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Abstract

We outline a first step in our current research program to build a
deductive theory of wave propagation in cardiac tissue. We describe a
new evolutionary model of the excitable medium, which extends the ex-
isting static bidomain models of cardiomagnetism and Hodgkin-Huxley
type reaction-diffusion partial differential equations. The model sepa-
rates intra- and extracellular currents and allows a more accurate com-
putation of the magnetic field using the Biot-Savart Law. Numerical
examples of spiral waves and of the magnetic fields they generate are
discussed.

Resumo

Delineamos o primeiro passo de nosso atual projeto de pesquisa,
visando a elaboragdao de uma teoria dedutiva sobre propagacio de on-
das em tecido cardiaco. Descrevemos um novo modelo de evolugdao em
meio excitavel, que estende os modelos de bidominio estaticos para car-
diomagnetismo e para equagoes diferenciais parciais de Hodgkin-Huxley
do tipo reagdo-difusio. O modelo trata em separado correntes intra e
extracelulares e permite um célculo mais preciso do campo magnético,
usando a Lei de Biot-Savart. Exemplos numéricos de ondas espirais e dos
campos magnéticos por elas gerados sao estudados.

1. Introduction

A major problem in cardiophysiology is understanding the electrical activity of
the heart. Advances in clarification of its electrodynamics have many clinical
applications [1-3].

In the last two decades, dramatic advances were made in biomagnetism
and cardiomagnetism, because of the development of sensitive quantum mag-

netometers, which may be employed within shielding environment to allow the
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measurement of extremely weak magnetic fields [4-6]. The main advantages of
the usage of such magnetic measurements lie in their non-invasive nature and
in the possibility of source localization for cases where electrocardiography is
not applicable, either due to electrical insulation of the sources from the body
surface, such as in the case of the brain in the skull, or to masking by a stronger
signal, such as in the case of the fetus in the amniotic fluid. The next frontier
in cardiomagnetism is the development of clinically viable procedures. In this
article, we describe our current work towards this goal — the direct modeling of
electrochemical waves for the normal or arrhythmic heart. In contrast to other
more mature areas of continuum mechanics and applied mathematics, there are
still many open basic questions related to the modeling of excitable media.

In this paper, we outline a first step in our modeling program. Our objective
is to build a deductive theory in order to model wave propagation in cardiac
tissue based on first principles such as conservation of number of ions, the first
and the second Kirchhofl laws, supplemented by constitutive equations. The
approach is standard in continuum mechanics and electromagnetism for fluids,
gases, elastic media, and plasma [7]. Tt is different from the parameter fitting
approach to empirical models often used in economics and sociology, as well as
in Hodgkin-Huxley type heuristic modeling in excitable media [§].

The current theory of electrodynamics of cardiac tissue is based on the par-
tial differential equations of reaction-diffusion type proposed for a single nerve
cell by Hodgkin-Huxley in 1952 and on its asymptotic reduction by FitzHugh-
Nagumo in 1961-2 [8]. Some of the qualitative predictions of these models were
recently verified experimentally, but quantitative predictions are usually only
approximations of the order of magnitude of the event [1]. The equations for
computing the magnetic field are based on the Biot-Savart law involving the
intra- and extracellular currents only. The transmembrane currents have a neg-
ligible contribution to cardiomagnetic fields due to the thinness of the membrane
and radial symmetry [4], [9]. As a result, the classical theory that focuses on
transmembrane currents has to be modified in order to model cardiomagnetic

fields.
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In this article, we develop a new evolutionary model of the excitable medium,
that extends the existing static bidomain models of cardiomagnetism and of
Hodgkin-Huxley type reaction-diffusion partial differential equations [8], [11].
The model separates intra- and extracellular currents; it should allow a more

accurate computation of the magnetic field using the Biot-Savart law.

The derivation of the new time-dependent model is based on the assumption
of static bidomain theory: to each point of the medium we associate two state
variables, one representing the intracellular variable, and the other representing
the extracellular variable [11]. For example, if one thinks of the inner-membrane
space as the space between two coaxial cylinders, then the standard modeling is
based on the assumption that each point in the medium lies between the cylin-
ders (the membrane), while in our bidomain model, at each point we represent
quantities associated to the space outside the outer cylinder (extracellular space)
as well as quantities associated to the space inside the inner cylinder (intracel-
lular space), at the same time, ignoring quantities between the two cylinders.
Under the above assumption, we write two coupled equations, one for the intra-
cellular current and another for the extracellular current, respectively, at each

point of space.

The evolutionary model. The derivation of the evolutionary model proceeds
from the first Kirchhofl law of conservation of currents, expressed as a conser-
vation equation for each ionic species. The system has to be closed by realistic
phenomenological constitutive relations. Currently, we have implemented only
the first part of the proposed program — the separation of intra- and extracel-
lular spaces. One of the future tasks is the validation of the new model. Tt
requires setting up the physically measurable electrophysiological constitutive
equations of state for the cardiac tissue. It is of special importance to study
planar traveling waves, target and spiral waves, and the magnetic field gener-
ated by such wave patterns. There is already a body of mathematical literature
on such interesting waves, based on simplified reaction-diffusion equations [8§].

Extending this mathematical analysis to more realistic models should be a chal-
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lenging problem.

The conservation of current at each point of the medium can be written as

R,
i
where J;’s represent ionic transmembrane currents, ohmic currents flowing near

the surface of the membrane, capacitance currents across the membrane, and

other currents present.

Identifying various currents results in models of various degrees of sophisti-
cation. For example, a single cable equation is recovered if we identify the ohmic
current as V(oVu), the nonlinear current through the membrane as f(u) for
suitable f, and the current resulting from the capacitance of the membrane as

—C'Ou/0t. Substituting these into Kirchhoff’s law gives

Ca = f(u) + V.(6Vu),
where v is a single variable describing the transmembrane potential, o de-
scribes the conductivity of the medium, and C is the capacitance of the cell

membrane [8].

Notice that in standard models, for electrophysiological activity of excitable
media, it is tacitly assumed that all points in the medium lie within the inner cell
membrane [§8]. The main effort in standard modeling of the excitable medium
is the identification and description of the various membrane ionic currents.
For example, the model of DiFrancesco-Noble identifies fifteen different ionic
currents [10], while the above cable equation assumes a single transmembrane

ionic current, f(u).

The derivation of the new time-dependent model is based on the assumption
that each point of the medium has two state variables, one representing the

intracellular variable, and the other representing the extracellular variable [11].

In our model, we do not focus on the transmembrane current because the

currents through the membrane, no matter how complicated they might be, do
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not contribute directly to the generation of the magnetic field, due to radial
symmetry and to the thinness of the membrane. This fact is well known in
biomagnetism [4], [9]. In addition, it is known that in certain situations the
extracellular current also has negligible contribution to the generation of the
magnetic field [4], [9].

For example:

a) the bidomain analogue of the above single cable will be

ot
C. %% = —[(u) + - (0,Vw,),

where the indices 7 and o stand for the inner and outer spaces respectively, and

u = u; — U, is a transmembrane potential;

b) the standard FitzHugh-Nagumo model,

CZ—T; = Ji+Jo+ V- (0Vu),

where J; = f(u) and J, = —v represent the inner and outer going currents,

respectively, has the following bidomain generalization:

(Yz% =Ji+J,+V-(0:Vu,),

Co% = 7Ji7<]o+v'(0-ovuo)7 (1)
Ov _

a4

where v is thought of as a lumped variable representing currents evolving on a

slower time scale, e.g., potassium.

The first equation in FitzHugh-Nagumo and other multi-current models is

the first Kirchhoff law, while the other equations are heuristic closures of the
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first Kirchhoff law. In our modeling approach, we would like to replace the
heuristic closures by the equations of state of the myocardium, based on the
experimental data. This should be done by means of observable quantities such
as extracellular potentials, concentrations and permeabilities of various ions,

and magnetic fields associated with various waves propagating in a tissue.

Numerical examples. In this section we describe and explore some numerical
solutions of the new model (1) under two different closures for f(u,v) = J;+.J,.

The first closure is analogous to the model used in [12],

G = [u(w,0) + V- (0:7),

€2 = i, 0) + V- (0,V), (4)
Qo _

a Y

with fo(u,v) = u(l — u)(u — (v + b)/a)/e. The second closure is analogous to
the model in [13],

C’i% = fo(u,v) + V- (0:Vuy),
Ou,
Coa—ul = 7fb(u7 v) +V- (Uovuo)a (B)
du
% o o),

with

Mu+ter, il u>ug
Solu,v) =v—="h(u), hlu) =% Au+tey, il u<ug;

Azu + e3, otherwise,

In models (A) and (B), a, b, 7, €, the A;’s, and the ¢;’s are given parameters.
Both closures can be written in similar form if v is changed to —v and other
variables are rescaled. The model has two time scales, of order 1 and ¢e. In all

our computations we set ¢ = 0.006, « = 0.3, b = 0.01, C; = 1.0, C, = 4.0, and
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~ = 8.0; the conductivity matrix o is assumed to be diagonal with diagonal

elements o,, = 1.0, 0y, = 0.2, 0, = 0.2, and oy, = 1.0, respectively.

In the following figures, we show the results obtained by applying model (1)
to several initial conditions. We consider one- and two-dimensional traveling
waves, and the interaction between them. In addition, the magnetic field of

some spiral waves was computed.

Fig. 1. Dependence of the one-dimensional traveling wave profiles for the closure
(B) on the parameters: (a) ¢ = 0.01, Ay = Ay = 2.0, e = ez = 1.6, e3 = 8.0,
uy = u; = 0.05; (b) € = 0.006, the rest of the parameters as in (a); (c) ¢ = 0.06,
A1 =1.0,e; =4.0, A2 = 20., €3 = 22,4, ugp = —0.8, ug = —0.42, and the rest as in (a);
(d) traveling wave profiles for the closure (A) with € = 0.006, @ = 0.3, and b = 0.01.

In Figure 1, we show one-dimensional profiles of traveling wave solutions
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moving to the left, under various closures. Under the two time-scale dynamics,
the front and back of the waves are always sharp. We have experimented with
various forms of the piecewise linear function h(w). In figure 1(a), h(u) is a
discontinous sawtooth function, that makes the back as large as a front. In
figure 1(b) smaller ¢ makes the pulse more narrow. Figure 1(c) shows the
possibility of cutting off the tail of the pulse by making the slope ()q) large.

The choice in figure 1(d) shows a pulse having step function form.
All the profiles are different from the experimental data for atrial tissue [9],
where the u-profile has a triangular shape — a sharp increase in the front of the

pulse and an almost straight sloping line on the back of the pulse.

Fig. 2. Traveling wave profiles and magnetic field for the closure (B), left (right)
columns show the u and current profiles, contour and surface plots, respectively.
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Fig. 3. Traveling wave profiles and magnetic field for the closure (A): w and v profiles,
respectively; (c) current profile; (d) contour plot of the z-component of the magnetic

field.

Fig. 4. A two-dimensional anisotropic spiral wave for the closure (A4).
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In Figures 2 and 3, we illustrate the dipolar type magnetic field generated
by the above profiles rotating uniformly on a circle at a fixed moment in time.
We show the u and the magnetic field generated at a plane above the circle, at
a fixed moment in time. We have used the Biot-Savart taking into account only
the inner source current, .J;.

Figure 4 shows a two-dimensional spiral wave admitted by the new model

for the closure A, at a fixed moment of time.

Fig. 5. Interaction of the five periodic point sources with the spiral wave, closure
(A), at four equal time intervals.

Finally, the interaction of periodic point sources, placed at different locations
of the domain and firing with the same frequency, with the spiral of Figure 4

wave is shown in Figure 5 at four equal time intervals.

Conclusion. In this paper we have introduced a time-dependent model of
excitable media. The model is a continuum extension of the standard electro-
physiological models to situations where it is important to take into account

both intra- and extracellular currents for accurate simulation. The new model
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is suitable for biomagnetic simulations. In particular, it allows to study the
magnetic field generated by various waves and by their interaction. It can also
be used to understand the effect of injected currents. The model may be applied
to the inverse problem of source localization, to the determination of the inner
conductivity from the measured outer conductivities, and to the reconstruction

of the current fluxes based on experimental or synthetic data.
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