q)/2 — o(1/E((p + q)/2 — r)). Given fixed AL, Az =
¢Al, and k, we obtain an approximate solution for (4), with the method of
characteristics using (9) [3], by setting
pit = pl = mALGL,
g’ =q —kALGL, (10)

it =l — kALG,

t

where G = G(p{,q{,‘rf-). It is easy to see that such a scheme has the scaling
property.
Now, let @ = k’Al’ be fixed for some given &' and Al’. By the scaling

property, we can construct a sequence of approximate solutions with x = n«x’
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and At = At'/n, from the approximate solution (8) (or equivalently (10)) with
fixed a by defining
u"(z,1) = u,(nz, nt). (11)

Successive refinements of grid spacing and increasing « are thus effected simul-
taneously from a fixed one, with given x and grid spacing, as the time step n
increases.

This scheme allows an energy estimate (see [4, 5]) and hence ensures the
uniform local boundedness of the total energy if « is small enough. Such a
scheme is absolutely stable and can be proceeded to arbitrary number of time
steps.

Indeed, we recall that the viscoelastic system admits a free energy function
¥(e, o), given by [5]

11/7(67 O-) = (0’ - ES),

where ¢ is defined by

H(r)= Zolh (), H0)=0, TER,

with h(e) = oo(e) — Ee, ¢ € IR. This function satisfies

d zﬁ dw o

d(f = o, %(J —o.(¢)) >0, (0,0)=0.

For smooth solutions, the total energy e* defined by

satisfies
der O(ov) o J
o or - g ool

We define the total energy for the body at 0 <t < T by
R+c(T—t)
e(l; Al k) = / e ((v,e,0)(x,l; Al,k)) dz,

—R—c(T—t)

which have the following property:
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Proposition 1. Assume that

E—E
E+M

Then, for any T > 0,0 < { < T, we have

kAL < 2

e(t; At, k) < e(0; AL, k).

This result allows us to obtain local uniform bounds in L? for the sequence
of approximate solutions ©™. Indeed, for any compact domain K C IR x [0, 00),
we have

" |lzr ) < M(K), (12)

for p = 2 and for some positive constant M(K') independent of n.

2.1. Measure-valued solutions

We recall here an adaptation of TARTAR’s result about the existence of Young
measures [6]. We denote by C,(IRY) the space of the functions h € C(IRY)
such that

|fo(w)]

su <d
wern L+ [ul?

oQ,

for some ¢ € [0, p).

Lemma 2. Let K be a compact domain of IR x [0,00), 4™ be a sequence
satisfying (12) and let F be a closed subset of RN such that u"(x,l) € F for
a.e. (x,1) € K. Then, there exist a subsequence u™ and a parametrized family

of probability measures v, 4, called Young measures, satisfying the following:
1. suppyyy C F, for a.e. (z,1) € K;

2. foreach h € C,(IRN) we have h(u™) — h, in the sense of the distributions,
where h is given by

R(2,8) = (g, h) 1= /h(u) dip.(w). (13)

In dealing with our numerical experiments, we use the following result [4]:
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Theorem 3. Assume that u", n € IN, have the scaling property and satisfy
(12) for any compact domain K C IRN. Suppose that for some h € C,(IRY) the

sequence of functions in L, (IR), the mean value of h up to the instant { =T,

(h(u))r(6) = 5 [ halet, )t (14)

converges weakly, as Radon measures, to a certain function (h)(€) € Lj (IR).

loc

Then, for a.e. £ = x/t, we have

(v, h(w)) = (h)(z/1), (15)

and hence i_z(bL7 1), is a function of x /1 only. Furthermore, assume that
(wyr = (u),  (|ul’)r = [(w)],

in the above sense, where (w)(£) is a vector function in L}, (IR), and 1 < q < p.

Then u" converges strongly in Li, (IR x [0,00)) to a vector function w(x, 1) with

1
loc
the scaling property.

In [4], by the use of Proposition 1, we have proved that when n — oo, hence

Kk — 00 too, a subsequence of the approximate solutions (11) converges weakly

and generate a measure-valued solution of the original elastic problem (1), (2).
Theorem 4. If

E—FE

E+ M’

then the Young measure v, ; obtained applying Lemma 2 to the sequence (u", v™)

kAL < 2

is a measure-valued solution of the Riemann problem for (6), (7).

The notion of measure-valued solution, after DIPERNA [7], is given in the

following definition.

Definition 5. Let P(IR™) denote the set of all probability measures over IR".
A measure-valued solution to (6), (7) is a mapping v : IR x [0,00) — P(IR"),

denoted by v, 4, such that v, are Young measures and satisfy

//Bx[o,oo){<yr't’ w)dy + (s, F(uw)) .} dudl + /_OO u(z,0)p(x,0)dz =0
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for all ¢ € C5°(IR x [0, 00)).

In other words, a measure-valued solution satisfies the conservation laws

with the mean values of the state vector and its flux,

O (u)(x, 1)+ 0, (F(u))(z,1) =0, (16)

in the sense of distribution. Numerically, according to (14), we can calculate

those mean values up to the instant 7 from the following approximate formulas:

(u)r(§) ~ Zkujk, (17)

n +1
and

(Fu))r(§) ¥ —— r1 sz (18)

where T = nAl, j, = [ke™ ] Slmllarly, we can also calculate

(lel*)r (&) Zkl A (19)

n, +1

and hence compute the numerical quadratic error by

er(€) = (Jul*)7(§) — (u)z[*(§). (20)

We have, by Theorem 3, that if (w)r converges, and €2 converges to zero, then

(u)r(x/t) converges strongly to w(x,1) giving by (13).

Remark. A more thorough discussion of measure-valued solutions would have
to include some sort of admissibility criteria to rule out physically irrelevant
solutions. For hyperbolic systems this can be done by means of an entropy
inequality, as in [7]. In the case of systems that change type as the one con-
sidered here, no such criteria are readily available. One way around for this
problem is to resort to the reliability of the approximation sequence that gener-
ates the measure-valued solution. We then remark that the admissibility of the
measure-valued solutions considered here is clearly assured by the fact that they
are obtained from a reliable numerical scheme. We avoid here further discus-
sions on this subject and we refer to [4] for a numerical experiment concerning

entropy-rate criterion and the oscillation waves.



PHASE TRANSITIONS IN ELASTIC BAR 131

3. Numerical Results for Phase Mixtures

We take a typical set of material parameters from a shape memory alloy,
a CuZnAl single crystal with its experimental data [2]: p = 7740 Kg/m?,
ea = 092%, ey = 7.60%, E, = E, = 12.31GPa, M = 0.272GPa. We
also take ¥ = 20.00 GPa and oo = kAl = 0.755.

Figure 1: Strain oscillation for ¢g = 2% at time step 500000

We restrict our attention to the instability of the states in the unstable re-
gion. Therefore we consider Riemann problems with the same left and right
initial data: v? = vo, €? = g, 0 = 0c(co), for + = £1,42,- -+, together with a
small disturbance, say, at a single grid point, : = 0. We remark that, at large

number of time steps, the mean values of state functions associated with the
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numerical solution does not depend upon the particular choice of disturbance.

Figure 2: Mean strain for g = 2% at time step 500000

Note that for vy = 0, the initial state is an equilibrium state, however, if
ex < €9 < &p, 1t is not a stable state. Indeed, we have found that a small
disturbance at * = 0 at the initial time does not die out and, instead, it may
evolve into a non-trivial solution with persistent oscillations. In Fig. 1 the
approximate solution e(x, () at time step 500000 for (vo, e0) = (0, 0.02) is shown
as a function of #/{, more convenient in view of the scaling property. It shows an
oscillation between two values of ¢, around ¢4 and e3;. We can also determine
the mean values by (18) for the state variables v, € and the stress o in order to
verify that the mean values satisfy (1). In Fig. 2 we show, as an example, the
mean value &(z,1) also as a function of z/t. From this graph, it is easy to see
that & converges to the initial value almost everywhere. The same is true for
the mean values of v and . Therefore, the mean values (v,&) coincides in the

limit with the equilibrium solution (v,¢) = (0,0.02).
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Figure 3: Patterns of phase mixtures

Comparison of the oscillation patterns in the approximate solutions at dif-
ferent time steps reveals an interesting fact that the oscillation patterns tend to
become stationary at the grid points. In Fig. 3 we amplify the graphs of ¢(x, )
in an interval of 2000 grid points, for the initial equilibrium strains eg = 3%
and g9 = 1.75%. It shows an oscillation between two states €4 and &7, corre-
sponding to the two different phases. These patterns can be interpreted as the
microscopic structure of the phase mixture with stationary interfaces, resem-
bling the experimentally observed band-like structure of single crystal samples
of shape memory alloy during martensitic transformation [2].

Physically, we can associate the phase fractions with each strain &g in the
interval (e 4, €pr) as the coefficients in the convex combination of the correspond-
ing strains, &1 < €4 and &5 > epr, in the two pure phases at the same stress

level, namely, o.(g0) = o.(¢1) = oc(e2),
50:(1—2)61+Z€2, (21)

where z is the phase fraction of the martensitic phase. From the numerical point

of view, at each time step from the above oscillation pattern, we can determine
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the phase fraction over a fixed interval of grid points as the fraction of the
length of the intervals of that phase to the total length of the interval and we
have found an almost perfect agreement between the phase fractions determined
numerically in this manner and that calculated from (21) for 1.5% < ¢o < 7.0%
at large number of time steps in our experiments: As examples, we obtain
2z =10.312 for 6 = 3% and z = 0.124 for ¢ = 1.75 %.

On the other hand, from the approximate solution, we can also define phase
fraction as a state function given by

1, ife <ey, 1, ife>enm,
'[1(6):{0./ he=ca fz(s):{ gk ko

otherwise, 0, otherwise.

In our numerical experiments, we have also determined the mean values of
these functions, with respect to the measure-valued solutions associated with
the states (0,¢) for € € (4,enm). The experiments show that these mean values
also agree with the coefficients (1 — z) and z in (21) respectively, and more
interestingly, the mean phase fraction is constant almost everywhere in the
limit, which means that the phase mixture is macroscopically homogeneous.

For more discussions on phase fractions and the interface patterns see [8].
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