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VALUE DISTRIBUTION OF THE GAUSS MAP OF
COMPLETE MINIMAL SURFACES IN R™

Hirotaka Fujimoto

Let M be an (oriented) nonflat complete minimal surface immersed in R3.
By definition, the Gauss map g of M is the map which maps each point pc M
to the point g(p) € S? such that Og(p] = n,, for the positive unit normal
vector n, of M at p. The unit sphere S? may be canonically identified with the
1-dimensional projective space P!{C) and M may be considered as an open
Riemann surface with conformal metric. By the assumption of minimality of
M,g : M — PY(C) is anti-holomorphic. In the following, we call the conjugate
of the map g the classical Gauss map of M.

In 1961, R. Osserman showed that g cannot omit a set of positive loga-
rithmic capacity([8]). Afterwards, F. Xavier proved that g cannot omit 7
points([13]). In 1988, I have obtained the following final result of this subject;

Theorem A. The Gauss map of a nonflat complete minimal surface im-

mersed in R® can omit at most four values([3]).

Actually, there are many examples of nonflat complete minimal surfaces
immersed in R® whose Gauss maps omit exactly four values. Among these,
Scherk’s surface is most famous.

Moreover, I revealed some relations between this result and the defect rela-
tion in Nevanlinna theory on value distribution of meromorphic functions, and
gave some modified defect relations for the Gauss maps of complete minimal
surfaces([5]).

We next consider a nonflat complete minimal surface z = (z,,...,z,) :

M — R™ immersed in R™. It is well-known that the set of all oriented
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2-planes in R™ which contain the origin can be identified with the quadric
Qna{C) = {(wy : -+ s w)iw 4 - + wl = 0} € PmH(O).

By definition, the (generalized) Gauss map G of M is the map which maps
each p € M to the point in Q@ ;(C) corresponding to the oriented tangent

plane of M at p. By the assumption of minimality of M, each z; is harmonic.

dr, 1{3 8
fi=%=3 (a V_lav) &

for each holomorphic local coordinate z = u + /—1v, then f; is holomorphic.

So, if we set

As is easily seen, G is locally given by G = (f; : -- - : f,.) and so a holomorphic
map into P™1{C).

In [6], I have given the following generalization of Theorem A.

Theorem B. In the above situation, assume that G fs nondegenerate, namely,
G(M) & H for any hyperplane H in P™~Y(C). If G omits g(> m) hyperplanes
Hy,...,H, in P""}(C) which are located in general position, namely any m

of which are linearly independent, then ¢ < m(m + 1)/2.

Here, the number m(m + 1}/2 is best possible for all odd numbers and
some small even numbers m([4]}.

Theorems A and B are given as easy consequences of the more general
modified defect relations for holomorphic maps into P™{C), which will be
explained in the following.

Let M be an open Riemann surface. A function « defined on M excluding
a discrete set is said to have mild singularities if, around each point @ € M,

we can write

(#) |u]=|z-a| |log

lz—a|
with some ¢,7 € R, a positive C*-function 4* and a holomorphic local

coordinate z. For such a function u, we define the divisor v, : M — R of u by

vy(a) := the number o of the expression (#) for some r and u*
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for each ¢ € M. Here, a divisor on M means a map v : M — R whose support
| v l:= {z;v(z) # 0} is discrete.

For a nonzero meromorphic function 1 on M, v,(a) is just the order of ¢
at a.

To a divisor v we correspond the {1,1)-current [v] defined by

[vlle) = 2 v(2)p(2) (v € D),
sEM

where U denotes the set of all C®-functions on M with compact supports. In

some cases, a (1,1)-form {1 on M is regarded as a (1, 1)-current defined by

Np) = wa“(so eD).

For two (1, 1)-currents £1; and {1, by 1) < {1; we mean that there is a bounded
continuous nonnegative function k with mild singularities and a nonnegative

integer-valued divisor v such that
1 + [v] = Oz + dd° log k%,

where & = (+/—1/47)(d - 3).
Let f: M — P"(C) be a holomorphic map and

H:aquwp+ - +a,w, =0

be a hyperplane in P*{C) with f{M) ¢ H. Take a representation f = (fy:
v+ 1 fa) on M which is reduced, namely whose components are holomorphic
functions with common zeros. Set F{H) :=aofo +- -+ anf, and v(f, H) :=
vp(r). The n-truncated pull-back f‘{H]I"] of H as a divisor is defined by

F(H)M := (min(e(f, H),n)].

We have always f*(H)" < 01, where 1y denotes the pull-back of the Fubini-
Study metric on P*(C).

Definition 1. We define the modified H-defect of H of f by

Dy(H) :=1—-inf{n > 0; f*(H)™ <20y on M — K for a compact set K}.
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The modified H-defect has the following properties.

Proposition 2.

G)oO<Dy(H)< 1.

(5F) If there exists a bounded nonzero holomorphic function ¢ on M excluding
a compact set K such that v, > min(v(f, H),n) on M — K, or particularly if
#f7YH) < oo, then Dy(H) = 1.

(i) If v(f, H) > m at every ¢ € {~'(H) — K for some compact set K, then
DyH)>1—n/m.

Proof. The assertion (i) is trivial, and (ii) is also obvious because
FHE)M <00y + ddlog | g |?
on M — K for n = 0. We have also

fHHW < (nfm)dd* log ||  |I* +dd® log k*

nfnt

on M — K for the bounded function & := (I%T(!%ll) , Where

NFl=0fo P4+ | fu |HV?

for a reduced representation f = (fo:---: fu). This gives (iii).

We now recall the classical value distribution theory of holomorphic maps
of Ape := {2z; R <| z |< oo} into P?(C). The order function of f and the
counting function (truncated by n) of a hyperplane H for f are defined by

T dt
Tf(?‘) = -[R Tv/}.i5|x|5¢ ﬂ; (R <r < +00),

rdt
Nl = [ f “(mylel
7(r) 3 Rslzls:f (H) (R <r < +o00),
respectively. The classical defect (truncated by n) is defined by
N (r)[n]
§r(H)™ = 1 - lim sup =£"—.
=00 Tj(f)
We can prove the following relation between the classical defect and the
modified H-defect.
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Proposition 3. Let f be a nondegenerate holomorphte map of an open Rie-
mann surface M into P"(C). Assume that there is a btholomorphic map ®
of an open set in M onto a neighborhood of Ag,, such that the restric-
tion f = fo® ! | Ag, has an essential singularity at co. Then, for every
hyperplane H,

02 Dy(H) < 6;(H)" < 1

This is shown by the same argument as in [5,§1].
We state here the classical defect relation which are given by Cartan,

Ahlfors and Weyl and improved by Nochka.,

Theorem 4. Let f: Agqo —+ P*(C) be a holomorphic map with an essen-
tsal singularity at co. Assume that f(Ap ) s not included in any (k — 1)-
dimenstonal projective linear subspace of P*(C). Then, for arbitrary hyper-
planes H;(1 < j < ¢) in general position,

q
S 6(H) <2n-k+1
i=1

Now, we give some definitions in order to state the medified defect relation.
We call ds? a pseudo-metric on M if it is locally written ds? = A? | dz |? with a
nonnegative function A, with mild singularities. A continuous pseudo-metric
ds® means a pseudo-metric such that the above }, is continuous. For a pseudo-
metric ds’ we define the Ricci form by Ricy,» := —dd* log A? considered as a
current, the total curvature of M by C(M) := [,, Rics,s and the Gaussian
curvature by K3 := -—%3%;!103 A% The curvature is called to be strictly
negative if there exists a positive constant C' such that K,,: < —C. We call
an open Riemann surface M to be of finite type if M is biholomorphic with a
compact Riemann surface M with finitely many points removed, a holomor-
phic map f of such a Riemann surface M into P*(C) to be transcendental if

f has no holomorphic extension to M. We give another definition.

Definition 5. We define the H-order of a holomorphic map f : M — P"(C)
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by
p; == inf{p >; —Ricya < pllyon M — K for some compact setK},

The modified defect relation is stated as follows:

Theorem 6.  Let (M,ds?) be an open Riemann surface with a complete
conttnuous pseudo-meiric ds* and f : M — P"(C) ¢ kolomorphic mep. As-
sume that f(M) ¥s included in some k-dimensional projective linear subspace
of P*(C) and not included in any (k — 1)-dimensional projective linear sub-
space. If M is not of finite type, or else f ts transcendental, then for any
hyperplanes Hy,..., H, in general position

prk(2n — k +1)

9
S DyH;)<2mn—k+1+ 5

i=1

For the proof of Theorem 6, we need the following Theorem on pseudo-

metrica with negative curvature.

Theorem 7. Let (M,ds?) be as in Theorem 6 and dr® a continuous pseu-
dometric on M whose curvature is strictly negative on M — K for a compact
set K. If there exist a constant p with 0 < p < 1, a divtsor v and a bounded

funetion k with mild singularities such that v(a) > 1 — p for each a €| v | and
—Ricy,r + (v} = p(—Ricga )+ dd° log k*

on M — K, then M 1s of finite type.

The proof 6[‘ Theorem 7 is mainly due to the generalized Schwarz lemma
and the classical Huber’s Theorem. For the proof of Theorem 6 we construct
a suitable pseudo-metric dr? satisfying the conditions of Theorem 7 for some
p and estimate the constant p. We omit the details.

As an application of Theorem 6, we have the following modified defect.

Theorem B, Let M be a nonflat complete minimal surface immersed in

R™ with infinite total curvature, and G the Gauss map of M. Then, for any
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hyperplanes Hy, ..., H, located sn general position

i mim+1
ZDG[H:‘) < (T)
=1
Proof. By Chern-Osserman’s Theorem ([1|), M is not of finite type, or

else 3 is tranacendental. On the other hand, we can write locally
ds* =2 |l d= |*,

which implies ps < 1. The Gauss map G : M — P™!(C) satisfies the

conditions of Theorem 6 for some k with 1 < k < m. So, we have
k(2m—-1)-k+1)
2

m[m+1]—(m—k—1][m—k—2](m{m—i—l)
2 = 2

)E:DG(H,) < 2m—-1)—-k+1+

i=1

In [1], Chern-Osserman proved that the Gauss map G of a nonflat comglete
minimal surface A with finite total curvature immersed in R™ cannot omit
{m — 1)(m + 2)/2{< m(m + 1)/2) hyperplanes in general position if G is
nondegenerate. Recently, Ru noted that the 'nondegeneracy’ assumption of
this result can he dropped. Theorem B is now an immediate consequence of
Theorem 8 and Proposition 2, (ii).

For a minimal surface in R?, we have the following modified defect relation.

Theorem 9. Let M be a nonflat complete minsmal surface with infinite total
curvature and g : M — PY(C) the classical Gauss map. Then, for arbitrary
distinet values o, ..., ¢, € P}(C), we have

iﬂ,(a,—] é 4.

Proof. In this case, we have p, < 2, because ds? is written as

ds' =| k" (g0 '+ |91 [)? | dz |*



68 H. FUJIMOTO

with a nowhere zero holomorphic function h if we take a reduced representa-
tion ¢ = (go : g1). Consider the case n =k =1 and p, < 2 in Theorem 6. We
have'ELl Dy(e;}) € 2+ 2 = 4. This gives Theorem 9.

For the case where M has finite total curvature, the Gauss map g can omit

at most 3 values by Osserman’s result. Therefore, we have Theorem A.
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