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COMPLETE MINIMAL SURFACES EMBEDDED IN
R?} WITH TOTAL CURVATURE 12x.

Celso J. Costa

From the point of view of classical differential geometry, imbedded com-
plete minimal surfaces are interesting objects. A fundamental question about
this subject is the classification of such surfaces.

We denote by ¥ the set of complete orientable minimal surfaces in R3, X :
M — R3, with finite total curvature, C(M). Here M is a non-compact
Riemann surface and C(M) = [, | K | dM where K is the Gaussian curvature
of M. Also, 7, is the subset of ¥ such that X : M — R? is in % if and only
if X is an embedding.

Some basic properties of ¥ were studied by R. Ossermann [9] and [10],
who showed that if X : M — R® is in ¥ then M is conformally equivalent
to a compact Riemann surface of genus «, M, punctured at NV points and
C(M) = 4rm,m € Z,m > 0. In this situation, we say that M has genus
% and NV ends. Also, Ossermann caracterized the catenoid and the Enneper
surface as the unique surfaces in ¥ with C(M) = 4. So, the catenoid is the
unique example in % with C(M) = 4r (that is m = 1).

On the other hand, Jorge and Meeks [7] have proved that if X : M — R%is
in % then C(M) =47m,m = v+ N — 1, where M is a conformally equivalent
to M, —{q1,...,qn}. Recently some authors have shown the non-existence of
examples in %, for some values of v and N, Lopez and Ros [8] have proven
the non-existence of examples for ¥ = 0 and N > 3 and R. Schoen [11] has
proven the non-existence of examples with v > 0 and N = 2. So, from these
results, for a complete description of 7, we can concentrate our attention to
the surfaces, X : M = M, — {q1,...,qn} of %, where y > 1 and N > 3.

The author {1] has constructed an example of a complete minimal immer-
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sion in R? of genus one and three embedded ends. We will call this surface
“Surface S5,”. Later, D. Hoffman and W. Meeks [4] have proven that S, is
embedded (that is, S|, € %) and, inspired by this surface, they were able to
construct, see [6], for each genus v > 2 an example in % with three ends.
The existence of a one parameter family S,,y > 1, in % of genus one and
three ends obtained from S, by a differentiable perturbation, was announced
in (3]. Each S, is conformally equivalent to C/L{sy) — {x(0), #(1/2), 7 (¢y/2)},
where L(sy) = {m + niy;m,n € Z} and 7 : C — C/L{fy) is the canonical
projection. We remark that 5, has a planar end and two ends of catenoid
types and 5,y > 1, has three ends of catenoid types. Also, the author (2] has
proven that S, is the only surface in %, of genus 4 = 1, three ends and with
one planar end.

The main result that we can prove is that S,,y > 1, are all the examples
in % with the topology of a torus (y = 1} and three ends (¥ = 3). This
results follows from Theorems 1 and 2 below. Theorem 1 is a theorem of
uniqueness, but we need the result of existence of Hoffman and Meeks [5] to
conclude the classification. This result of existence can be obtained, through
the maximum principle, as an easy consequence of the results developed in
the proof of Theorem 1. So, to make our work self-contained we present in
Theorem 2 a proof of the existence of the surfaces 5,y > 1.

We say that two minimal surfaces M; and M; are the same if there exists

a rigid motion and a homothety in R® thaf carries M, onto M,.

Theorem 1 {Uniqueness): Let X : M — R® be a complete minimal surface
embedded in R® of genus one and three ends, Then,

a) M is conformally equivalent to M, = C/L(iy) — {=(0), 7(1/2), m(iy/2)},
where y > 1, L{iy) = {m + niy € C;m,n € Z} and 7 : C — C/L(iy) is the
canonical projection,

b) For each y > 1 there exists at most one such surface X.

Fufthermore sfy =1, X : M — R? i5 the surface S endif y > 1, X : M = R®
has three ends of catenoid types.
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Theorem 2 (Existence): There exists ¢ smooth one-parameter family, 5,, S, :
M, — R3,y > 1, of complete embedded minimal surfaces in R® of genus one,
three ends and finite total curvature suck thai:

a} M, is as in (a} of Theorem 1,

b} Sy has a planar end and two ends of catenoid types. That i3, Sy 15 the
surface that appears in [1],2] and [4]and

¢) Sy,y > 1, has three ends of catenoid types.

Corollary 1 8,,y > 1, are all complete minimal surfaces embedded in R® of

genus one, three ends and finite total curvature.

Corollary 2 The surfaces S,y > 1, are all complete minimal surfaces em-
bedded 1n R® with total curvature 127,

The complete proofs of Theorems 1 and 2 will appear in |3]. Here we will

make some considerations about these proofs.

Complete minimal surfaces in R®.

In [9], we find the following representation of complete minimal surfaces, called

Enneper-Ossermann-Weierstrass representation.

Theorem A: Let X : M — R? be a complete minimal immersion of finite
total curvature. Then,

a) M is conformally equivalent to a compact Riemann surface of genus
4, M., punctured at N points,

b) there exist a meromorphic function g and @ meromorphic differential n
in M, such that n is holomorphic in M and g € M s a pole of order m of g
if and only if g i5 a zero of order 2m of n. Furthermore g: M — C U {00} is
the Gauss normal map of the immersion,

¢} if & is a closed path in M, then

Refagn=0, fn=fa9’r1 and
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d) every divergent path in M has infinite length,

Conversely, let M be as in a) and let ¢ and n be a meromorphic funetion
and ¢ meromorphic differential in H.;, respectively. If (g,+) satisfies b} and
¢) then X : M — R3,

X(g) = Re / (1= g1 + gn), 20m), g0 € M

i5 @ minimal immersion with finite total curvature. Furthermore if X satisfies
d} X is eomplete.

The pair (g,7) is called representation of Weierstrass {or representation of
Enneper-Ossermann-Weierstrass) of the immersion X.

Let X : M = M, — {q1,...,qv} — R® be a complete minimal immersion
with finite total curvature. If D; C M,ij=1,...,N is a small topological
disk with ¢; € Dj, then F; = X(M 0 D;) is an end of the immersion X. Let
z: Dy — C be coordinates in D; such that 2(g;) = 0. Suppose that (g,7)
is the representation of Weierstrass of X. Since g is the Gauss map of X we
can suppose, after a rotation of X in R3, that g{g5) = 0. In this situation, see
(7], Fy is an embedded end if and only if g5 is a pole of order two of 5, Then,
around ¢;, we have the local expressions

9(z) = ax2" + 0(2)"*, 2, # 0,m > 1 and n(z) = ;bi +o(z)"',b#£0. (1)

We say that the embedded end is of catenoid type if n = 1 and is 2 planar end
of order n — 1 if n > 1. In this last case, the cr;ordina,t.e X*(g) = 2Re J? g9,
g € M N D, is bounded and the immersion approaches a plane parallel to the
plane X* = 0, That is, from (1) we conclude that the differential gn has a pole
of order one at ¢; (respectively gn is holomorphic at g;) if F; is a catenoid end
(respectively a planar end). Also, from (¢) of Theorem A above, we obtain
the following information about the residue of the meromorphic differential
gn at g;.
Res,.gn = o; € R.

Suppose that X : D — R*, D = {2z € C;0 <| z |< £} is & parametrization

of the embedded end F; in terms of the local coordinates z : D; — ¢, with
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z(g;} = 0. Then we can prove, see [11], page 801, that there exist a punctured
neighborhood D' of 0 € C, R, > 0 and 2z; € C such that F} = X(D") c R?,
is a graph over {2z € C;| z — 2 |> R,}. That is, X(D') can be parametrized
by

Xz) = —a;logR+b+0(R™Y, |z—2 |= R, (2)

where a,6 € R and o{R™') is such that o(R™))R — 0 if R — co. The
number —¢; is called the logarithmic growth of the end F;. We observe that

if a; # O(o; = 0) we have an end of catenoid type (a planar end).

Elliptic Functions and minimal immersion

Let }; be, y = 1,2 complex numbers such that Im(22/2) > 0. The lattice
generated by A, and A; is the set L = L(Ay, A2} = {mA; + ndgy;m,n € zZ}.
Two points z;,2z; € C are L-congruent if z; — z; € L. Otherwise they are
incongruent and we write z; # z,. The canonical projection = : € — C/L
induces over C/L a complex structure. So, C/L is a compact Riemann surface
of genus one.

Definition 1: An elliptic function of L is a meromorphic function f:
C — C U {oo} such that f(z+ ) = f(z) for every 1 € L and z € C. Also
7 = f(2)dz is a differential elliptic of L where z is the global coordinate of ¢
and f is an elliptic function.

It is easy to see that the canonical projection » : ¢ — ¢ /L identifies
the elliptic functions and the elliptic differentials of L with the meromeorphic
functions and meromorphic differentials of C /L, respectively.

The most important elliptic functions is the P-functions of Weierstrass
defined by

1 1 1
ro=5+ T |t a]
2 ﬂELZ—:{D} (z—0)2 @
P(z) is a meromorphic function of order two in C/L with a double pole at the

point 7(0). P'(z) is an elliptic function of L with a triple pole at the points
z € C such that z = 0 and 2 is a zero of P' if and only if z = Af2or 2= A2
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or z = i‘-}i‘ So, P'(z) is a meromorphic function in C'/L of order three with
a triple pole at 7(0) and zeros at the points 7(Ay/2), m(Az/2) and w(2542),
Let FM ={r=z+iy€ C;z?+y* > L,y > 0,] z |< 3} and let L{r)
be the lattice in C given by L(r) = {m + nrym,n € Z}, where r € FM.
Then C/L(r) with the complex structure induced by = : € — C/L(r) are
all Riemann surfaces of genus one. That is, see [12], we have the following

theorem:

Theorem B: Let L be a laitice in C, and let M = C/L equipped with the
complex structure induced by L. Thenthere ezists v € FM such that C/L(r) is
conformally equivalent to M. Furthermore, if C{L(r) and C/L(r'),r,7 € FM

are conformally equivalents, thenr =1 orr,r € 3FM and r = —7.

The Theorem B shows that to prove Theorems 1 and 2 it is sufficient
to consider only the compact Riemann surfaces of genus one, M = C/L(r}),
where r € FM.

The delicate part of the proof of Theorem 1 is the following technical

lemmas and its corollaries.

Lemma 1: Let X : M = C/L(r) — {¢1,¢2,93} — R® be a complete minimal
surface embedded in R3, with finite total curvature, where vt =z + iy € FM.
Then, i

a) z = 0. That is, L(r) = L(ty) is a rectangular latitce and

b) M 1s conformally equivalent to M, = C/L{iy)—{n (0}, n(1/2), x(iy/2)}.

Lemma 2: Let X, : M, — R® be, y > 1 a complete embedded minimal surface
with finite total curvature, where M, is as in b) of the Lemma 1. Then after
a rigid motion end a homothety of X, in R? the Welersirass representation

(gya’?y) of X, is given by

Pe) [_aly) ba(y) N ba(y)
2 Pl =6 (er—e)(Plz) —er) * (es—ea)(P(2) — ea) {’3

g=0 =
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1 =ny = (P(2) - e2)dz,
where e; = Plw;),w, = 1/2,wy = l—%m,ws = 1y/2,

b b
€] — €2 €3 — €2

and by = b;(y), bz = bz(v),b; : [1,00) — R, f5 a pair of differentiable solutions

of equations

whi wbi
— 2 = y[2 - 4
€ — €n €3 — €g y( q1+83) 4 ( }
and
y(2m + €)® — 2w (20 + eg) = 27y by, (5)
in the lattice L(iy) with the conditions
by > —by > 0. (6)

Here, 2ny = — [, P(2)dz, where aft) = 1/3+1£,0<¢ < 1.
Furthermore, if by(y), b:(y) is e pair of solutions of equations (4) and (5)
with the conditions (6), then (8] is the representation of Weierstrass of a

complete minimal immersion of M, in R® with embedded ends,

To complete the proof of Theorem 1 it is necessary to examine all the
solutions of equations (4) and {5) with the condition (6). This is contained in

the following lemma.

Lemma 3: Let L(iy) = {m + niy € C;m,n € Z} be a lattice, where y > 1.
Then there exists one and only one pair by = b1 (y), b = ba(y) of solutions of
the equations ({) and (5) with the condition (6). Furthermore,

a} The fuctions by, by : [1,00) are differentiable,

b)bz:—bl=\/ml'fy=1,

e) 1> —bifby>1/2ify>1.

Also, with these values of by and by we have

a'} if y = 1, the Welerstrass' representation (8) ts ezactly the same of
the surface Sy deseribed in the introduction. So, X| = 8 of the Lemma 2 1s
embedded.
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B)ify> 1, (4} is the Weierstrass® representation of a complete minimal

immersion, with three ends of catenoid types.

Lemmas 1, 2 and 3 are sufficient to conclude the proof of Theorem 1. Now,
we observe that from the representation of Weierstrass (3) we obtain that the
differential g has residues —{by + b}, b, and b, at the points go = 7(0),qy =
m(1/2) and ¢, = x(iy/2), respectively. Let F; be the ends of the immersion X, .
associated to the pointa ¢y, § = 0,1,2, respectively. Then, it follows from (2)
that the logarithmic growths of the end F; are respectively, by + b2, —b1 and ’
—by. These observations and Lemmas 2) and 3) show the following situation : -
For y = 1,by = —b; > 0, —(b; + b3} = 0 and the surface X; = 5 is embedded.
For y > 1,b; > —b; > #; + b3 > 0. This shows that the end F; (logarithmic
growth —&, < D) is contained in the half-space z* < 0 and the ends F; and F;
(respectively with logarithmic growths b +b; > 0 and —b, > 0) are contained
in the half-space z* > 0, Furthermore, as —by > b; + b;, the end Fp is always
below the end F). This geometric placement is the key to prove that X is
embedded also for every y > 1, For the details aee [3].
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