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Abstract

In this note we introduce a new class of isometric immersions, the
pseudo-parallel immersions, defined as the extrinsic analogue of pseudo-
symmetric manifolds (in the sense of R. Deszcz) and as a direct gener-
alization of semi-parallel immersions. We will prove some basic results
and discuss some examples.

1. Introduction

A Riemannian manifold M is locally symmetric if its Riemannian curvature
tensor R is parallel, i.e. VR = 0 , where V is the Levi-Civita connection ex-
tended to act on tensors. A natural generalization of these manifolds are semi-
symmetric manifolds, i.e. Riemannian manifolds which satisfy R (X,Y)-R =0,
for all vectors X and Y tangent to M, where the curvature operator R (X,Y)
acts as a derivation on R. Semi-symmetric manifolds were introduced by E. Car-
tan in the twenties and classified by Szabé only in the early eighties (see [Sy],
[S2). The study of totally umbilical submanifolds of semi-symmetric manifolds,
leads to the concept of pseudo-symmetric manifolds, i.e. Riemannian manifolds
M which satisfy the condition R (X,Y) - R=¢X AY - R, for all vectors X and
Y tangent to M and some smooth function ¢ of M, where the endomorphism
XAY :TM — TM, defined by X AY (Z)=(Y,Z) X — (X, Z) Y, is extended
to act on tensors (see [AD]). The class of pseudo-symmetric manifolds naturally
generalizes the class of semi-symmetric manifolds, but there exist many exam-

ples of pseudo-symmetric manifolds which are not semi-symmetric (see e.g. [D]
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and references therein). In the last decade, several studies involving this class
of manifolds have been published, but a full classification is not yet available.

In the theory of isometric immersions in space forms, conditions analogous
to local symmetry and semi-symmetry have been introduced and studied in the
last two decades. Firstly Ferus and others introduced the concept of parallel im-
mersions, i.e. immersions whose second fundamental forms are parallel (see (1)
below), and classified such immersions (see [F], [BR], [Ta]). Afterwards, Deprez
and others introduced and studied the concept of semi-parallel immersions, i.e.
immersions whose second fundamental forms are anihilated by the curvature
tensor of the ambient space, extended to act on tensors (see (4) below). A full
classification of these immersions is not available yet, but several partial results
are known (see e.g. [D1], [D2], [L], [Di], [DN], [AM]).

In this paper we will give the definition of pseudo-parallel immersions (see
(5) below), as an extrinsic analogue of pseudo-symmetric manifolds and a nat-
ural generalization of semi-parallel immersions. We will give some examples
of pseudo-parallel hypersurfaces which are not semi-parallel and of pseudo-
symmetric hypersurfaces which are not pseudo-parallel. We will give a proof of

the following result:

Theorem 1.1. Let f : M™ — QV (¢) be a pseudo-parallel immersion. If
H(p) =0 and &(p) > ¢, then p is a geodesic point, i.e. the second fundamental
Jorm vanishes at p.

As a consequence, we get:

Corollary 1.2. Let f : M" — Q"2 (c) be a pseudo-parallel immersion. If
é(p) = ¢ or H(p) #0, then R*(p) = 0.

Finally we will make some remarks on work on progress on the subject.

2. Definitions and Examples

Let M™ be a connected n-dimensional Riemannian manifold and let Q@ (c) be an

N-dimensional manifold with constant sectional curvature c. Given an isometric
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immersion f : M" — QY (¢), we will denote by V and V the Levi-Civita
connections of M and Q¥ (c) respectively and v (f) will denote the normal
bundle of the immersion. Then the second fundamental form o : TTM QT M —
v(f)is given by a(X,Y) = VxY — VyV, where X,Y are tangent vectors. As
usual, V*+ and R* will denote the normal connection and respective curvature
tensor and, if £ € v (f), Ae : TM — T'M will denote the Weingarten operator
in the ¢ direction, 4;X = V& — Vxé€. Ag¢ and o are symmetric and related by
(A X.Y) = (a(X,Y),£). The local geometry of f is described by the above

data and the basic equations:

(R(X,Y)Z,W) = ¢(XAY (Z), W)+ (a(X,W),a(Y,Z)) (Gauss)
—(a (X, 2),a(Y, W),

(Vo) (x,Y,2) = (Va) (X,Z,Y),  (Codazzi-Mainardi)

(R*(X,Y)&n) = ([Ae, A X,Y),  (Ricci)
where X AY : TM — TM is the endomorphism defined by X A Y (Z) =
(Y, 2)X = (X, Z)Y and Va : TM @ TM @ TM — v(f) is the covariant
derivative of « defined by

(Vo) (X,v,2) = (Vza)(X,Y)
= Vzla(Y,2) - a(VaY,2)—a(Y,VzZ). (1)

The second covariant derivative Voo : TM QTMQTM @TM — v(f)is
defined by

(V'a) (XY, Z,W) (VwVza) (X,Y)
= Vi [(Vza) (X,V)] = (Vzo) (VwX,Y)  (2)
— (Vz0) (X, VwY) = (Vv ze) (X,Y).

Then we have:

(VxVya) (2, W) = (VyVxa) (2,W)
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= RY(X,)Y)[e(ZW)]—a(R(X,Y)Z,W)—a(ZR(X,Y)W). (3)

The immersion f : M™ — Q~ (¢) is parallel if Va = 0 and is semi-parallel if
F(X, Y) QL= (vxvya) = (vyvxoz) == 0, (4)
for all X,Y € T'M. Clearly parallelism implies semi-parallelism, but the con-
verse is not true in general, as it is shown, for example, in the classification of
semi-parallel hypersurfaces in Q"+ (¢), given by Deprez for ¢ = 0 in [D;] and
by Dillen for ¢ # 0 in [Di]. In those papers it has also been proved that if
f:M" — QN (c) is a parallel or a semi-parallel immersion, then M is a locally

symmetric or a semi-symmetric manifold, respectively.

Definition 2.1. An isometric immersion f : M™ — QN (c) is pseudo-parallel

if there exists a smooth function ¢ : M — IR such that

R(X,)Y)-a=¢(p)XAY -a, (5)

foallpe M and X,Y € T,M, where the linear endomorphism X ANY : T,M —

T,M is extended to act on a as follows:
XAY -] (Z,W):=—a(XAY (Z2),W)—a(Z,X NY (W)), (6)

for all ZW € T,M.
It follows easily from the equations of Gauss and Ricci that the condition of

pseudo-parallelism can be rewritten as:

R (X, Y)[a(Z,W)] = a(R(X,Y)Z,W)+a(Z R(X,Y)W) (7)
—¢(p) (Y, 2) a (X, W) + ¢ (p) (X, Z) a (Y, W)
—o(p) (Y, W)a(Z,X)+ o (p) (X, W)a(ZY).

Every semi-parallel immersion is a pseudo-parallel immersion with ¢ = 0.

The converse is false in general. In fact, we will show that there exist proper

pseudo-parallel immersions, i.e. not semi-parallel. First we need Proposition
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2.2, which follows easily from the definitions and the Gauss equation, to the

Weingarten operator of a pseudo-parallel hypersurface:

Proposition 2.2. A hypersurface f : M™ — Q"' (c) is a pseudo-parallel
immersion with R(X,Y)-a = ¢(X AY) - a if and only if the Weingarten
operator has al most two different eigenvalues A, w. If X # p, then ¢ = Ay + c.

Example 1. A hypersurface of revolution in Q™! (¢) is locally a warped prod-
uct I x;, M™'(§) of an open interval [ and a space of constant curvature
M™=1(§) with warping function A > 0, where § is 1,0 or —1 depending on the

sign of ¢. The principal curvatures are given by

) =
/\:_75—2h2—h and ,uzih S = (8)
§—ch?—}
where A has multiplicity at least n — 1 (see [CD]). Then it follows from Propo-
sition 2.2 that every rotation hypersurface is pseudo-parallel. Moreover, from
(8), such a hypersurface is not semi-parallel if the function & has nonvanishing
second derivative.

The notion of pseudo-parallelism is an extrinsic analogue of pseudo-symmetric

manifolds in the following sense:

Proposition 2.3. Let f : M™ — QN (¢) be a ¢-pseudo-parallel immersion.

Then M™ is a ¢-pseudo-symmetric manifold.
Proof. First we observe that the definition of R (X,Y") R can be rewritten as

[R(UV)-R|(X,Y,Z) = R(U,V)[R(X,Y)Z] - R(R(U,V)X,Y)Z
—R(X,R(U,V)Y)Z - R(X,Y)[R(U,V)Z].

By the Gauss equation we obtain

<[R ([Ja L/?) : R} (X* va Z) ) H/>
= —c{{(XAY)(2),RUV)W)+((XAY)(R(U,V)Z),W) (9)
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(B, V) ] >W>+<< ANBEUVIY])(Z) W)}
+{a(X,2),a W,Y)+a(W,R(U,V)Y))
—(a(Y,2),a(R(U,V) ,W)+a(XR(UV>W>>
+{a(W,Y (( V)X, Z) +a(X,R(U,V) Z))
—(a(X, ) (RWUV)Y, Z)+a(Y,R(U,V) Z)).

Finally we use (7) and again the equation of Gauss, on the right side of (9) to

obtain that

([R(U,V)- B (X,Y,Z),W)

¢(p) {{a (X, 2),a (Y (UAV) (W) = (a (X, (UAV) (W)),a(Y, Z))
+a(UAV)(X),2),a(Y, W) = (a(UAV)(X),W),a(Y,Z))

+(a(X,2),a(UAV)(Y),W)) = (a(X,W),a((UAV)(Y),2))

+(a(X,(UAV)(Z)),a(Y,W)) = {a(X,W),a(Y,(UAV)(Z)))}

= ¢(IUAV)-R|(X,Y,Z).

Example 2. The converse of Proposition 2.3 is false in general. In fact, let
f: M? — Q*(c) be a hypersurface with principal curvatures equal to 0 and
+X # 0. Then it follows easily that R(X,Y)- R = ¢(X AY)- R in p, ie.
M? is pseudo-symmetric in p with ¢(p) = ¢. In particular, if ¢ > 0 and
[ M? — S*(c) is a Cartan hypersurface, that is, M?> is a compact minimal
hypersurface in the sphere S* (¢) with constant principal curvature 0 and 4v/3c,
then M? is proper pseudo-symmetric (not semi-symmetric) with ¢ (p) = ¢, for
every p in M (see [?], Examples 1,2). It follows from Proposition 2.2 that
the Cartan hypersurface f : M? — S*(c) is not pseudo-parallel. Moreover,
if ¢ = 0, it is well-known that the cone over a Clifford torus of dimension
two, g : IRy x S'(1) x S'(1) — IR*, is a minimal hypersurface which has
three different principal curvatures 0, £A # 0. It follows that ¢ is a semi-

symmetric hypersurface, but by the Proposition 2.2 cannot be a pseudo-parallel
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hypersurface. This shows that pseudo-symmetry and semi-symmetry do not

imply pseudo-parallelism, in general. However:

Proposition 2.4. Ifn > 3 and f: M" — IR"" is an isometric immersion,
then f is a proper pseudo-parallel immersion if and only if M™ is a proper

pseudo-symmetric manifold.

Proof. It follows directly from Proposition 2.2 and Theorem 1 given in

[DDV].

We observe explicitly that, in the example above, the cone over the Clifford

torus is not proper pseudo-symmetric.

3. Proofof 1.1 and 1.2

Let f: M™ — Q" (c) be an isometric immersion. We choose a local orthonormal
frame field {ey,..., €n, €111, ...,en} adapted to f. Then the components of the
second fundamental form « are given by A% = (a (e, €;),¢e,), 1,7 € {1,...n},
o € {n+1,...N}. The components of the covariant derivative of a are given
by hZy = <(Ve,€ a) (e €5),€ > Vekh“, and the components of the second co-
variant derivative of a are given by hf;, = <(? V. a) (e,€5) € > Velh”k =

V. V. hZ. We have that f is pseudo-parallel if and only if

€k Z]
he = i — & {0kihfy — Suhf; + k;hG — kG, } (10)

where ¢,7,k,l=1,...nand c =n+1,..., N.
Recall that the Laplacian AA; of hf; is defined by Ahf; = i hfg- Then
k=1

%A(HO‘HZ) = Zn: Z hii R

1,5,k=1 o=n+

(11)

where [|a||® = 21 Z (hfj)z is the square of the length of the second fun-
i,y=1 o=n+

damental form and HVO[H = ¥ % (h"

. Z]k) . Then we have (see [Ch], pp.
1,5,k=1 o=n+1
90-91):
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n N
2o (lal) = X 3 by (Vo u7) 4 ne(lall ~nllH]?) (2

2,5=1 o=n+1
N
— Y [(trace(A, o A))* + [, AL)|)*] + H trace(A,
o,7=n+1
n N
where H? = w IH|IP = % > (H")®. Now, by (10) and the Codazzi
o=n+1

equation hf; = h on the right side of (11), we get:

kj
1 o o p v
LA(lal?) = 323 ATLTH) + nellal’ = nllHIP) + Vol (13)
7,0=1 c=n+1
Then, in general, for a pseudo-parallel immersion, we have:

n(¢ —o)(||lall* — nl|H|*) + Z [(trace(A, o A,))? (14)

o,7=n+1

+ |[[As, A7]||> — H™trace(A, o A, 0 A,)] =0

Now, if H(p) =0 then H? =0, Yo, and we have (at p):

n(¢(p) — c)llal* + Z [(trace(A, 0 A;))* + [|[4s, Al]|1*] =

o,7=n+1

If ¢(p) > ¢, then trace(A,0A,) =0, Y o,7.In particular ||A,||* = trace(A,o
A,) =0, hence a(p) = 0.

We will prove now Corollary 1.2:

First observe that R+(X,Y)H = 0 for any pseudo-parallel immersion. In
fact, let £ be a normal vector and {e,...,€e,} an orthonormal basis of eigen-

vectors of Ag. Then:

(R Y VH,€) = - S (RH(X, Y faten, ), 6) = 1+ 3 (o RO Y )eise0)

=1 =1

3

+ e, R(X,Y)e:) + d(p)[(Y, en)a(X, &) + (X, e)a(Y, &)
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M=

— Y eya(X, &) + (X, e)ale;, V)], €) = % : (a(R(X,Y )es, €:),6)

1

2 T
= — Z(Ag@z', R(X Y)e,) =0.
"=
Now, if H(p) = 0, by Theorem 1.1, @ = 0 and consequently R*(X,Y) = 0.
If H(p) # 0, R*(X,Y) is an antisymmetric operator on a 2-dimensional space

with non trivial kernel, hence is zero.

4. Final Remarks

Similarly to the case of parallel and semi-parallel immersions it is possible to
associate to a pseudo-parallel immersion a Jordan triple system at every point
of the manifold. The study of the algebraic properties of such a system leads
to many results in the theory of semi-parallel immersions. Research in progress
(that we hope will appear shortly) indicates that the same should occur also for
the pseudo-parallel case. For example we can give a pure linear algebraic proof of
1.1 and 1.2. We hope that such a point of view will help in better understanding
the connection between parallel, semi-parallel and pseudo-parallel immersions.
Also this point of view gives a better understanding of the curvature tensor of (a
class of) pseudo-symmetric submanifolds which leads to results on the topology

of the manifold like the following (see [ALM]):

Theorem 1.1. Let f : M™ — QN (¢) be a pseudo-parallel immersion, M
compact and simply connected, with ¢ > 0. Then M is a Riemannian product

of manifolds of the following type:
(a) Manifolds homeomorphic to spheres;
(b) Manifolds biholomorphic to complex projective spaces;

(c) Symmetric spaces of compact type.
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Moreover, if ¢ is not identically zero, then M is of the first type.

The above fact, together with corollary 1.2. implies that in the codimension
two case and ¢ = 0, the manifold is homeomorphic to a sphere or the immersion

is the product of two convex embeddings.
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