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ON A NEW CONCEPT OF ASYMPTOTIC
STABILITY FOR RIEMANN SOLUTIONS

Hermano Frid *

Abstract

We introduce a new concept of asymptotic stability for Riemann so-
lutions and apply it to scalar inviscid and viscous conservation laws with
non-convex flux functions and to a class of degenerate systems of conser-
vation laws.

Resumo

Neste artigo introduzimos uma nova nogao de estabilidade assintética
para solucoes de Riemann de sistemas de leis de conservacdo. Provamos
entdo a estabilidade assintética de solugdes de Riemann para leis de con-
servagao escalares em uma dimensdo de espaco, nos casos nao-viscoso e
viscoso, e para solugdes de Riemann de uma classe de sistemas degene-
rados.

1. Introduction

We are concerned with the study of the asymptotic behavior of solutions to
initial value problems for conservation laws, or viscous conservation laws, whose
initial data are disturbances of given Riemann data. More specifically, let u(z,t)

be a solution to the system of conservation laws
Oru + 0 f(u) =0, (1)
or to the viscous system of conservation laws,

O + 0, f(u) = Dgu, (2)
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satisfying the initial condition

u(@, t)]i=o = uo(2), (3)

and let u*(z,t) = V(z/t) be the solution of the Riemann problem given by (1)

and
(4)

Assume uo(z) = ug(x) + h(z), with h representing a disturbance decaying to 0

. . ur, ifx <0,
(T, t)]i=0 = ug(x) == { u; ifx>0.

as |r| — oo sufficiently fast. Setting £ = x/t, we are interested in answering

the question whether

lim l/OT|u(gt,t) — V()| dt =0 (5)

T—oo T

in Lio ¢ @S a sequence of measurable functions indexed by T', of the variable

e R

Definition 1. We say that the Riemann solution is weakly asymptotically stable

under the perturbation A for (1) or (2), according to the case, if (5) holds.

The motivation for considering the limit in (5) to study asymptotic stability
of Riemann solutions comes from the following observation established before
in [4,5].

Lemma 1. Suppose u(z,t) and V(x/t) are uniformly bounded in IR X [0,00).
Then, (5) implies that the scaling sequence u(x,t), given by

us(x> t) :u(§>£)7 (6)

converges in Ly (IR x [0,00)) to V(x/t).

Here we will be mostly concerned with the case of scalar conservation laws.
In section 2 we treat the case of BV solutions to (1), in the scalar case. We

show that under fairly general hypotheses on f and on the initial disturbance
h we have (5).
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In section 3, we obtain the same result for a class of degenerate systems of
conservation laws. In this connection, we recall that the asymptotic behavior
of solutions of the same system treated in section 3, under more restrictive
assumptions, were studied in [13]. In section 4, we consider the viscous equation
(2), and show that the techniques applied in section 2, for BV solutions of (1),
may also be applied to show the validity of (5) for solutions of (2), in the scalar
case. The result obtained here, for the viscous equation, improves on the results
known so far in the sense that it establishes the asymtotic stability (in the above

sense) of the Riemann solution as a whole (¢f. [9, 15]).

The study of asymptotic stability of Riemann waves for solutions of viscous
conservation laws began with the pioneering work of II'in & Oleinik in 1961
[8], whose results were extended to systems of conservation laws in the 80’s
by Goodman [6] and Matsumura-Nishihara [14], giving rise to a number of
papers on the subject (see, e.g., [21], [11], and the references therein). The
usual concept of asymptotic stability means convergence in LP(IR), for some
p € [l,00], as t — oo, of u(-,t) to a traveling wave of the viscous system
(viscous shock wave) or to a viscous rarefaction wave of the viscous system of
conservation laws associated with it. It is easy to see that this convergence
implies (5), with V' equals to the corresponding shock or rarefaction wave of the
inviscid system, whenever u and V are bounded in IR X [0, 00). This justifies the
name “weak” asymptotic stability. This weaker concept has, therefore, the good
features of implying the strong convergence of the whole scaling sequence, as
given by Lemma 1, and being an actual extension of the notion usually adopted
so far. It has also the advantage of allowing results of asymptotic stability not
known yet for the usual definition, as the result for the whole Riemann solution
of a general scalar conservation laws in one space variable, which we present

here.

We end this introduction with some final comments more. The ideas set
forth in this note are currently being extended to a much more general con-

text, in collaboration with Gui-Qiang Chen [3], who helped the author with
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many valuable suggestions during the preparation of this work. There is also
a very active line of research in the analogous problem of asymptotic stability
of traveling waves for equations of reaction-diffusion and dispersive type, where
the spectral analisys has played a decisive role. In this connection, we refer to
[17], [20]. We are not sure about the utility of the concept introduced here for
this last class of equations, since they require a different qualitative approach,
as one may realize from simple examples like the KPP waves [17]. However,
we do think that it can be of effective use in the field of conservation laws,
among other reasons, by its ability to provide an unified treatment for linear

and nonlinear waves.

2. BV solutions of scalar conservation laws

We will treat the case of BV solutions of (1), (3), when (1) is a scalar conser-

vation law. We will prove the following.

Theorem 1. Let (1) be a scalar conservation law with f € C?(IR) and h €
BV(R) N L'(IR). Let u(z,t) be a solution of (1), (3) satisfying the entropy
condition: for every entropy-fluz pair (n,q), withn convez, and all ¢ € C3(IR?),
with ¢ > 0, we have

/] it )6+ atuta, )6} dode > o (")

Then (5) holds for a.e. £ € IR. In particular, the Riemann solution is weakly
asymptotically stable for (1).

Proof. We consider domains of the type:
EY"={(z,t) e R»2|0<t<T, &t <z < 400}, (8)

B ={(z,t) e R2|0<t<T,—oco <z <{t} (9)

The fact that u(z,t) € BV (IR x [0,T)) together with (7) imply, upon making ¢

approximate the characteristic function of Eng, for n, g, a convex entropy-flux
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pair, that
T @) de + [ plu(e, T
/0 /fg (10)
- | e+ outer.dr <o
0 T
—/ n(uo(z)) dz +/ n(u(z, T)) dx
- (11)

+/ £n+ q)(u(et, 1) dt < 0,
provided that n(ug) = 0, in the first case, and n(ur) = 0, in the second one. We
will make use of three families of entropy-flux pairs m; (u, @) = (1;(u, @), ¢;(u, @)),

1 =1,2,3, where @ is to be viewed as a parameter:
mu, @) =|lu—1al, qu,a)=sign(u—a)(f(u)— f(a)), (12)
M(u, @) = Hu—a)(u—a), @u,1)=Hu-a)(f(u)-f(@), (13)
ms(u,u) = Hu—u)(@—u), g¢s(u,u)=H@-u)(f(a)- f(v). (14)
Here H(s) denotes the well known Heaviside function, i.e., H(s) = 0, s < 0,
H(s)=1,s> 1

It is well known that the solution of (1), (3) for h € BV, satistying (7), is
unique, belongs to BV (IR x [0,T)), for all T > 0, and is uniformly bounded
[22]. So, we have, in particular, a < u(z,t) < b, with ¢ < min{ur, ug} <
max{ ur, ug } <b. To show the type of techniques involved in proving (5) we
start with the simple case where f is a convex function. In this case, for the
solution of (1), (4) we have only two possibilities: if u; > ug, a shock wave

with inclination s given by the Rankine-Hugoniot relation
s(up —ur) = f(ur) = f(ug); (15)

and if u, < ug, a rarefaction wave where for f'(ur) < z/t < f'(ur) we have

V(z/t) = 7} (z/t).

Set,
— 1 /
$m = min f (w),
Ev = max f'(u).

u€[a,b]
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So, let us consider separately each one of the two cases:

(i) up > ug, shock wave.

So, for the case of a shock wave, we start by taking & in the interval
(éar, +00). We take the entropy-flux pair 7 (u, ur), given by (12), with @ = ug.
By (10), we have

/ |u — upl|(€ flu ) ( )(étt dt</ lug(z) — ug|dz. (16)
Dividing by 7" and making 7" — co we get
Jim f/ u— gl (6 — L =S @Ry 4 g o (17)

U —UR
since the integrand of the left-hand side of (16) is non-negative. We could then
conclude the convergence we wish to prove, for £ € (&, 400), but we will
proceed with a reasoning which will be systematically used in what follows. We

consider the measures 1 given by

(&t,1)) 18
() = 7 [ hlater, (18)
for all h € C([a,b]). They are probability measures on [a, b] and, so, given any
subsequence of 45, we can find a further subsequence converging to a certain

ué € IP([a, b)), the set of probability measures on [a, b]. Now, by (17), we have

(0, u — ul(g — LW — Ty,

e = 0. (19)
This is possible only if y¢ = §,,, the Dirac measure concentrated at ug. Since
this holds for any subsequence of ;fT, we then have p§ — d,,,. So we get (5) for
€y < € < Hoo.

For & € (f'(ur), &), let ue be the only point so that

f'(ug) = €. (20)
We take the pair m(u,ue), given by (13). We observe that we must have
ug > ur. So, we can apply (11), to get

UUE

[ = - w2 e o
i 21
< /_Oo H (ug(x) — ue) (uo(x) — ug) d.



ON A NEW CONCEPT OF ASYMPTOTIC STABILITY 105

Again, given any subsequence of 1, we obtain a subsequence converging to a
certain u¢ € IP([a,b]). For this pf, we have by (21)
fw) = f(u

(1) = f(u0)y _

(1, H(u — ug) (u — ug)(—€ + rp— ; (22)

since the integrand in the left-hand side of (21) is non-negative. This implies

that supp ¢ C [a, ue]. Now, by (16), we also have

W fu— )¢ — L TRy (23)

U—UR -
Then, since supp p¢ C [a, ug], there must be p¢ = 4,,. For £ € (s, f'(ug)), we

first consider the entropy-flux pair ms(u,ur). Then, again using (11), we get

[ B ur)(u— ur)(—€ +Heedy e 1) dr

(24)
< A H(uo(z) — u)(uo(z) — uz) da.
and, so, as above, for ¢ obtained from u% in the same way, we have
u) — f(u
(1 B~ ug)(u— ug) (¢ + DOy g (25)

U —ug
This implies supp ¢ C [a,ur] and, hence, (23) implies pué = §,,,.

For £ € (f'(ugr),s), we first take the entropy pair ms(u,ug), given by (14),
with @ = ug. So, applying (10) we get, for ué obtained as above, supp ué C
[ug,b]. Then, taking the pair m (u, uy) and applying (11), we get

g (g + L=y < (26
which implies p¢ = 8,, and, therefore y§ — d,,. The cases £ € (&, f'(ug)) and
€ € (—00,&y) are analogous to the cases € € (f'(ur), &) and € € (Epr, +00),

respectively. This concludes the proof of (5) in the case of the shock waves.

(i1) up < ug, rarefaction waves.
For —oco < & < &, we consider the entropy-flux pair m (u,uy) and apply

(11) to get

/|u—u\ () ii ))(fttdt</ luo(z) —ug|de. (27
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So, we obtain as above y§ — 8., For &, < &< f'(ur), we consider first the
the entropy-flux pair ms(u, ue), with ug < wug, given by (20). Then, applying
(10), for uf, we get

(4, H (g — u) (g — w)(6 - L8 =Ty (28)

Us — U
This implies supp pé C [ug, b]. We also have

0 = gl + L=y <

by (27), and, so, we must have again ;¢ = §,, , which implies i — 6,, .

For f'(ur) < &€ < f'(ur), we use the pairs m(u, u¢) and ms(u, ue), again with
ug given by (20). Using (10), with (1, ¢) given by ms(u, u¢), and (11), with (7, ¢)

given by 2 (u, u¢), we obtain, for ¢ as above, (28) and, also,

0 Hw = )= ug)(—¢ + LI g (29)

and, hence, y¢ = d,,, which implies yi§ — d,,.

The case £ > f'(uz) is analogous to the case & < f'(uy). Therefore, we get
(5) also in the case of rarefaction waves, and, then, we have proved the weak

asymptotic stability of the Riemann solutions for scalar conservation laws with
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convex flux function.

We now consider the case when f is not a convex function. Let g denote
the convex envelope of f on the interval [ur,ug], if ur, < ug, or the concave
envelope of f on the interval [ug,uz], if ugp < uy. That is, ¢ is the maximum
among al

1 convex functions on [ur, ug], whose graphs lie below the graph of f, in the
first case, and the minimum among all the concave functions on [ug, uy], whose
graphs lie above the graph of f, in the second case. It is well known that, in any
case, the solution of the Riemann problem will be either a single shock wave or
a composition of success

ive one- or two-sided contact discontinuities connecting the extremes of in-
tervals where g is linear, separated by rarefaction waves connecting the extremes
of the intervals where the graphs of f and g coincide (see fig. 1).

Let us assume, to fix ideas, ur < ug. We first show that, for a.e. £ € R,
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we have supp p¢ C [ur,ug|. Indeed, by Sard’s Theorem (see, e.g., [18]), the set
N consisting of those & such that f”(ug) = 0 for some ue satisfying f'(ue) = &,
i.e., the set of € that are not regular values of f’, has zero Lebesgue measure.
Let us take £ € IR — N. Consider the finitely many points a < uf < v <
.. <uf <wug,such that f'(uf) =& k=1,...,N, and also the finitely many
points up < T < BT 1 < »vs < U < b, such that (@) =& j=1,..., M.
Beginning with ug, we must have either f'(u) < ¢, for € € [a, ug], or f'(u) > €,
for u in the same interval. We take the pair m3(u, ug). If f'(u) < &, for € € [a, ug],
we apply (10), if f'(u) > &, in that interval, we apply (11). In either case, we
conclude supp u® C [ug,b]. Next, we take the pair ms(u,uZ). Now, we must
have either f'(u) < &, for u € [ug,ug], or f'(u) > &, in this same interval.
So, using the pair m3(u, uf) and applying (10) or (11), we, then, obtain that
supp p¢ C [ug,b]. Continuing this process up to ug’, we get supp u¢ < [ug’, b].
Now, we take the pair m3(u,ur) and argue the same way once more to get
supp pi¢ C [ug,b]. Analogously, we take the pair 7y (u, ;) and apply (10) or
(11), according to whether f'(u) <&, for u € [ag,b], or f'(u) > &, in this same
interval. So, we get supp u* C [ug, @f]. Arguing the same way, taking su

ccessively the pairs m(u, 4F), To(u, @), .. . ,m2(u, @'), and, finally, m(u, ug),
we arrive at supp pué C [ug, ug|.

Now, for £ € (—o0,g'(ur)), we take the pair 7 (u, ur), and observe that

§< M’ ifu e [ulnuR]'
Uu—ur
So, using (11), we get ¢ = d,,, and, so, u§ — 8,,. For € € (¢'(ug), +00), we

take the pair 7 (u, ug) and observe that

§>W, if u € [ug,ug).

So, we apply (10) to conclude that ué = 4,,, and, therefore, ;fT — J,,,. Finally,
we consider £ € (¢'(ur), ¢'(ur)) such that if ¢'(ue) = &, then ¢”(ue) # 0. There
are only finitely many &’s in (¢'(ur), ¢'(ug)) which do not satisfy this condition.

So, for ¢ satifying this condition, we take the pairs ma(u, ue), ms(u, ue), with u
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given by ¢'(ug) = £ (observe that we also have (20)), and notice that

Ll ) TR S}
u—’l.l,g
and
£ < %@ZUS) if u € (ug, ug)-

So, applying (10) for 7 (u,ue), and (11) for ms(u, ue), we obtain pe = d,,, and,

therefore, ;LET — 6y¢- This concludes the proof of the theorem.

3. A class of degenerate systems of conservation laws

In this section we study the weak asymptotic stability for BV solutions of initial

value problems for systems of conservation laws of the type
Oy + 9y (g(|ul)u) =0, (30)

where 4 € IR" and ¢ : (0,00) — IR is a C! function satisfying ¢/(r) > 0. We
assume that we are given the initial data (3) with ug(x) = ui(z) + h(z), where
uf(x) is given by (4) and h € BV (IR) N L'(IR). We also assume that the initial
data satisfy:

Juofz)| > 1o > 0, (31)

and

(uo(x),v0) > 0, (32)

for all z € IR, for some 1y > 0 and some constant vector vy € IR". Without loss
of generality, we may assume vy = (0, ..., 1), the n-th element of the cannonical
basis. We denote r = |u| and © = (61,...,6,-1), where O, k =1,...,n—1

are given by
Up = 1 COS Oy, k=1,....n—1

Un = (1 —cos?fy — ... — cos® 6, _1)"/%.

So, we can write u = (r, ©) for each vector u in the halph-space determined by
(32).
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The vector function u is said to be an admissible weak solution of (30), (3),
if it satisfies:
o for all ¢ € CL(IR x [0,00)) we have

// {u(z,t)ps +u(x,t)g(|u(z, t)])p,} dedt
RX[0;00) . (33)
+ /_OQ uo(2)é(x,0) dx = 0;

e for any pair (7, ¢), with 1 a convex function on [0, c0), ¢ given by

a(r) = [ ()s9(s) ds,
and for all ¥ € C3(IR, [0, 00)), with ¢ > 0, we have

[ ey satr o)) o
RX[0}o0) (34)
+/ ¥(z,0)dz >0,

where 7(x,t) = r(u(z,t)), ro(z) = r(ug(x)).
Condition (34) implies that the function r(z,¢) must be a weak solution of
the problem
Or 4+ 0, f(r) =0, (35)

T’(I,t)|t:0 = TO(I)a (36)

where we set f(r) = rg(r). In particular, there exists a Lipschitz function y(z,t)

satisfying
8 =r(z,t

(@),
(ol
rof

t))7

2l
y 7
0) = z)dz

y(,

Now, if we choose ¢ in (33) in the fonn o(z,t) = p(y(x,t))x*(t), with ¢ any

\

function in Cj(IR) and x° a suitable sequence in C3(]0,00)) approaching the
characteristic function of [0, 7], when € — 0, for given T > 0, we will get from
(34)

| cos(6u(aly T), T))e(y) dy

= /,O:O cos(0x(2(y,0),0)0(y) dy, k=1,....n—1,
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where we use the notation 6(x,t) = 60, (u(z,t)). These equations imply that

Ok (z,t) must be determined by the formulas
O (z(y,1),t) = Ok(z(y,0),0), k=1, :cuym— 1. (38)

As a consequence, for any continuous function H € C(S™!), it holds (¢f. [19,
1, 2])
H(O(z,t)){r(z,t)¢ + f(r)¢o } dudt
Rx[0/00) (39)
+ /jo H(O(uo(x)))ro(x)é(, 0) dz = 0.

The system (30) is non-strictly hyperbolic (if n > 2) and its first n — 1
eigenvalues are linearly degenerated. Indeed, A\;(u) = ... = \,_1(u) = g(r),
and, so dp,A = 0, k = 1,...,n — 1. On the other hand, it is easy to see
that 0y, k = 1,...,n — 1, as well as 7, are Riemann invariants for (30). The
n-th eigenvalue of (30) is A.(u) = (rg(r)) = g(r) + r¢'(r) and is associated
with the decoupled equation (27). The solution of the Riemann problem (30),
(4) is, then, simply formed by a contact discontinuity with inclination g(rz),
connecting (rr,Or) to (rr, ©r) followed by the scalar wave given by © = O

and the solution of the Riemann problem for (35) with initial data

r <0

T b)
r(z,t)|=0 = { r; 1 5 (40)

where 1, = r(ur), rr = r(ug) (see [10]).

It is well known that, given an initial data ue(z) € BV (IR) satisfying con-
ditions (31), (32), one can prove the existence of a weak admissible solution
for (30), (3), by using Glimm’s method (see [19, 1, 2]). This solution will be
in BV (IR x [0,00)) and satisfies géilgro(x) <r(z,t) < Igleaﬂ%cro(x). We have the

following result.

Theorem 2. Let u(x,t) € BV (IR x [0,00)) be a weak admissible solution of
(50), (3), with uo(z) = uy(x) + h(x) for some h € BV(IR) N L'(IR). Then (5)
holds for a.e. £ € IR.

Proof. From (39) and the fact that v € BV, in the same way we have done in
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the scalar case, we get, for all 7' > 0

- /0°° H(0o(z))ro(x) dz + /°° H(O(z, T))r(z, T) dz

(41)
+ [ H©E D)r(en 0~ o(rie, 1) di =0,
for H € C(S™!) satistying H(©g) = 0, and
- H(Bo(z))ro(x) dx + O(x,T))r(x,T) dx
. [ -

+ [ HO(en D)r(en 0(-€+ lr(e, ) dt=0,

for H € C(S™™!) satistying H(©.) = 0, where ©; = O(uyz), and Or = O(ug).
Let 7*(z,t) = R(x/t) be the solution of the Riemann problem (35), (40), and
let e(r) be the convex envelope of f(r) on [rr,7g], if rL < rg, or the concave
envelope of f(r) on [rg,rr], if rr < rr. Given € € IR, we define the probability
measures (5 € IP([0,00) x S"~1) by

= [ Glriet, ), O(et, ) dr

for any G € C([0, 00) x 8™~ 1). Since the supports of all 45, T > 0, are contained
in a fixed compact of [0, 00) x S*~1, say K, the set {u }rso is relatively compact
in P(K), with the weak star topology of M(K). So, given any subsequence of
,ugT, with 7" — oo, one can find a further subsequence, which we still label the
same way, such that p — pf, for some pf € IP(K). Now, by the result of the

last section we must have
(1t = 14(8) ® drge),

for some v¢ € IP(S").
Now, for € < g1, = g(rr), we observe first that gr, < €/(ry), and, so, R(§) =
. Then, choosing H(©) = |© — O], from (42) we get for v*

(14,10 — OL) (=€ + g(R(€))R(E) < 0, (43)

and, then, we must have ¥ = dg,, which gives ,ugT — 6(pmy)- For g < € <

€'(rr), we again have R(£) = rr. So, choosing this time H(©) = |© — Og|, from
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(42) we get for v¢

(14,18 — Orl) (& — g(R(£))R(E) < 0, (44)

and, then, we must have v¢ = doy, which implies /ﬁT — 0(r,,0p)- FoOr e(ry) <
& < €'(rg), such that £ is not in the image by €' of the closed intervals where e
is affine or ¢’ vanishes, we have & = €/(R(&)) > g(R(€)). Then, again by (44),
we get V5 = dg,, and, therefore, ,ugT — (re),0p)- Finally, for £ > €(rg), we
have R(¢) = ry and, since €' (rg) > g(rg), (44) gives again ¥ = dg,, and, hence,

s O(rm,0p), concluding the proof of the theorem.

4. The Viscous Equation

In this section we prove the weak asymptotic stability condition (5) for solutions

of (2), (3), in the scalar case.

Theorem 3. There exists a smooth classical solution to (2), (3), u(z,t), in the
half space IR x (0,00), with f € C?(IR) and uo(x) = ui(x) + h(x), where uj is
given by (4) and h € BV(IR) N L*(IR). Further, (5) holds for a.e. £ € IR.

Proof. The existence of a smooth classical solution of (2), (3), under the
assumptions on the equation and the initial data, follows from the techniques
and results in [16] (see also [12]). The basic tools are the maximum principle,
the fact that one is able to prove that any local solution has the total variation
in  bounded by the total variation of the initial data, and a regularity result
for the local solution (see [16]). It remains then to prove the validity of (5), for
a.e. £ € IR. We begin by proving a fact about the solution of (2), (3) which
will be useful in the proof of (5).

Lemma 2. Let u(x,t) be the classical solution of (2), (3). Then, there exists
T >0 and C = C(T) > 0 such that, for 0 <t <T, one has

la()lloe < %nuonm. (45)
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Moreover, given any t; > 0, one has

s € L®(R X [t1, +00)). (46)

Proof. Following [7] one can easily prove that for sufficiently small T > 0, the

operator t
S(v) = K(t) * ug —A K. (t —s) = f(v(s))ds

is a contraction in
Boor={ve L®(Rx[0,T]) : |[v—1alle <1},

where K is the well known heat kernel, r > ||ug — @|| and @ is a constant state.
Therefore, there exists one and only one fixed point of S in B,. On the other
hand, by the maximum principle, u(z,t) € B,.or and it is clearly a fixed point
of S. Hence, u(z,t) is the only fixed point in B,,or. Again following [7], one
can also easily prove that if 7" is small enough, there exists C' = C(T') > 0 such

@ t e’} \/— 0ffooy t I

then S(v) also satisfies (47), 0 < t < T. Now, the fixed point of S, u(z,t),
can be obtained as limit in L*° of the sequence u™ = S™(@). By what was said

above, u" satisfies (47) for all n € IN. Hence, given any 0 < t, < T, we have

C
[ ]| oo (o, 17) < EHUOHW (48)

We claim that, given such 0 <ty < 7', we also have

el < =l (19)
where C' is the same as in (48). This can be achieved as follows. By the
compactness of the ball of radius (C/v/Tp)||uolleo in the weak * topology of
L>®(R X [to, T]), we obtain, passing to a subsequence if necessary, that u?* — ¥
for some 0 € L®(IR X [to, T]), with ||0]lc < (C'/v/T0)||tuo]loo- It is then easy to
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prove that o = d,u as distributions over IR X (to,T'), and therefore we conclude
(49). Now, to obtain (45), we argue as follows. We let ¢, run over all the
rational numbers contained in (0, 7). For each such ¢y, we obtain as above (49).

In particular, for each such ¢y, one has

[t (o) [0 < (50)

ol
\/E 0|loo-

Therefore, by density and continuity, one finally concludes (45).

We now prove (46). We first observe that the numbers 7" and C' for which
(45) holds depend only on bounds on the initial data and on the derivative of f.
In particular, (45) holds for any solution of the Cauchy problem (2), (3), as long
as the initial data admit a common uniform bound. So, given any 7 € [t1, 00),
we take 0 < & < min{t;, T}, where T is as above. We then apply the argument
above for the solution u(z,t) in the time-interval [T — §,7 — § + T]. Namely, we
consider the operator

t

)W) = K@) xu(r—8)— [ Kals) x f(v(t = 5))ds,

T—0

for t > 7 — 0. Since u(z,t) is uniformly bounded, we again have that S is a
contraction, now in B, 4, with t, =7 =4, t* =7 -6+ T. Arguing exactly as

in the proof of (45), one gets

O L

for t € (., t*], where C is the same as above. In particular, one obtains

C
[[ta(7) |00 < 7

which gives (46) and the lemma is proved.

T,

O
Now, given any entropy-flux pair (7,¢) with 1 convex, non-negative, from

(2) we get

Om(u) + 9.q(u) = 0,(Vn(u)dsu) — Vn(u)(0pu, Opu), (51)



116 H. FRID

and, so, integrating over EiT, and E5T we get

_/ dx+/ dm—/T(—fnJrQ)(u(é’mt))dt -
< A Vin(u(Et, £)du(ét, £) dt
_/ da:+/ (@, T)) dx+/ —en+ q)(ul(ét, b)) dt .

< /0 Vn(u(Et, ) d,u(Et, t) dt,

provided that n(ug) = 0, in the first case, and n(uz) = 0, in the second one.
We will prove the following:

Lemma 3. Let u(z,t) be as in the statement of Theorem 3. Then,

li L f
im T/o lug (&L, t)| dt = 0, or a.e. £ € R (54)

Once we have proved Lemma 3, since, by the maximum principle, the so-
lution of (2), (3) is uniformly bounded, we get that the right-hand members
of (52), (53) divided by T', converge to 0, and the remaining of the proof of
Theorem 3 follows exactly as the proof of the Theorem 1. Now, Lemma 3 will

follow from:

Proposition 1. Given &, & € IR and 0 < 0 < 1, we have

ot
I /}E 1+t1+9d:1:dt<—|—oo (55)

Before proving Proposition 1 we show how it implies Lemma 3.

Proof of Lemma 3. Indeed, by (55), we have

2(¢t, 1)
/g P oy st e < +oo.
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Then, for a.e. £ € IR we must have

© uy (€, 1)
A 141y dt < 400

So, we have for T sufficiently large

20 (T2t t) 20 oo u2(&t,t)
< @ 2 @ ] .
T/ et < g | 1o “=7m i ), 1o

and then we get

1 T
I —/ LEL D dt = 0. 56
im 7 | lus(ét,t)] (56)

Now, by Jensen’s inequality, we have

<;/0T ux(ft,t)|dt> < f/ (€8, D)2 dt,

and this with (54) implies (55).
O

Proof of Proposition 2. Given a non-negative strictly convex entropy 7, with
flux ¢, we have
e+ Go = (VNte)o — V21(te, Ua)- (57)

Dividing (57) by (1 +t)'*?, we get

( 1 > L L+ 0 +< q > _< Vi, > VP
(14+)148 ), (14 t)2+9 (14 ¢)1+8 . 1+ /),  (14¢)+e°
Integrating over 0 <t < T, &1t < x < &, we get
&7 n(u(z,T)) ot T [(—€n + @) (u(ét, )]
dt
/&T T1+9 d +/ /g 1+t (1 +1)2+0 dde/o (1+1t)1+0

[Vnu,(Et, 1)) &2t V20U, Uy
f/ (& //2v (o o) )i
1—|—t1+9 at (14 ¢)HH?
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We notice that, since u is bounded, all the terms in the left hand side of the
above equation are bounded. As to the first term of the right hand side, we use
the estimates of Lemma 2 and the fact that u is uniformly bounded, to conclude

that it is also bounded. Now, using also the fact that 7 is strictly convex, we get

= up dzdt < A,
/ /5 1+t1+9 t <

for some A > 0, independent of T. Then, (55) follows and this concludes the

proof of the proposition.

Now the proof of Theorem 3 follows exactly as the proof of Theorem 1.
O
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