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ON THE 2D NAVIER-STOKES EQUATION WITH
SINGULAR INITIAL DATA AND FORCING TERM

Hebe A. Biagioni * Todor Gramchev |

Abstract

We consider the Cauchy problem for the Navier-Stokes equation for
an incompressible fluid in MR? with a forcing term and the associated
vorticity equation. The initial data and the forcing terms are singular
in a suitable sense. We get results for the existence and uniqueness of
strong global solutions, as well as LY estimates of the solutions down to
t=0.

Resumo

Consideramos o problema de Cauchy para a equagao de Navier-Stokes
para um fluido incompressivel em 2% com um termo forgante e para a
equacdo de vorticidade associada. O dado inicial e o termo forgante sdo
singulares num certo sentido. Obtemos resultados de existéncia e unici-
dade de solugbes globais fortes, assim como estimativas L? de solugdes
até o plano t = 0.

1. Introduction

This paper is concerned with the Cauchy problem for the Navier-Stokes equa-
tion for an incompressible fluid in R? with an external forcing term and the
associated vorticity equation. The initial data and the forcing terms are singular
in a suitable sense.

We write the Navier-Stokes (NS) equation with a forcing term in the form

Ou—vAu+T0(u@u) =G, t>0,z€ R u=1u, G=1G,, (NS)
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where u = (uy,uy) stands for the velocity field, II is the projection onto the
solenoidal vectors along gradients, u @ u is a tensor with jk—component uzu;,
1 < j,k < 2 and the vector d(u ® u) has as its j—th component Oy (uzu;) =
urOgu; (the summation convention), j = 1,2, v > 0 stands for the viscosity.
The associated vorticity equation for the scalar vorticity ¢ = Oyug — Oquq

with the corresponding forcing term F' = 0)Gy — 02G1 is written as follows
O —vAC+O-((S*)=F, S(z)=(2m) 2| *(zg, —21), (V)

where * denotes convolution and S* is a linear operator such that v = S * (
solves the equations 9-u = dyuy + ouy = 0 and Oyuy — Gouy = ¢ and S satisfies

the Hardy-Littlewood-Sobolev inequality
, , 11 1
1S * P, < oglldlly, ¢ € LI(IR*), o4 >0, ;z Pty l<g<2 (1.1)

Setting v = 0 we get the Euler equation.

The case of the free (NS) and (V) in IR* with initial vorticity w = ¢(0,")
finite Radon measures has been settled by Y. Giga, T. Miyakawa and H. Osada
[7] requiring smallness of the atomic part of w (provided the total variation of
w is bounded) for the uniqueness (see also previous results in [2], [6]). Later on
T. Kato [9] simplified their proof and gave, in particular, explicit bounds on the
atomic part which imply the uniqueness. The recent paper of H. Kozono and M.
Yamazaki [13] seems to be the first one dealing with initial velocity @ = u(0,-)
for the free (NS) in IR", n > 2 which could be in a certain sense more singular
than Radon measures. There appears a smallness condition on the initial data
which in particular recovers the previous results for the free (NS) and (V) in
IR* in case the initial vorticity has small enough total variation. The paper
of T. Kato and G. Ponce [12] deals with the free (N'S) in R", n > 2, with a
belonging to the Sobolev spaces with negative indices and having a small norm.
Finally we cite the recent article of M. Ben-Artzi [1] on the planar free Navier-
Stokes and Euler equations with w € L'(IR?) and w € L'(IR?*) N L"(IR?), r > 2,
respectively. In particular [1] contains continuous dependence results for the

Cauchy problem for (NS) and (V).
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Apart from the presence of forcing terms we allow the initial vorticity to be
a fractional derivative of certain type of measures. The initial velocity becomes
also singular and the spaces of initial vorticity and initial velocity which we in-
troduce are strictly larger than those considered in [7], [9], [12], while comparing
with [13] we point out that we have examples of initial data not covered in [13]
and that in many cases we are able to remove the smallness restrictions imposed
there. We require the forcing term to be L¢ in IR? for certain 1 < ¢ < oo while
in t we assume L} . without any decay conditions as ¢ — oo. The main result is
an existence-uniqueness theorem for strong global (in time) solutions as well as
L7 estimates on the solutions of (N.S) and (V') down to ¢ = 0. Concerning the
uniqueness we have either no restrictions on the initial data or explicit bounds
which, in case of zero forcing term ' = 0, v = 1 and w finite Radon measure,
coincide with the bounds on the atomic part of w proved in [9]. We stress that
the local existence and uniqueness result could be extended when the forcing
term is more singular in x (e.g. finite Radon measure). We show also poly-
nomial estimates of the L? norms of the derivatives of the vorticity ((¢,-) and
the velocity w(t,-) uniformly in ¢ up to ¢t = 0 when both the initial data and
the forcing terms are W% in x, provided 4/3 < ¢ < 2. These polynomial
estimates (a new result by itself as far as we know) or rather the method of
the proof have at least two implications: first, we are able to generalize the
continuous dependence results in [1] and secondly, they allow us to examine the
approximate regular solutions (* (respectively u®), ¢ > 0 of (V) (respectively
(NS)) when the initial vorticity w (respectively velocity a) is strongly singu-
lar and lim.o ¢%(0,-) = w (respectively lim.\ou®(0,-) = a). Actually we can
extend the polynomial estimates in the framework of L? spaces for all indices
1 < ¢ < oo and hence the corresponding continuous dependence results in [1]
using a rather sophisticated version of the techniques for estimates in weighted
spaces developed here. Moreover, we can get some results on uniqueness of the
zero viscosity limits provided the viscosity goes to zero slowly enough as € \, 0
with respect to the perturbation of the initial data. This will be worked out in

another paper.
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Finally we exhibit a family of strongly singular radially symmetric solutions
to (V) when the initial data is bD*§(z), where D = (=A)Y/? k>0, b € IR and
d(z) stands for the Dirac measure massed at 0 (a well known phenomenon, see
e.g. the paper of C. Oseen [15] in 1911 for k& = 0).

The paper is organized as follows. In section 2 we introduce some weighted
spaces and relate them to other spaces used in the literature. In section 3 we
deal with (V') when the initial data and the forcing term are regular and prove
polynomial type estimates for the derivatives of (. The approach of this section
is used essentially in section 4 which deals with (V') and (N.S) with singular
initial data and forcing terms. Section 5 gives examples of strongly singular

solutions of (V') and (NS).

2. Weighted spaces and the heat semigroup

We define several types of subspaces of S'(IR™). First we recall the weighted
Holder spaces used in [9], namely for a € IR, 0 < T < 00, 1 < p < 0o we set

CQ(LP(RH) : T) = {u :]0,T[—> Lp(an); ||u||oa(Lp(]Rn):T) < OO}7 (2.1)

where ||u||c,rr@rmy:Ty == sup (t%||u(t)]|,) will be also denoted by ||u||q.p 7 and
Il - |l, stands for the L? I(i(<):n The set of all u € C,(LP(IR™) : T) such that
lim sup(2* ||u(t)]|,) = 0 is denoted by Co(LP(IR") : T). We point out that if
o t<\‘(i) then Co(LP(IR™) : T) is embedded in Co(LP(IR™) : T).

Following [12] we denote by L*(IR"), s <0, 1 < p < co the spaces

#P(R") = D7 IR, [@llies = |06l 6 € LP(RY).  (22)

The Morrey space M, \(IR"),0 <A <n, 1 <p < oo is defined as the set of all
f € IL(IR") such that [[flla = 5up,crn mso( I/ iaemy A7) < oo, with
the convention that if p = 1 we allow f to be a measure with || - ||L1(B(.r,R)) being
the total variation of f on the ball B(z, R). We have M, o(IR") = L?(IR") for
p > 1 and M, o(IR") coincides with the space of finite Radon measures M(IR").
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Now, forevery 0 < d <n, k>0,1<p<o0,0<T < oo, we set
ME(IR 5 T) = {f € SR [ flags oy < ) 23)
where

1 lags ¢y := sup (2| Fll,) + sup (/3+HCP2 p) ).
o 0<t<T 0<t<T

Clearly JWZZP(ZR” : T') is a Banach space. We put AMZZP(R”) = Mfyp(ﬂ%" : 00),
Mj(R" : T) := Mj,(IR* : T), Mj(IR") := Mj(IR" : o). One notes that
LP(R") — M) (R" : T),0 < T < 00,1 < p < oo. Finally we define for
r € Z4\J{oo} the space C"(Mj ,(IR" : T)) consisting of all f € M} (IR" : T)
such that 0°f € AMleal(IR” :T) for o€ Z7%, |a| < r.

The following result relates the spaces Mcﬁp(ﬂ?") with C,(LP(IR") : T),
MA(IR*) and L*?(IR") and the heat group.

Theorem 1. We have
)if0<T' <T<o0,1<p<p<oo, kk'>0,0<d,d <n then

M} (R*:T)— M} (R": T, (2.4)
provided § = min{k' — k + ;‘f—: — %,k' —k— d(}l—) — ]%)} >0, and
k n k! n ' / 1 1

Mg, (R") = Mg, (IR"), if K—k= d(; - ]?) (2.5)

ii) the heat semigroup acts conlinuously
Mé:p(Bn :T)d2w— ePw € ﬂ Ck/2+d/2(1/p_1/q)(Lq(Bn) :T), (2.6)
a=p
with

||emw||k/2+d/2(1/p—1/q),q,T = ||W||M57P(B":T)7 we Mf,p(an :T), (2.7)

if1<p<g<oo, k>0,0<d<n, 0<T<co.
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iii) for all 0 < d < n, k> 0 we have
(O (Myoa(BY) Y M(IR™)) = O (M (IR")). (2.8)
iv) for every 1 < p < oo, k > 0 we have

L*?(IR™) < C™(MF(IR™)). (2.9)

Proof. In order to show i) we note that for 0 < t < T < T, w €

AMip(]R" : T') we can write, taking into account the convexity property || f, <
(I F 11772l Flloo)* 77,1 < p < g < o0,

12|ty < AR oy, (2.10)
tk//2+d//(2p/)||etAw“Oo < t(k',_k+dl/p,_d/p)/2||£U||]w§ ) (2.11)
P

and combining (2.10) and (2.11) with the definition of 6 we deduce (2.4). The
proof of (2.5) is analogous and (2.6) and (2.7) are shown by similar arguments.

Concerning (2.8) we note that (2.2), Lemma 2.1, [8], yields the following

42||'Bw|| o < 0o (respectively SUDPysg || Cw||1 < oo) for

two estimates: sup;yq?
each w € My ,_4(IR"™) (respectively w € M(IR")). The arguments in [§] imply
that sup; t0+d/2|| et DR )| < 0o (respectively SUPys £*/2)|*4 DR

for each w € My ,_4(IR") (respectively w € M(IR")) and all k£ > 0 which proves

w|li < o0)

(2.8). The rest of the theorem follows from the estimates on the heat kernel

acting on the spaces M(IR"), M, (IR") and L*?(IR") cf. [8], [9], [12], [16].

Remark 1. We note that:

i) 8(z) € M(IR") and &(x) ¢ L"P=2P(IR") for all p > n.

i) Let g = d(x1)g(x2), with g(x2) € L'(IR)N L°(IR). Then for each k > 0
D¥u belongs both to Mf(IR?) (in view of (2.8)) and to the functional space
N7 F o (IR?) defined by H. Kozono and T. Yamazaki in [13] which contains
DEM,1(IR*) as a subspace (see Theorem 2.5, [13]). Straightforward calcu-
lations show that if Dy = |8,,| then the distribution D;u belongs to M{(IR?)
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while one can not apply Theorem 2.5, [13] for k ¢ Z, since the symbol |&|* is
not smooth as a function of (&,&) € IR? \ 0. We point out that we are able to

give a kind of microlocal versions of the spaces M} (IR").

3. Polynomial estimates for (V)

The main result of this section is the following theorem.

Theorem 1. Let w € W (IR?) and let F € W2 ([0, 00[: W' (IR?)), where
1 <r < 2. Then there is a global solution ((t) = ((t,-) ont > 0 of (V) which
has the following properties:

i) ¢ € Wi ([0, +oo[: Wot(IR?)) for every q € [r,0].

ii) (uniqueness) for each q € [q*,2[, ¢* = max{4/3,r} there is a unique
¢ € C([0,00[: LY(IR?)) solving (V) with {(0) = w.

iii) for each k,s € Z+, q € [q%,2[, there exists a positive constant C = Cy sy
such that

_ _ _ sa/(2(a=1))
0FC(8)][ag < COF (w, F3T) (v (14 O (w, F3T))) "7, (POL),

for all w € W1(IR?), FF € W2 ([0, 00[: W4(IR?)), 0 < v < 1 and where

loc
k ]
0% (@, I T) = ||wllstarg + D sup 107 F () lsrak-mn),r (3.1)
40 0<t<T
with the convention

T
S0 W EOll =[NP gdr, W laa = 3 10

laf<s

Moreover changing, if necessary, the constant C we claim that

197 (C1(t) = (D) lag < COLy(wr —wp, Fy — Fy; T) x

)sq/(Q(q—l))

(v (1 + ©F (w1, Fi; T) + OF (w2, Fa; ) ., (@D),

provided w; € WI(IR?), F; € W' ([0, 00[: W4(IR?)), 5 = 1,2.
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The proof of this theorem will be divided into several steps. For the sake
of simplicity we deal with (POL), when k = 0. If & > 1 we observe that the
L% norm of 9F((t) is equivalent to the L? norm of (vA)RC(t) + 0F T F(t). We
set O 4(w, F;T) = @qu(w, F;T). Further on, in order to simplify the proof, we
shall assume v =1, r = 1, so that ¢* = 4/3.

First we will establish a local existence-uniqueness result.

Proposition 2. Let F € L}, ([0,4+00) : LY(IR?)) and let w € L?(IR?) for some
% < q < 2. Then the inhomogeneous vorticity equation (V) (we consider v =1)
with initial data (li=o = w has a unique local solution in C,_1(LY(IR*) : T,), for

some T, > 0 chosen below.

Proof. Let BY(R) = {¢ € C,_ 1(LQ(B2) T,) = |I<ll - Lo, < R}. We choose
R > 0 and T, such that J, defined on BY(R) by

TQ@W) = e [0 (S ¥ ) ~ F(rlr,  (32)

0 <t < T, maps Bq(R) into itself and it is a contraction. We have, for
¢ € BY(R), using (1.1) and Lemma 1.1 in [9] with r = 4—2_%, Xq=x(1/r—1/q)

1 _1 t _1
IOl < 7 00(w, Fy )+ xat™™F [ 168 ((r) 2 (¢ = ) THdr

< A(t)+ o sup 775 ]|¢(7)]l0)? (3.3)
0<r<t

where A(t) = t'=110, ,(w, F,t) and ¢ = ¢, = xqan(zg—q, %), B(:,) being the
Beta function. T, may be chosen as the unique solution of

3
- 166@()@(0), }7‘7 t) ’

Q=

i (3.4)

If R = L we have, from (3.3), that tl__||J OW)|lg < Rfor 0 <t <T,. Jis
also a contraction: in fact let (1,(; € BY(R). Analogously to (3.3) we get

PG = TGNl < 2RIG — Golliorge < IICl Galli-t,070

for 0 <t <T,.
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Now, in the following proposition, we prove linear estimates for ||0*C(t)]|,
uniformly in an interval [0, T}], k = |a|, Ty < T,. First we recall the monoton-

icity property of ((¢) which follows from Lemma 4.1 in [11]
+
IOl < 11SE )] +/t, [F(m)llpdr, 1<p<oo, 0t <t (IM)

provided the norms exist.

Proposition 3. Let now F € L},([0,+oo[: W*(IR?)) and w € W4(IR?). If
O q(w, F,T,) and Ty denote, respectively,
-9 _

T, 3 —1
e o(w, FLT,) = ) / P J d T~=<, )
O,g(w ) = llwllgx + . |E(T)lgpdr  and Ty 16¢0y ,(w, F, T,)

then there is ¢, > 0 such that for all |a| <k the following estimate holds

S 157G < Oy, LT, (3.5)

Proof. The result holds for & = 0 with ¢, =1 in view of (IM). Let us assume
that (3.5) holds for every |8] < k. Let |a| =k and 0 < ¢ < Ty. Then

(1) = raft) =0 [ 0 ( o ) F(r(S * ) (r)dr (3.6)
O</9<(1 /6'

where (o(t) = e®w+ [ =2 F(1)dr. Taking the L?-norm of (3.6) gives, using

the estimates above and induction

fet tl_l; o
10°C(H)lg < Orglw, F,To) + ﬁXquQGO.q(“’:F: T,) ()S<u§t 107¢(7)llq
7 =TS
1__

o T,
+ 2 (ﬁ ) ip1¢k-191Oa1a(w; Iy To)Op—pl (w0, Fy To) 751
0<fB<a
This implies, since B(%, 9;—1) > 2¢/2 for % < g < 2, that
3 «
0” @ KT, (1—1—— < ) o > 3.7
OS}JP 10°C()l, < 2 ka(w, o) 16 (1_7) Oqza;a 8 €151 Ck—|5] (3.7)

which shows (3.5).
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Proposition 4. Given k € Z ., there is Cyy > 0 such that, for every t' > 0
there is hy(t') > 0 satisfying:

i) if ¢ solves (V') in [0,¢] x IR* then ¢ is extended uniquely as a solulion of
(V) to [0, + ho(t')] x IR? and for all 0 < h < ho(t') we have

sup (¢ — ) 75[C(O)]lg < Cog (3.8)
0<t—t'<h

i) if k € IN then for all 0 < h < hi(t), o € Z?, |a| = k we have
T t'+h
sup (8 —1)2[|0°C(t)]ly < Crglllwllq +/ [E(T)lkgdr)  (39)
0<t—t'<h 0

provided the solution exists in [0,t] x IR?, ' <t <+ + h.

Proof. Let us consider the Cauchy problem (V) with initial data at ¢t = ¢'.
Analogously to the local existence proof in [0,7,], one proves using (I M) that
if A(t") > 0 is chosen as the unique solution of the equation

3 3
= < " 5
16¢@0,4(w, st + k) = 16c([|C(¢")lly + Ji " |1 F () lad7)

K
then J is a contraction in
Be(R)={¢: sup (t—1)""7llc(t)ll, < R}
t!<t<t'+h(t')
and (3.8) is true. Here R = (4¢)™" as in Proposition 2.

Let, for each ¢/ > 0 and k = 1,2,---, ilk(tl) be the unique solution of the

equation

3

k ’
1622 [[lwlly + fo " 17 (7) |y k7]
and let hg(t') = min{1, hx(t")}. Clearly hy(') is nonincreasing in k and ¢'. We

1

-
9 =

(3.10)

will prove (3.9) by induction. Let us denote K = y,0,.
Now assume that (3.9) holds for |3] < k. If 0 <t — ' < h < hy(t'),
NE|(5e ) nE [ e
(t = )2 [|0°C()lg < NSy + (2 —1)> /f [0°F () dr

t+t

k 2 Bl
+K(=t)E [T -y E i swp oIl

t<r<t/'+h
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+K(t=0)F [, [ = R ool

o 3 a—/f3 R 1o
T o e N L My R Co (T

0< <

v g —l 1 1
K (= 1) (1= g ) s ()2
_E_E 2 2

q

(= [l + [ 1P drsul(r - ) H10°¢()]

> ( 5 ) sup (7 — ) 2105l — )" F* 197 (r) |}

0<fB<a

2%4—%—1

11—

ST

Notice that, since the right hand side of (3.10) is a decreasing function of i, we
have that, for t — ¢/ < h < hy(t') (< hygi(t')),

3
16¢25 [[lwlly + 5 1 (7) ]

3Kq21/4
’ 16¢(g—1)

(t—t)'i <

Also, by the choice of ¢ and K < % Then, using the induction hypoth-

esis, we get (3.9).

Set now to = ho(0), t; = tj—1 + ho(tj—1), j € IN. Note that {tj};-”:o is a

nondecreasing sequence. Clearly the globality of {(¢) in ¢ > 0 will follow from
Proposition 5. Under the hypotheses above li)m t; = oo.
j—roo

Proof. Put {= igg t; =]_li_>rg) t;. Assume that { < oco. Then necessarily
hj(tj—1) = t; —t;j_1 tends to zero as j — oo. On the other hand for j large
enough h;(t;_1) = hj(t;_y) and since i > t; we have

3 5 3.
16c(llwlly + o’ [1F(7)llgdr) ~ 16e([lwlly + fo (7))

hi(tj-1) =

which clearly contradicts lim;_,e, Aj(t;—1) = 0. The proof is complete.

Concerning the estimates (POL), we note that their proof relies on the
estimates (3.5) applied for 0 < ¢ < h;(0) and the estimates (3.9), the definition
of hy(t) and its monotonicity property for ¢ > hy(0). Similar but technically

more complicated arguments lead to (C'D),.
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Clearly now Theorem 1 follows from the assertions proved above.

Remark 1. We point out that the polynomial estimates yield the possibility
to study more precisely the behaviour for ¢ — 0 of the family of solutions (*
of (V) with w® € W1(IR?), F* € W' ([0, 00[: W (IR?)) for 0 < & < 1 and
w® (respectively F'*) approximating very singular initial velocity w (respectively
forcing term F'). The estimates (POL),, 4/3 < ¢ < 2 combined with the
property of the heat kernel and the operator S imply that ||¢*(¢, -)||s,, will have
polynomial growth in e~ provided |[w®()]|5, and ||F*(¢,-)|s,, have polynomial
growth in e~'. In particular we can obtain generalized solutions of Colombeau
type without any logarithmic growth conditions required in the papers of H.A.
Biagioni and M. Oberguggenberger [4], [5] and H.A. Biagioni and R.J. Torio Jr.

[3], where other equations of Mathematical Physics are considered.

4. Solving (V) and (NS) with singular initial data

First we state a rather general theorem.

Theorem 1. Let q € [4/3,2[. Assume that F € L},.([0,00[: LY(IR?)) and
w € S'(IR?) satisfying supgicr 11| ®w]|, < 0o for each T > 0. Then there
is a unique solution ¢ € C([0,00[: S'(IR?*))NCio1/(LI(IR?) : T), T >0, of (V)
with initial value ((0) = w provided

.= (4B,)7, (4.1)

™

Ng(w) := lim sup(t3~Y9|[e"2w)|,) < ve,,
N0

where éq = w‘lan(%, %),/%(271‘[’(3;%2))3/2_1/[1.
Next we consider (V') under the following hypotheses on the forcing term
F € Ly, ([0, 00) : L'(IR*) [ L™ (IR?)), (4.2)

and on the initial vorticity

weMHR?:T), T>0,0<d<2,k>0. (4.3)
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The crucial restriction on the admissible singularity of w is
d
d=2,k=0 or k—|—§<1. (4.4)

Assuming (4.4) to be true, we set

224 ifdk+d>2and d <2
«_ ) 2—g-k !
4 4{ % otherwise. (45)
One notes that (4.4) and (4.5) imply 2 < ¢* < 2. Let
d 1 k
0g)=1-2)1—-=)—= sl 4.
(@=010-35)0-2)-3 1€[q,2) (4.6)

We note that 6(q) is strictly increasing if d < 2, 6(q) > 0 for q € [¢*,2[ and the
definition of ¢* shows that 6(¢*) = 0 iff d < 2 and 2 < 4k + d.

Remark 1. We point out that if £ = 0 and d = 2 we include finite Radon
measures as initial vorticity. Moreover then ¢* = 4/3 and the quantity n,(w) in
(4.1) coincides (in the case w € M(IR?)) with £ norm of the sequence {b;}°2,,
where 332, b;6(x — €), 8 € R, j =1,2,... stands for the atomic part of w.

Now we state the main result on (V) with singular initial vorticity.

Theorem 2. Let w and F satisfy (4.2)-(4.4). Then there is a global solution
C(t) ont > 0 which has the following properties:

i) ( € Ck/2+d/2(1_1/q)([ﬂ(lR2) 2 1), for every T > 0 when 1 < q < oo.
Moreover if F € W' ([0, 00) : WL(IR?)) then ¢ € C®(IR' x R?) and for all
aEZi,rEZ.I_ and s > 0

a;D°( € O(k+5)/2+r+d/2(1_1/q)(Lq(ﬂ'%?) :T), T>0,1<q< o0, (4.7)

a;aaC € C(k+|a|)/2+T+d/2(1_1/q)(Lq(B2) g CT)7 T > O, 1 S q S oQ. (48)

ii) ¢ € C([0,00[: S'(IR?)) and ((0) = w.

iii) (uniqueness) If 0(q) > 0, q € [¢*,2[ or, if 0(q) = 0 and (4.1) holds, then
there exists a unique solution ( € Ci_1,,(L(IR?) : T)NC([0,00[: S'(IR?)) for
each T' > 0.
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i) o(t) = ((1) = Glt) € Crjatasa(i-1/g-a)( LR : T) for all 1 < p < oo,
where go(t) = "2y _|_/ e(t_T)VAF(T)(lT,
0

Proof. We write the integral equation:

¢(t) = K(O)(t) = Go(t) + Ko()(2), (4.9)

where
Ko(O) = —0- [ =TSk Y, Y (4.10)

Set |[fllor = [flle/24+d/201=1/a).q,r- For every q € [4/3,2] we have, taking

into account (1.1) and the estimates for the heat kernel,
R Ko () (1)l < Bov™ /1" ( sup [I¢(7)llq)?, (4.11)
o<r<t

where 6(q) is given by (4.6).

In a similar way we deduce the estimate

1K (G) = K(G)lar < 2By " T°@)|¢i — Gallosr max{ | Gallo,r, IGallor}, (4.12)

where B, = 7T_1an(g;_1’ L—Ll_k_qd q+d)\/§(27rF(5_L2))3/2_1/q.

Hence (4.10), (4.11) and (4.12) show that in order to apply "Fixed Point
Theorem” (FPT) we have to examine the equation a,,,(T)—z+B,w~/1T%0);? =
0 where a,,(T) = ag.(w, F;T) = ||Gollgr- T D(T) = 1 —do~ Y17 Dq, (T)B, >
0 for some T > 0 we can apply the FPT in the ball Bi(r) = {f : || fll,z < r}
with r being the smallest root of the quadratic equation, namely

1—+/D(T) 2a,.,(T)

d= = s 4.1
7 2B, 1/1T%) 1+\/D(T) (4.13)

Indeed, the estimate (4.11) implies that K acts in the ball B4(r) while for
the contraction (4.12) implies ||K(¢1) — K(G)llgr < (1 — m)“{l — Glg.r
for all ¢y, ¢, € BY(r).

We deal first with the case 8(q) > 0, ¢ € [¢*, 2[. We recall the estimate

@y F) K Agr WE-HA0-IM, Gxdg], Iew€l, (4.14)
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where A, depends linearly on |[(o|[4,1. We have D(T) > 1/4 for all T' €]0,T,,,[

. 3 (k+d —d/2 1/6(q)
provided T, , = (W) ;
q-q

Next we consider the case #(¢q) = 0. Taking into account the definition of
Ng(w) we can write a,,(T) = v=F/2=420=1/9)(y (W) + o(1)) as T \, 0 uniformly

JEHd) [24(1=d/2) [q
1B,

the application of FPT in Bi(r) for T,, > 0 small enough. However we do not

in v €]0,1]. Hence the smallness condition ny(w) < guarantees
have control of the dependence of T, , on v and (p.

Now we show the estimates up to ¢t = 0 in L"(R?), 1 < r < ¢*. Take
first 7 € [r*, ¢*[, where r* = 22 and set ¢ = 4r/(2 + r) € [4/3,2]. Putting

4—qg*

zq(t) = ||C]|q,¢ we can write
(AP THOAC(D), < Cr 4+ MM THEH =442, (T, ) (1.15)

for0<rv<1,0<t<T,,and C, >0, K, > 0. If ¥ > 1 we proceed further
on by setting ¢ = max{4/3,r*} and then ry = 2¢:/(4 — q1). We point out that
ry =1 if ¢ = 4/3. Since we have already proved that

(e Ck/2+d/2(1_1/q)(Lq(B2) i T (4.16)

for g € [q1, 2] we repeat the arguments used above and show that (4.16) is true
for ¢ € [r1,2[. Then if ry > 1 we get g» = max{4/3,r1} and ro = 2¢2/(4 — ¢2)
and so on until we arrive for some s at ¢, = 4/3 and hence r; = 1.

The validity of (4.16) for ¢ > 2 follows from the inequality
1K) (#)lls < Coqv4(24(t)),  Coq >0 (4.17)

where ¢ satisfies 2/¢ —1/q <1, G € [4/3,2[ if ¢ > 2.

In order to extend (4.7) for s > 0 we modify for the inhomogeneous case the
approach of [9]. Once done this we must deduce (4.8) globally. For 1 < ¢ < oo
we can use the identity 9% = (8°(—A)~121/2)(—=A)lel/2 and Mikhlin’s theorem
on multipliers [14] (£2|¢]7121 is (positively) homogeneous of zero order) in order
to verify (4.7) for all T > 0. The case ¢ = oo follows from Gagliardo-Nirenberg

inequalities while for ¢ = 1 we use that the L' norm of 9*((t) is estimated via
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the L*/* norms of 0°((t), B < a, taking into account (3.6), the proof of (3.9)
and (4.15) with r =1, ¢ = 4/3.

Now for the initial condition in ii) we proceed as in [9]. The claim that
¢(t) is global in ¢ > 0 follows from the arguments used in the previous section
since ((1) € L'(IR*) (N L°°(IR?) for ¢ > 0 small enough. The uniqueness was also
proved in view of the exact estimates on the length of the time interval in order

to apply FPT and the monotonicity. The proof is complete.

We note that the arguments used in showing Theorem 2 yield the proof of

Theorem 1. We also show in an analogous way

Theorem 3. Lel w and F' satisfy (4.2)-(4.4). Let ¢ be a solution of (V) given
by the previous theorem. Thenu = S+( is a solution of (NS) with the following
properties:

i) u € C(k_l)/2+d/2(1_1/q)(Lq(]R2) : T), for every T > 0 when 2 < q < oo.
Moreover if F € W' ([0, 00[: WoY(IR?)) then for all « € Z2, r € Z 4 such
that r + |a| > 1

a;(?au € C(k_1+|a|)/2+r+d(1_1/q)(l/q(BZ) 5 T). T> 0, 1< q S 0. (418)

it) u € C([0,00[: S'(IR*)), 2 < p < 00 and u(0) = a = S * w.

iii) (uniqueness) If 0(q) > 0, q € [¢*,2[ or, if 0(q) = 0 and ny(w) is small
enough, then there exists a unique solution u € Cy_y;,(LP(IR*) : T)NC([0, ool
S'(IR?*)), p= %, for each T > 0.

iv) w(t) = u(t) = uo(t) € Clemryjzrarz-1/n-sep/p+2)(L7 (R7) = T), T > 0,
for all 2 < p < 0o, where up(t) = e?a — ff t="2G(7)dr.

Remark 2. We stress that the methods used in the proofs of the results on
the Cauchy problem for (N.S) and (V') and the estimates (POL), and (C'D),
will serve us in further extensions. More precisely:

1) We can show continuous dependence on the initial data and the right-hand

side generalizing in particular Theorem B in [1].
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ii) We can obtain local uniqueness, existence and continuous dependence

results in weighted spaces when the forcing term F in (V') belongs to C([0, ool:

iii) We can treat also the Euler equation with singular forcing term.

5. Strongly singular solutions

The main result in this section is the following one

Theorem 1. Let k > 0. Then ((t) = (=O)*%§(x) is a solution of (V) with
initial vorticity w = (—)¥25(z) which clearly is radially symmetric in x € IR?.
Moreover u(t) = S * ((t) satisfies (NS) with initial velocity (—)*/2S.

Proof. Concerning (V) it is enough to show that
d-(CS*)(t)=0 for ¢ >0. (5.1)

We sketch the calculations on a formal level. We note that ((t) € L(IR?),
1 <q<ooandu(t) € L*(IR?),2 < p < oo for every t > 0. Hence in view of the
Holder inequality ¢(¢)u(t) € L'(1R?). Therefore applying the Fourier transform
Foese to (5.1) we see that (5.1) is equivalent to

fiy * OWC(L,€) + g % 0yC(1,€) =0 for €€ R 1> 0. (5.2)

We have ((t) = ¢'2D¥§, u(t) = S+ ((t) and taking into account the proper-
ties of the Fourier transform and the convolution we deduce that the left-hand

side H(t,&) of (5.2) could be written as follows:
— (91 —e=n+iopy__I1I"
H(t,§) = i(2m) /Bz(flﬁz —&m)e Wd’?- (5.3)
We note that the integral above is absolutely convergent and H(t,§) is contin-

uous in ¢ > 0 and ¢ € R?. We introduce the polar coordinates 1, = pcos 0,
ny = psind, p > 0,0 <0 < 2m. Set ag(§) = & cos 0 + & sinf. Then we have
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[€ —nl* = & — 2pag(0) + p?, &inz — &em = pag(9). Now we can rewrite H(t,¢)

. = [ ([ gt 00a0) ao 54

with
P (207 =2pag(0)+€%)
)= — P -t(2=2pu
Q(&ap ) [)2 _ 2[)(15(0) + éze

Evidently the integral in 6 is zero if we integrate formally by parts since the

function is 2m-periodic in . One can justify that this is rigorous by considering
the integration with respect to p in |p — |€]] > € for ¢ > 0 and then letting
e\ 0.

One deals with (NS) in a similar way.

Remark 1. We can prove that the above assertion remains true if w =
(—A)*26s,, k > 0, r > 0, with ds, being the delta function on the circle
S, = {z € R* : ||z|| = r}. In particular, taking into account Theorem 2
in the previous section, we can show that if & < 1/2 the radially symmet-
ric solution e”“w is unique in Cy_y,,(LY(R?) : c0) NC([0,00[: S'(IR?)) for
max{4/3,1/(1 —k)} < g <2.
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