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SUBMANIFOLDS OF CONSTANT NON POSITIVE
CURVATURE

Mauro L. Rabelo * Keti Tenenblat *

The n—dimensional hyperbolic submanifolds M" of the euclidean space
R ! are in correspondence with solutions of a system of differential equa-
tions called the intrinsic generalized sine-Gordon equation. Similarly, flat sub-
manifolds M™ of the unit sphere §2"~1, correspond to solutions of the intrinsic
generalized wave equation. [A], [BT).

In this note we consider particular solutions of these equations, which
depend only on one variable, and we obtain the associated submanifolds as
being generated by curves, in such a way that each point of the curve describes
an (n-1)-dimensional torus. These are called toroidal submanifolds.

In the case of constant negative curvature the associated submanifolds are
generated by curves which are given explicitly in terms of a family of elliptic
functions when n < 3. For n > 4, the submanifold is generated by a tractrix
in R". These provide the classification of the hyperbolic toroidal submani-
folds. (see Theorem 2.1 Proposition 2.1) As an immediate consequence, one
concludes that there are no complete toroidal submanifolds M in R™ "1, with
constant sectional curvature -1. This last result is also contained in Aminov’s
theorem [A2].

Similarly, the flat n-dimensional submanifolds of S~ which correspond
to the particular solutions of the intrinsic generalized wave equation, are the
Clifford torus and the toroidal submanifolds generated by a family of curves
contained in a two-dimensional sphere (see Theorem 2.1). Moreover, these give

the classification of the flat toroidal submanifolds of S*™~!. In particular, we
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conclude that the Clifford torus is the only complete flat toroidal submanifold
of the sphere §3"-1,

The classical Hilbert’s theorem states that the hyperbolic plane H? cannot
be realized isometrically in R%. It has been conjectured for a long time that
the hyperbolic n-space cannot be isometrically immersed in R?*-1, n > 2.
Partial results in this direction were obtained by Xavier [X] and Aminov [A2].
The latter considers solutions of the intrinsic generalized sine-Gordon equa-
tion which do not depend on one independent variable and shows that the
hyperbolic submanifolds associated to such solutions are not complete. The
difficulty in proving the conjecture lies in the study of global solutions of
the system of differential equations (highly nonlinear) which depend on all
independent variables .

In order to state our results we recall some preliminary results, We denote
by M"(K) an n—dimensional manifold of constant sectional curvature K.
The following theorem for submanifolds M™(X) C M* YK), K < K, is well
known, (See [C], [M] ).

Theorem A Let M"(K) be a riemannian manifold isometrically immersed in
M™-YKR) , such that K < K. Then there ezist local coordinates (Ziy. ooy 2n)

such that the first and second fundamental jorms are given by

n L]
I=3dd? 1= Y suen dedensin 1)

i=1 i=1,§=2

where 1r_, a}, = 1 and e,,;_, 15 an orthonormal frame normal to M.
=11 +1

From now on we normalize the curvatures by considering K — K = 1.
Under the conditions of Theorem A, one can show ([A], [T), [TT]) that the

n X n matrix function ¢ = (a;;) satisfies the following system of equations

aat = I, (2)
aa i . .
3_; = ayhy i #j, (3)

7
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Bhi; Ahy .

hukla R + hyihe; = —Kayary, 177, (4)
az‘_ ax: ‘#§¢: anthay Litly

% = hih,; 1,3,s distinct, (5)
Jda; . .

e = Giba £l §23, (6)

where the off diagonal matrix function h = (h;;) is defined by (3).

When K = 0, this is the generalized wave equation (GWE) and when
K = —1, this is the generalized sine-Gordon equation (GSGE) (see [T] [TC|
[TT]).

The above equations are equivalent to the Gauss and Codazzi equations.
As a consequence of the fundamental theorem for submanifolds, given a matrix
function e, which satisfies the equations (2)-(6), defined on a simply connected
open subset 2 C R", there exists an isometric immersion X : 1 C R" —
M*=1(KY) whose first and second fundamental forms are given by (1).

In the two-dimensional case, the Codazzi equation (6) is a consequence of
the Gauss equation (4) and (5). Motivated by this result, intrinsic generali-
zations for the sine-Gordon and the wave equations were introduced in [BT)|

(see also [A]) as stated in the following result.

Theorem B Let §1 be a simply connected open subset of R, with coordinates
Ti,..., T, endowed with a riemannian metric g = g;; of constant sectional
curvature K. Suppose g is diagonal and tr ¢ = 1. Then the smooth function

v:{— R", v=_vy,...,v,) defined by v} = g;; satisfies

v =1 (7)
6v.- . B

77, vihiy  {#7], (8)
ok, Bhy; L
5= t+ -+ hyh,; = —Kvv;,  i#7, 9
3::.- Bz,- ’#‘Z';#}. ? ? [ )
Ok o :
5. hishag, 1,8,7 distinct, (10)

where 1 < i,7,5 < n and hy; is an off diagonal matriz function given by (7).

Conversely, given a solution of (7)-{10} such that v;(z) # 0, for all z € 0,
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then g;; = b;;v} defines ¢ metric on 1 which satisfics the above conditions.

As it was shown in [BT|, whenever »;(z) #0,forall z € Qand 1 < ¢ < n,
then v and h satisfy

3v.—

3. = 2 vihy (11)
9z P
dhy . Ok 3

The system (7)-(12) is called the Intrinsic Generalized Wave Equation
(IGWE) when the constant K = 0 and the Intrinsic Generalized Sine-Gordon
Equation (IGSGE) when K = —1.

In what follows, we consider solutions v; of these equations, which define
metrics as in Theorem B. Therefore, the intrinsic equations reduce to (7)-
(10). Under these conditions, the relation between the generalized equations
is stated in the following theorem (see [A] and Theorem 2 [BT] ).

Theorem C

(i) If @ 13 a solution of the GWE, then each row of e, whose elements do not
vanish, is a solution of the IGWE.

(ii) Suppose a is a solution of the GSGE. Then the first row of a is @ solution
of the IGSGE, whenever its elements do not vanish.

(iii) Conversely, if v is a solution of the IGWE (resp. IGSGE) whose ecor-
dinate functions do not vanish on a simply co‘nnectcd domain 1 C IR", then
there ezisls a solution a on N for the GWE (resp. GSGE} whose first row is

v.

It follows from the above results that the solutions v of the IGWE (resp.
IGSGE}), which do not vanish on a simply connected domain 1 ¢ R" are
in correspondence with the isometric immersions X : 1 — 52! (resp.
X : @ — R™ ) of constant curvature K = 0 (resp. K = —1). Such
an immersion is determined up to rigid motions and is called the smmersion

associate to v.



SUBMANIFOLDS OF CONSTANT NON POSITIVE CURVATURE 75

As an example we consider the solution of the IGSGE
vi=1gh z, wvj=¢jsech z; j>2
where ¢; # 0 and E;‘z, cf = 1,x; > 0. The associated immersion is
(tgh zy—z1, easech x, cos x4, casech 2y sin z4,. . ., cnsech z cos x,., cusech 2 sin z,).

This submanifold is generated by a tractrix and each point of this curve de-
scribes a torus of dimension n — 1 in R*"™2.

Similarly, the Clifford torus
X(zi...2n) = (e1c08Z1, 018N 1,0 . Cn €OS Zn, Cn 8IN T,)

is the immersion associated to the constant solution v, = ¢; # 0,2 ;¢ =1,
of the IGWE.
We introduce the definition of toroidal submanifold inspired by the exam-

ples above.

Definition
a) Let
a(z)) = (filzr,-. ., fulz)) T€eICR
be a parametrization of a regular curve in R",n > 3 such that f;(z,) # 0,

t > 2,¥Yz; € I. The submanifold, which up to a rigid motion of R?"~!, is given
by

(filz1), fa(z1) coszq, foz1) sinzy, .. ., fu(z1) cos z,, fu(z1) sing,),

is called a toroidal submanifold M" of R**™! generated by the curve .
b) Let
B(z1) = (folz1): filz1), .-y falm)) T €TCR
be a parametrization of a regular curve in R"',n > 3, such that fi(z,) #

0,1 > 2,Vz; € I. The submanifold , which up to a rigid motion of R*® is given
by

(folz1), [1(Z1), falzi) cos 22, fa(z1 ) sin xg, ..., fu(z1) cO8 241, fu(z1) Sin 24,)
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is called a toreidal submanifold M™ of R™ generated by the curve § .

A toroidal submanifold is generated by a curve in such a way that each
point of the curve describes a flat (n-1)-dimensional torus T7"~! contained in
R!n—z'

1. Hiperbolic submanifolds of Euclidean space

The solutions of the IGSGE which depend only on one independent variable
are given in the following result in terms of elliptic functions. These solutions

are invariant by the local symmetry group of the equation (see [TW]).

Proposition 1.1 Let v = (vy,...,v,),n > 2, be a solution of the IGSGE
which depends only on x;, such that v(z) #0,1 €¢{ < nforx, inan open
interval T C R,

(i) If n=2, then

(v,)?

vi = 1-vf,

(1-v))(1+c-1vd), (13)

wherece R and1+¢ > 0.
(i) fn=3, then

' b2
() = (G- oD 46— - o),

R (bz 0 14)

1 = Tratla b (
1

2 2 2 2

vi = 1+cz(1+c — b —v]),

where b #0,c £ 0 and 1 + ¢ - b2 > 0.
(iii) & n > 4 then

It

v ttgh(z, — a), (15)

vy cjsech(z; —a) ,5>2

where a,¢; # 0 are real numbers and Tiaci=1
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We observe that when 6 = c%, the equations (14) give v in terms of
elementary functions exactly as in (15). Moreover, for each solution given in

Proposition 1.1 there exists a value z, €R such that v(x) = 0.

One can show that the isometric immersions M” — R¥™! of constant
curvature K = —1 associated to these solutions are , up to rigid motions,

toroidal submanifolds.

Theorem 1.1 The submenifolds M™ C R*"™! with constant sectional curva-
ture K = —1, associated to the solutions of the IGSGE given in Proposition
1.1 are, up to a rigid motion.

(i) The surface of rotation generated by the curve

v . .
(—fﬂfdxl,ﬁ) N ifn= 2,

where vy, vy are defined by (13).

(i} The toroidal submanifolds generated by the curves

(—[vfd:tl.——-'iz-——— %) if n =3,
Videl—pt b )’

where v;,1 < { < 3, are given by (14) and

(iii) The toroidal submantfold generated by the curve

(tgh 2, — z1,¢; sech zy,...,¢, sech zy), ifn >4,

where 377_, c} =1,

A sketch of the proof: Let v = (v,...,v,) be a solution of the IGSGE as
in Proposition 1.1. By Theorem C there exists a solution (a;;) of the GSGE
such that a;; = vy, for 1 < j < n. Moreover, ¢,;,2 < 1 < n, also depend only
on Ij.

The submanifold associated to v is determined by the first and second

fundamental forms given by

I= Eaf‘dz? and JJ = Z (a_,-‘al.-dxf]e,,ﬂ-_]

i=1 i=2i=1
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where €,;; 3,2 < 7 < n, is an orthonormal basis for the normal bundle. The
proof of the theorem follows from the fundamental theorem for submanifolds
of the euclidean space, which says that the immersion X : 1 c R — R
where {} is simply connected, is determined, up to a rigid motion, by solving
the following system of differential equations for the vector fields X., and

€nts1, Where 1 < i <n, 2<s<n:

n "
k P
X:.':,- = E r.‘jXI: + Zallar:'&ijfn+r—1 1<, 8n
k=1 r=2
g
€nts-lz;, — —a—Xz,- ,2<s<n.
1¥

We can show that these submanifolds characterize the toroidal submani-
folds of R?~! with constant curvature -1. Consequently, we conclude that

these are no complete toroidal submanifolds M" ¢ R*! with K = —1.

Theorem 1.2

a)The submanifolds M™ C R* !, n > 3, given by Theorem 1.1 are, up to a
rigid motion, the only teroidal submanifolds of R*™ ! with constant sectional
curvature K = —1.

b)There are no complete toroidal submanifolds M™ C R™! withK=-1,

2. Flat subraanifolds of the unit sphere

We obtain the results analogous to those in section 1, by considering the
correspondence between flat submanifolds of the sphere and solutions of the
IGWE. The solutions of the IGWE which depend only on one independent

variable are given by the following result.

Proposition 2.1 Let v = (vy,...,v,),n > 2, be a solution of the IGWE
which depends only on z,, such that v(z)) #0,V1 < ¢, < n, for z, in an open
interval I C R. Then there exists jp, 2 < jo €< n such that

vy = V1-e*sin(Az; — q)
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Vi, = *V1-—c?cos(Azr; — a) (16)
vy = ¢y, 122,5#

where 30 3¢ = c%, ¢; £ 0, Xa,c; € Rand | ¢ |< 1. When X = 0, then
I =R and a # Ir{2 for any integer I; when X # 0, then z, € I such that
Inf2 < dzy —a < (I +1)7/2.

We observe that when A = 0, the solution given by (16) is constant. The
flat isometric immersions in the unit sphere, M™ C §?*~! ¢ R?" associated to
the solutions above are toroidal surfaces generated by a family of curves of 52

and the Clifford torus. More precisely:

Theorem 2.1 The flat submanifolds M™ C S, associated to the solutions
of the IGWE given in Proposition 2.1 are up to a rigid motion,
(t) The Clifford torus

(ercoszy,¢psinzy,...,c, cosz,, e, sin z,)

where v; = ¢; #0, 1 € ¢ < n, whenever A = 0.

(i7) The toroidal submanifolds generated by the curves

[6f016fl|6f2}63|"'scn)‘ §=v1-¢?

where 2= )2 41, ¢ = Yi-aci and

A

fo = —sinrz cos(Az; — a) — cosrzysin(Az; — a)
r

fi = —cosrz cos(Azy — a) +sinrz,sin(Az, — a)
r

f2

1
- cos(Az; — a)

whenever A # 0,

The proof of this theorem follows from the fundamental theorem for subma-

nifolds of the sphere. One can show that, up to a rigid motion, the immersion
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is given by

X = (6f0,8/1,8frcosrzy,6f18inrzy, ¢3C08Zs,¢38in2s,...,0nC08 Zn, ¢, 8in z,),

Remark 2.1 The family of curves which generate the toroidal submanifolds
of Theorem 2.1 (ii) is contained on a two-dimensional sphere. Moreover, we

can show the following:

Theorem 2.2

a) The submanifolds M™ C §™1 given by Theorem 2.1 are, up to a rigid
motion, the only toroidal flat submenifolds of R?™ contafned in §31,

b) The only complete toroidal flat submanifolds M™ C S 5 the Clifford

torus.

Comglete details of the proofs will appear elsewhere.
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