CONSTANT MEAN CURVATURE SURFACES BOUNDED BY A PLANE CURVE # João Lucas Marques Barbosa #### 1. Introduction Let M be a surface with smooth boundary ∂M and $x:M\to R^3$ be an immersion with constant mean curvature. Let Γ be a jordan curve on the plane $x_3=0$. Assume that x restricted to ∂M is a diffeomorphism onto Γ . "To determine all such immersions" is a problem that has received the recent attention of several geometers, such as M. Koiso, Ricardo Earp, Fabiano Brito, Harold Rosenberg, William H. Meeks and the author. I must point out that, even when Γ is a circle, this problem is still unsolved although several partial results have been obtained in [K], [BEMR], [BE 1], [BE 2], [B]. M. Koiso [K] transformed this question into the following: how does a surface of constant mean curvature inherit a certain symmetry from its boundary? She proved that when x is an embedding and x(M) does not intersect the plane $x_3 = 0$ outside of the region bounded by Γ , then, whenever Γ has a line of symmetry, x(M) is symmetric with respect to the plane containing that line and perpendicular to the plane $x_3 = 0$. The author [B] studied the case when Γ is a circle and x(M) is contained in a sphere of radius R = 1/|H| and showed, without any further hypothesis, that x(M) must be a spherical cap. In [BEMR], [BE 1] and [BE 2] several partial results have been obtained for the embedded case under the hypothesis that, locally around Γ , x(M) lies in one of the closed regions determined by the plane of Γ . In this talk I will show how to prove an extension of my result for the case in which x(M) is contained in a cylinder of radius 1/|H|. In fact there is no advantage in considering the case of surfaces in R^3 instead of considering the case of hypersurfaces in R^{n+1} , for the purpose of this problem. Thus we will treat the more general case. # 2. Preliminary Results Let M be a n-dimensional manifold with smooth boundary ∂M . Let $x:M\to R^{n+1}$ be an immersion. Consider M endowed with the induced metric so that x becomes an isometry. <.,.> will be used to represent the standard inner product of R^{n+1} and also the metric on M. We will assume the immersion x has constant mean curvature $H\neq 0$. It is worthwhile to remember that, in this case, M is orientable and so, we may choose a globally defined unit vector field $N:M\to R^{n+1}$. If Δ represents the Laplacian on M then $$\Delta x = nHN. \tag{1}$$ For a proof of this fact see, for example, [L]. We observe that this is a well known formula that holds without the assumption of H being constant. As a consequence, the following equation is obtained. $$(1/2)\Delta < x, x >= nH < x, N > +n.$$ (2) If $\{e_1, \ldots, e_n\}$ is an orthonormal tangent frame field in an open set of M and $\theta_1, \ldots, \theta_n$ are its corresponding dual forms, then $$dx = \sum_{i=1}^{n} \theta_i e_i \tag{3}$$ and $$dN = \sum_{i,j=1}^{n} h_{ij}\theta_i e_j, \tag{4}$$ where $h_{ij} = h_{ji}$ are the coefficients of the second fundamental form of the immersion x with respect to this frame. It follows from (3) and (4) that grad $$|x|^2 = 2\sum_{i=j}^n \langle e_i, x \rangle e_i,$$ (5) $$grad < x, N > = \sum_{i,j=1}^{n} h_{ij} < x, e_j > e_i.$$ (6) Furthermore, if U represents any fixed vector of \mathbb{R}^{n+1} , we also obtain $$grad < x, u > = \sum_{i=1}^{n} < e_i, U > e_i,$$ (7) $$grad < N, U > = \sum_{i,i=1}^{n} h_{ij} < e_{i}, U > e_{i}.$$ (8) We will consider on M the standard volume element dM associated to the chosen orientation, given by $$dM(X_1,\ldots,X_n)=< N, X_1\wedge\ldots\wedge X_n>,$$ for any vector fields X_1, \ldots, X_n tangent to M. We also consider on ∂M the volume element dS associated to the induced orientation. Consider in \mathbb{R}^{n+1} a fixed hyperplane P, and, on this hyperplane, a smooth hypersurface Γ which is the boundary of a compact subset D of P. It follows that Γ is itself compact and it is also orientable. **Theorem 2.1** Let M be and orientable n-dimensional Riemannian manifold and $x: M \to \mathbb{R}^{n+1}$ be an immersion that, restricted to ∂M , is a diffeomorphism between ∂M and Γ . Let U represent a constant unit vector of \mathbb{R}^{n+1} and \tilde{U} a unit vetor normal to the hyperplane P that contains Γ . Let N be a unit normal vector field along M. Then: $$|\int_{M} \langle U, N \rangle dM| = |\langle U, \tilde{U} \rangle| A(D)$$ where A(D) represents the area of the compact set D. **Proof:** We assume that the origin of \mathbb{R}^{n+1} is a point of D, so that we have the following expression for the area of D: $$A(D) = \frac{1}{n} \int_{\partial D} \langle x, v \rangle dS \tag{9}$$ where v is a unit vector field perpendicular to Γ in the hyperplane P. Denote by η the outward unit normal vector field along ∂M . It is clear that, for any $p \in \partial M$, N(p) and $\eta(p)$ are perpendicular to Γ , are orthogonal to each other and belong to the plane determined by \tilde{U} and v. Without loss of generality we assume that $v(p), \tilde{U}$ and $N(p), \eta(p)$ define the same orientation in the plane they span. Since x(p) has no component in the direction of \tilde{U} then we obtain the following elementary identity $$< N, U > < \eta, x > - < \eta, U > < N, x > = < U, \tilde{U} > < x, v > .$$ Consequentely $$\int_{\partial D} (< N, U > < \eta, x > - < \eta, U > < N, x >) dS = < U, \tilde{U} > nA(D). \quad (10)$$ Now we are going to express the left hand side of this equality in a different form. $$\begin{split} &\int_{\partial D} (< N, x > < \eta, U > - < N, U > < \eta, x >) dS = \\ &= \int_{\partial M} (< N, x > \eta[< x, U >] - (1/2) < N, U > \eta[\mid x\mid^2]) dS = \\ &= \int_{M} (< N, x > \Delta < x, U > -(1/2) < N, u > \Delta \mid x\mid^2) dM + \\ &+ \int_{M} < grad < N, x >, grad < x, U >> dM - \\ &- \int_{M} < grad < N, U >, (1/2) grad \mid x\mid^2 > dM. \end{split}$$ Now, using equations (1), (2), (5), (6), (7) and (8) we obtain $$\int_{M} (>N | U > < n, x > - < \eta, U > < N, x >) dS = n \int_{M} < N, U > dM.$$ (11) Therefore the theorem is proved. Corollary 2.2 Under the same hypothesis as in the theorem and assuming that x has constant mean curvature we have: (a) $$|\int_{\partial M} \langle \eta, U \rangle dM |= |H| || \langle U, \tilde{U} \rangle | nA(D);$$ b) $$|H| \leq L(\Gamma)/nA(D)$$ where $L(\Gamma)$ means the volume of Γ . Proof. Using that H is constant, equation (1), Stokes theorem and equation (3) we obtain: $$nH \int_M \langle N, U \rangle dM = \int_M \langle nHN, U \rangle dM =$$ $$= \int_M \Delta \langle x, U \rangle dM = \int_{\partial M} \langle \eta, U \rangle dS. \quad (12)$$ Now, (a) follows from theorem (2.1). To prove (b) first observe that: $$|<\eta,U>|\leq 1.$$ It follows from (a) that $$L(\Gamma) \geq \int_{\partial M} \left| <\eta, U> \right| \, dS \geq \mid \int_{\partial M} <\eta, U> dS \mid = \mid H \mid \mid < U, \tilde{U}> \mid nA(D).$$ Choosing $U = \tilde{U}$ the result is obtained. Corollary 2.3 Under the same hypothesis as in the theorem and assuming that x has constant mean curvature and that $\Gamma = S^{n-1}(1)$ then, $$\mid H \mid \leq 1$$. Furthermore, if $U = \tilde{U}$, we obtain $$|\int_{\partial M} <\eta, U>dM|=|H|vol(S^{-1}(1)).$$ **Proof:** This is just a consequence of the fact that, if $\Gamma = S^{n-1}(1)$ then D is a ball or radius one and A(D) = L(D)/n. ### 3. The Main Result In this section we prove the following theorem: Theorem 3.1 Let M^n be a n-dimensional manifold with smooth boundary ∂M . Let $x: M \to \mathbb{R}^{n+1}$ be an immersion with constant mean curvature $H \neq 0$ such that, restricted to ∂M , x is a diffeomorphism onto the Euclidean sphere $S^{n-1}(1)$ of the hyperplane $x_{n+1} = 0$. If x(M) is contained in a closed solid cylinder of radius 1/|H| then x describes a spherical cap. Proof. From Corollary (2.3) we know that $|H| \le 1$. Choose the normal vector field N of M so that H > 0. Let C be the solid cylinder of radius 1/H that contains x(M) and let $\alpha(t) = p_0 + tv$ be a parametric description of its rotation axis. Consider, on this axis, the direction of v as the upward direction, and the direction of -v as the downward direction. Let S_v be a closed hemisphere of radius 1/H whose equator lies in ∂C and whose center lies in the region of C below S_v . First of all, move S_v upward until it does not intersect x(M). This is possible since both sets are compact. Now we move S_v downward until it touches x(M) for the first time. In this position x(M) lies completely in the closed convex region of C below S_v . We want to apply maximum principle to compare S_v and x(M). For a good reference on the maximum principle for the equation H = const. see [S]. **Lemma 3.2** Under the hypothesis of the theorem, if there is a point q interior to M such that x(q) belongs to S_u and if x(M) lies below S_u then x(M) is a spherical cap. **Proof** (of the lemma) Let V be a small neighborhood of q such that x restricted to V is an embedding. Set U = x(V) and p = x(q). Since U lies below S_u and p belongs to $S_u \cap U$, then S_u and U are tangent at p. This is true even when p is a boundary point of S_u . In this last case, the point to the boundary of the cylinder at p and, hence, will be tangent to S_u at p. Now we are in position to apply maximum principle, provided that the unit normal vector fields of U and of S_u agree at p. If they do, then $S_u \cap U$ must contain an open set. By analyticity of the solutions of the equation H = const we conclude that x(M) must be a subset of the sphere of radius 1/H and, therefore, it is a spherical cap. If the normal vector fields of U and of S_u do not agree at p, then they must differ by a minus sign (since U and S_u are tangent at p). In this case we reflect S_u with respect to its tangent hyperplane at p. Now we apply the maximum principle to U and to this reflected surface to conclude that they must have a common open set. By analyticity we obtain that x(M) is contained in a sphere of radius 1/H, where this sphere lies fully above the hyperplane tangent to S_u at p. Since x(M) lies, by hypothesis, entirely below it, then we have reached a contradiction. Therefore this case cannot occur. Thus the lemma is proved. **Lemma 3.3** Under the hypothesis of the theorem, if there is a point q of ∂M such that x(q) belongs to the interior of S_u being $T_{x(q)}M = T_{x(q)}S_u$ and assuming that x(M) lies below S_u then x(M) is a spherical cap. **Proof** (of the lemma) This lemma can be proved in the same way as the previous one. The extra hypothesis guarantees that x(M) and S_u are comparable as in lemma (3.2). From these two lemmas it follows that either x(M) is a spherical cap or S_u touches x(M) only at points of $S_{n-1}(1)$. These points are either points of ∂S_u or points of S_u where x(M) and S_u are not tangent. Let S_d be a closed hemisphere of radius 1/H whose equator lies in ∂C and whose center lies in the region of C above S_d . Observe that S_d can be translated upward or downward along C until it touches S_u along its equator to form a sphere of radius 1/H contained in C. We can move S_d downward until it has no point in common with x(M). Then move it up until it touches x(M) the first time. The same argument used 10 J. L. M. BARBOSA for S_u works for S_d to prove that x(M) is either a spherical cap or S_d touches x(M) only at points of $S^{n-1}(1)$ which are points either of ∂S_d or points of S_d where x(M) and S_d are not tangent. Lemma 3.4 S_d and S_u do intersect. Fig. 1 Proof (of the lemma). Observe that if the hyperplane P that contains $S^{n-1}(1)$ intersects S_u along a full sphere $S^{n-1}(r)$, then $S^{n-1}(1)$ will be contained in the ball bounded by this sphere and so, in the convex hull of S_u . Since S_d must also intercept $S^{n-1}(1)$ then it intersects the convex hull of S_u and then S_u itself. This is an extreme case. Another extreme case occurs when the hyperplane P contains a line parallel to the axis of the cylinder. In this case P intersects S_u and S_d along two complementary hemispheres S_1 and S_2 of radius $r \geq 1$. If S_u and S_d do not intercept, then neither do S_1 and S_2 , and there is no hope that $S^{n-1}(1)$ can be tangent to both S_1 and S_2 at some points S_1 and S_2 . Hence, we reach a contradiction and conclude that S_u and S_d must intercept. In the remaining cases, the plane P always cuts S_n and S_d in two spherical caps S_1 and S_2 of radius r_1 and r_2 respectively, with $r_1 \ge 1$ and $r_2 \ge 1$. If S_u and S_d do not intersect, then neither do S_1 and S_2 . In fact one can find a hyperplane perpendicular to the axis of the cylinder such that the center of S_1 is above this hyperplane and the center of S_2 is below it. Indeed, if X represents a general point of R^{n+1} , then S_u , S_d and P have the equations: $$S_u: \mid X - P_u \mid = R \text{ and } < X - P_u, v > \geq 0,$$ $S_d: \mid X - P_d \mid = R \text{ and } < X - P_d, v > \leq 0,$ $P: \langle X - P_0, \tilde{U} \rangle = 0.$ Represent by C_u the center of S_1 and by C_d the center of S_2 . Then $$C_{\mathbf{u}} = P_{\mathbf{u}} + \lambda_{\mathbf{u}} \tilde{U},$$ $$C_{\mathbf{d}} = P_{\mathbf{d}} + \lambda_{\mathbf{d}} \tilde{U}.$$ where $$\lambda_u = \langle P_0, \tilde{U} \rangle - \langle P_u, \tilde{U} \rangle,$$ $$\lambda_d = \langle P_0, \tilde{U} \rangle - \langle P_d, \tilde{U} \rangle.$$ If S_u and S_d do not intersect then we must have $$P_u = P_d + av \quad a > 0.$$ Hence we obtain $$\lambda_u = \lambda_d - a < v, \tilde{U} >$$ and $$C_u = C_d + a(v - \langle v, \tilde{U} \rangle \tilde{U}).$$ The term inside the parenthesis is simply the projection of v on the plane P. Since $\langle v-\langle v, \tilde{U} \rangle = 1 - \langle v, \tilde{U} \rangle^2 \geq 0$, we see that C_u lies above C_d . This proves the claim. We observe that both S_1 and S_2 are spherical caps whose boundary lies in the boundary of S_u and S_d respectively. Hence the boundaries lie in parallel hyperplanes of R^{n+1} and of P. It is also clear that 12 J. L. M. BARBOSA the centers of S_1 and S_2 determine a line perpendicular to their boundaries. If p_1 belongs to $S^{n-1}(1) \cap S_1$ and P_2 belongs to $S^{n-1}(1) \cap S_2$ then the line through p_1 and the center of $S^{n-1}(1)$ will intercept the commom (revolution) axis of S_1 and S_2 at the center C_u of S_1 , and the line through p_2 and the center of $S^{n-1}(1)$ will intersect the commom (revolution) axis of S_1 and S_2 at the center C_d of S_2 . Since r_1 and r_2 are larger than or equal to one, then we must conclude that C_u lies below C_d which is a contradiction. Fig. 2 This concludes the proof of the lemma 3.4. From this lemma we conclude the following: there is a ball of radius 1/H that contains x(M), and hence, there is a solid cylinder of radius 1/H, whose axis is perpendicular to the hyperplane P, that contains x(M). We now repeat the entire procedure described above to this new cylinder to conclude, at the end, that: if x(M) is not a spherical cap, then the image of the interior of M by x must lie in the interior of the intersection B of the regions above S_d and below S_u . Furthermore $S^{n-1}(1) = S_u \cap S_d$ Fig. 3 It is clear that ∂B can be writen as $T_u \cap T_d$, where T_u is contained in S_u and T_d is contained in S_d . T_u and T_d are also spherical caps of radius 1/H and $S^{n-1}(1)$ is their common boundary. If η_1 and η_2 are, respectively, the outward unit normal vector field of T_u and T_d along their common boundary, then it is elementary to see that $$|<\eta_1, \tilde{U}>|=|<\eta_2, \tilde{U}>|=|H|.$$ (13) As before, let η represent the outward unit normal vector field to M along ∂M . The condition that the image of interior of M, through x, is contained in B implies that, for i = 1, 2, $$|\langle \eta, \tilde{U} \rangle| \le |\langle \eta_i, \tilde{U} \rangle|$$ (14) Hence $$|\langle \eta, \tilde{U} \rangle| \le |H|$$ (15) Now, using Corollary (2.3), one obtains $$\mid H \mid vol(S^{n-1}(1)) = \mid \int_{\partial M} <\eta, \tilde{U} > dS \mid$$ $$< \int_{-1}^{1} <\eta, \tilde{U} > dS <\eta, \tilde{U} > dS \mid$$ Since the first and the last term in this chain of inequalities are the same we have equality for all terms. In particular, $$|\langle \eta, \tilde{U} \rangle| = |H|$$. (16) But this implies that η must coincide with either η_1 or η_2 . Hence x(M) is tangent to either T_u or T_d along their common boundary. Now we may apply maximum principle to conclude that x(M) must coincide with either T_u or T_v . But this is impossible since the image of the interior of M lies in the interior of B. Hence we have reached a contradiction. Therefore x(M) is a spherical cap. ### References - [K] M. Koiso, Symmetry of Hypersurfaces of Constant Mean Curvature with Symmetric Boundary, Math. Z., vol. 191 (1986), pp. 567 - 574. - [BEMR] F. Brito, R. Earp, W. H. Meeks III, H. Rosenberg, Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve, Indiana Univ. Math. J. vol. 40 (1991), pp. 333 343. - [BE 1] F. Brito, R. Earp, Geometric Configurations of Constant Mean Curvature Surfaces with Planar Boundary, Anais da Acad. Bras. de Ciências, vol 63 (1991), pp. 5 19. - [BE 2] F. Brito, R. Earp, On the Configurations of certain prescribed Mean Curvature Surfaces with Planar Boundary, preprint. - [B] J.L.M. Barbosa, Hypersurfaces of Constant Mean Curvature on Rⁿ⁺¹ Bounded by an Euclidean Sphere, Geometry and Topology II, World Scientific Publishing Co. Pte. Ltd., 1990, pp. 1 - 9. - [S] R. Schoen, Uniqueness, Symmetry and embeddedness of Minimal Surfaces, J. Differential Geometry. vol. 18 (1983). pp. 791 804. [L] H.B. Lawson Jr., Lectures on Minimal Submanifolds, 1st ed., Berkeley, Publish or Perish inc., 178 p. Universidade Federal do Ceará Departamento de Matemática Campus do Pici 60115 Fortaleza - CE