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CONSTANT MEAN CURVATURE SURFACES
BOUNDED BY A PLANE CURVE

Jodo Lucas Marques Barbosa >

1. Introduction

Let M be a surface with smooth boundary M and x : M — R® be an
immersion with constant mean curvature. Let I' be a jordan curve on the
plane 3 = 0. Assume that z restricted to @M is a diffeomorphism onto T
“To determine all such immersions” is a problem that has received the recent
attention of several geometers, such as M. Koiso, Ricardo Earp, Fabiano Brito,
Harold Rosenberg, William H. Meeks and the author.

I must point out that, even when T is a circle, this problem is still unsalved
although several partial results have been obtained in [K], [BEMR], [BE 1],
[BE 2|, |B)].

M. Koiso [K] transformed this question into the following: how does a
surface of constant mean curvature inherit a certain symmetry from its boun-
dary? She proved that when z is an embedding and z(M) does not intersect
the plane z3 = 0 outside of the region bounded by I', then, whenever I' hes
a line of symmetry, z(M) is symmetric with respect to the plane containing
that line and perpendicular to the plane z3 = 0.

The author [B) studied the case when I is a circle and z(M) is contained in
a sphere of radius R = 1/ | H | and showed, witheu® any further hypothesis,
that z(M) must be a spherical cap.

In [BEMR), [BE 1] and [BE 2| several partial results have been obtained
for the embedded case under the hypothesis that, locally arcund T, 2(M) lies

in one of the closed regions determined by the plane of I'.
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In this talk I will show how to prove an extension of my result for the case
in which z(M) is contained in a cylinder of radius 1 /| H|. In fact there is no
advantage in considering the case of surfaces in R? instead of considering the
case of hypersurfaces in R™*!, for the purpose of this problem. Thus we will

treat the more general case.

2. Preliminary Results

Let M be a n-dimensional manifold with smooth boundary @M. Let z: M —
R"*! be an immersion. Consider M endowed with the induced metric so that
£ becomes an isometry., < .,. > will be used to represent the standard inner
product of R**! and also the metric on M. We will assume the immersjon
£ has constant mean curvature H # 0. It is worthwhile to remember that,
in this case, M is orientable and so, we may choose a globally defined unit
vector field N : M — R™1. If A represents the Laplacian on M then

Az =nHN. (1)

For a proof of this fact see, for example, [L]. We observe that this is a well
known formula that holds without the assumption of H being constant. As a

consequence, the following equation is obtained.

(1/2)A <z,z >=nH <z,N > +n. (2)

If {ey,...,ea} i8 an orthonormal tangent frame field in an open set of M and

6y,...,0, are its corresponding dual forms, then

dz =3 bie; 3)

i=1

and

dN = zn: hi;0:e;, (4)

=1
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where h;; = hj; are the coefficients of the second fundamental form of the

immersion z with respect to this frame. It follows from (3) and (4) that

b3
grad |z |*=2) <&,z >e, (5)
i
n
grad < z, N >= E hi; < @, €; > e (6)

fii=1

Furthermore, if U represents any fixed vector of B*!, we also obtain

grad <z,u>=)Y <e,U>e, (7)
i=1

grad < N, Il >= Z hij < ¢;,U > e (8)
i,j=1

We will consider on M the standard volume element dM associated to the

chosen orientation, given by
dM(X;,..., Xp) =< N, X3 A... A X, >,

for any vector fields X,,..., X,, tangent to M. We also consider on M the
volume element d5 associated to the induced orientation.

Consider in R™*! a fixed hyperplane P, and, on this hyperplane, a smooth
hypersurface I' which is the boundary of a compact subset IV of P, It follows

that T is itself compact and it is also orientable.

Theorem 2.1 Let M be and orientable n-dimensional Riemannian manifold
and £ : M — R™ be an immersion that, restricted to 3M, is a diffeornor-
phism between M andT. Let U represent a corstant unit vector of R"*! and
U a unit vetor normal to the hyperplane P that contains T'. Let N be ¢ unit

normal vector field elong M. Then:
<U,N >dM |=|< U,ﬁ> A(D

where A(D) represents the area of the compact set D.
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Proof: We assume that the origin of Rnt1 s a point of D, so that we have

the following expression for the area of D:

A(D)::tj;n<a:,u>ds (9)

where v is a unit vector field perpendicular to [ in the hyperplane P. Denote
by 1 the outward unit normal vector field along M. It is clear that, for any
pedM,N(p) and n {p) are perpendicular to T', are orthogonal to each other and
belong to the plane determined by 7 and v. Without loss of generality we
assume that v(p),U and N{p), n(p) define the same orientation in the plane
they span. Since z(p) has no component in the direction of I/ then we obtain

the following elementary identity
< N U ><mz>—<nU><N,g>=< U0 ><z,v>.

Consequentely

LD(< N,U><mz>-<nU><N,z >)d§ =< U, > nA(D). (10)

Now we are going to express the left hand side of this equality in a dilfereﬁt

form.

LD(«: Nz><nU>-< N,U ><n,z>)dS =

fm(< N.z>nl< U >] - (1/2) < NU > |z [])dS =

[M(-c Ng>A<nU>—(1/2) <Nu>a|zf)dM+

+

[M < grad < N,z >, gred < z, U >> dM -
- fu < grad < N, U >,(1/2)grad |z [*> dM.
Now, using equations (1), (2), (5), (6), (7) and (8) we obtain

f r/Nn~><n.z>—<q,U><N,n:>)dS=nL<N,U>dM. (11)
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Therefore the theorem is proved.

Corollary 2.2 Under the same hypothesis as tn the theorem and assuming

that & has constant mean curvature we have:

a) oy <mU >dM |=| H||< U,U >| nA(D);
b | H|< L{T)/nA(D)

where L(T'}) means the volume of T.

Proof. Using that H is constant, equation (1), Stokes theorem and equa-

tion (3) we obtain:

an<N,U>dM f<nHN,U>dM=
M M

il

f A<x,U>dM=f < n,U > dS. (12)
M aM
Now, (a) follows from theorem (2.1). To prove (b) first observe that:
|<m¥U >|< 1.
It follows from (a} that
L) > _[ |< 7, U >| dS 2| fm <n,U > dS |=| H ||< U, T >| nA(D).
aM
Choosing U = U the result is obtained.
Corollary 2.3 Under the same hypothesis as in the theorem and assuming
that = has constant mean curvature and that T = $™1(1) then,
| H|<1.
Furthermore, if U = ig , we oblain

1 j;M <, U > dM |=| H | vol(571(1)).

Proof: This is just a consequence of the fact that, if ' = $"~!(1) then D
is a ball or radius one and A(D) = L(D)/n.
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3. The Main Result

In this section we prove the following theorem:

Theorem 3.1 Let M™ be a n-dimenstonal manifold with smooth boundary
M. Let x : M — R™1 be an immersion with constant mean curveture
H # 0 such that, restricted to M, z is a diffeomorphism onte the Euclidean
sphere S™"1(1) of the hyperplane Tpyq = 0. If z(M) is contained in a closed
solid cylinder of radius 1/ | H | then z describes a spherical cap.

Proof. From Corollary (2.3) we know that | H |[< 1. Choose the normal
vector field N of M so that H > 0. Let C be the solid cylinder of radius
1/H that contains z(M) and let a(t) = po +tv be a parametric description
of its rotation axis. Consider, on this axis, the direction of v as the upward
direction, and the direction of —v as the downward direction. Let S, be a
closed hemisphere of radius 1/H whose equator lies in 8C and whose center
lies in the region of C below S,. Firat of all, move S, upward until it does not
intersect z(M). This is possible since both sets are compact. Now we move
8, downward until it touches z(M) for the first time. In this position z(M)
lies completely in the closed convex region of C below S,. We want to apply
maximum principle to compare S, and z{M}. For a good reference on the

maximum principle for the equation H = const. see [8].

Lemma 3.2 Under the hypothesis of the theorem, if there is a point ¢ tnierfor
to M such that =(q) belongs o Su and if (M) lies below S, then (M) i a

spherical cap.

Proof (of the lemma) Let V be a small neighborhood of ¢ such that z
restricted to V is an embedding. Set U = x(V) and p = z(g). Since U lies
below S, and p belongs to S, N U, then S, and U are tangent at p. This

is true even when p is a boundary point of 5,. In this last case, the point
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to the boundary of the cylinder at p and, hence, will be tangent to S, at p.
Now we are in position to apply maximum principle, provided that the unit
normal vector fields of U and of S, agree at p. If they do, then S, N I/ must
contain an open set. By analyticity of the solutions of the equation H = eonst
we conclude that z{M) must be a subset of the sphere of radius 1/H and,
therefore, it is a spherical cap. If the normal vector fields of I/ and of S, do not
agree at p, then they must differ by a minus sign (since U and S, are tangent
at p). In this case we reflect S, with respect to its tangent hyperplane at p.
Now we apply the maximum principle to U and to this reflected surface to
conclude that they must have a common open set. By analyticity we obtain
that x(M) is contained in a sphere of radius 1/H, where this sphere lies fully
above the hyperplane tangent to S, at p. Since (M) lies, by hypothesis,
entirely below it, then we have reached a contradiction. Therefore this case

cannot occur. Thus the lemma is proved.

Lemma 3.3 Under the hypothesis of the theorem, if there is a point ¢ of
dM such that z(q) belongs to the interior of S, being To)M = Tyy) S, and
assuming that (M) lies below 5, then x(M) is a spherical cap.

Proof (of the lemma) This lemma can be proved in the same way as
the previous one. The extra hypothesis guarantees that z(M) and S, are

comparable as in lemma (3.2).

From these two lemmas it follows that either z(M) is a spherical cap or
S, touches z(M) only at points of S,_;(1). These points are either points of
@8, or points of 5, where (M) and &, are not tangent.

Let Sy be a closed hemisphere of radius 1/H whose equator lies in 4C
and whose center lies in the region of C above §;. Observe that S4 can be
translated upward or downward along C until it touches S, along its equator

to form a sphere of radius 1/H contained in C.

We can move S; downward until it has no point in common with z(M).

Then move it up until it touches z{M) the first time. The same argument used
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for S, works for 54 to prove that z(M) is either a spherical cap or Sy touches
z(M) only at points of $™(1) which are points either of 83, or points of Sy

where z(M) and S; are not tangent.

Lemma 3.4 §; and S, do intersect.

Fig. 1

Proof (of the lemma). Observe that if the hyperplane P that contains
S"-1(1) intersects S, along a full sphere S"‘l'(r), then S"?(1) will be con-
tained in the ball bounded by: this sphere and so, in the convex hull of S,.
Since S4 must also intercept S“"l(l] then it intersects the convex hull of 5,
and then 5, itself. This is an extreme case. Another extreme case occurs
when the hyperplane P contains a line parallel to the axis of the cylinder. In
this case P intersects S, and S, along two complementary hemispheres S; and
S, of radius r > 1. If S, and S; do not intercept, then neither do §; and S,
and there is no hope that $"7!(1) can be tangent to both S, and S, at some
points p; and p;. Hence, we reach a contradiction and conclude that S, and
S must intercept.

In the remaining cases, the plane P alwavs cuts 5. and S in two soherical
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caps 8y and S; of radius ry and r, respectively, with r; > 1 and r; > 1. If
5, and §; do not intersect, then neither do S, and S;. In fact one can find
a hyperplane perpendicular to the axis of the cylinder such that the center
of 51 is above this hyperplane and the center of S, is below it. Indeed, if X

represents a general point of R"1, then S, S; and P have the equations:
Si: |X—P,|=R and <X —P,uv>>0,

Sg: |X—-Pj|=R and < X —P,,v><0,
P: <X-PU>=0

Represent by C, the center of S, and by C, the center of S;. Then

Ca= P+ AU,
where
A=< P, U>—-<P,U>,
Ag =< Po,i)'r > = iPd,ﬁ:) .

If S, and S; do not intersect then we must have
F,=PF;+av a>0.

Hence we obtain
A=M—a<v,U>
and

Cy = Cy+alv— < v,U > U).

The term inside the parenthesis is simply the projection of v on the plane P.
Since < v— < v, > U,v >=1- < v, U >?> 0, we see that Cy lies above
Cy. This proves the claim. We observe that both S, and 8, are spherical caps
whose boundary lies in the boundary of §, and 5 respectively. Hence the

boundaries lie in parallel hyperplanes of R**! and of P. It is also clear that
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the centers of S; and S, determine a line perpendicular to their boundaries.
If py belongs to 5"~'(1) N 5, and P; belongs to §* (1) N S, then the line
through p; and the center of $7~1(1) will intercept the commom (revolution)
axis of 5; and 5; at the center C,, of §;, and the line through p; and the center
of 5*1(1) will intersect the commom (revolution) axis of &, and S, at the
center Cy of 5;. Since r; and r; are larger than or equal to one, then we must

conclude that Cy lies below Cy which is a contradiction.

Fig. 2

This concludes the proof of the lemma 3.4.

From this lemma we conclude the following: there is a ball of radius 1 [H
that contains £(M), and hence, there is a solid cylinder of radius 1 /H, whose
axis is perpendicular to the hyperplane P, that contains z(M}.

We now repeat the entire procedure described abeve to this new cylinder
to conclude, at the end, that: if (M) is not a spherical cap, then the image
of the interior of M by z must lie in the interior of the intersection B of the

regions above 53 and below S,. Furthermore Y1) =8,NnS5;
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N

Fig. 3

It is clear that 3B can be writen as T, N T, where T, is contained in S,
and Ty is contained in 5,. T, and T are also apherical caps of radius 1/H
and S""!(1) is their common boundary.

If ; and n; are, respectively, the cutward unit normal vector field of T,

and T, along their common boundary, then it is elementary to see that

|< 1, T >|=|< 2,0 >|=| H|. (13)

As before, let 7 represent the outward unit normal vector field to M along
dM. The condition that the image of interior of M, through =z, is contained
in B implies that, forf = 1,2,

|< 0,0 >|<|< 0, U >|. (14)

Hence

<m0 >I< B . (15)
Now, using Corollary (2.3), one obtains

n—1 — i
|8 Jvol(s" (1) = | [ <n0>as]

- | I T S T S T
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Since the first and the last term in this chain of inequalities are the same we
have equality for all terms.

In particular,

l<n0>= H]|. (16)

But this implies that » must coincide with either n; or n;. Hence :c(M) is
tangent to either 7, or T along their common boundary. Now we may apply
maximum principle to conclude that z(M) must coincide with either T,yorT,.
But this is impossible since the image of the interior of M lies in the interior
of B. Hence we have reached a contradiction. Therefore z(M) is a spherical

cap.
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