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Simulating digital circuits with clique

graphs

Carmen Cedillo Miguel Pizaña

Abstract

The clique operator transforms a graph G into its clique graph

K(G), which is the intersection graph of all the (maximal) cliques

of G. Clearly, we can iterate the operator to obtain iterated clique

graphs: Kn+1(G) = K(Kn(G)). The clique graph operator and the

iterated clique graphs have been studied extensively.

The discrete dynamics generated by the clique operator when

applied iteratively to graphs, has shown to be very rich and complex.

This complexity has fascinated experts in the field of graph dynamics

as well as it has defeated every endeavor to characterize the clique

behavior of graphs. Indeed, it has been suspected since 2001 (by J.

Meidanis [10]) that the clique operator is actually Turing-complete.

Motivated by this problem we have started simulating digital cir-

cuits using clique graphs, with the aim to explore the computational

power of the clique operator. Here we report our advances.
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1 Introduction

It is well known among Engineers that (many copies of) the gates in a func-

tionally complete set of logic gates (for instance: {AND, NOT}, {OR, NOT} or

simply {NAND} or {NOR}) is all you need to build an entire digital com-

puter [11]. However, the statement depends on several implicit assump-

tions that may not be as straightforward as one might think. For instance,

the construction of a digital computer also requires: channels, signal car-

riers, splitters and splices. Also, to construct flip-flops (an essential com-

ponent of a digital computer, used to store bits of information) and other

complex components, we need that the width of a signal pulse is at least

long as the commutation time of gates plus the propagation time of the

signals in the channels of the internal feedback loops of the components.

Using graphs and the dynamics of the clique operator, we have been able

to simulate most of these gadgets.

A simulation of all the required digital gadgets (not yet achieved), would

imply that an entire digital computer could be simulated using the clique

operator dynamics, and hence that the clique operator would have at

least the computational power of Linearly Bounded Automata (Turing

Machines with a finite tape) for the class of finite graphs, and also that

the clique operator would have the full computational power of Turing

machines for the class of quasi periodic graphs (defined later).

Clique graphs and iterated clique graphs have been studied extensively

[9,12,14] and have found applications to Loop Quantum Gravity [13] and

to the study of the Fixed-Point Property of partially ordered sets. An

important notion in clique graph theory is that of dismantleability: we

say that a graph G is dismantleable to H in one step (written G
#−→ H) if

G contains an induced subgraph H0
∼= H such that every vertex in G\H0

is dominated by some vertex of H0 (i.e. ∀x ∈ G \ H0 ∃y ∈ H0, NG[x] ⊆
NG[y]). We shall use this theorem:

Theorem 1.1 [4] If G
#−→ H then K(G)

#−→ K(H).
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2 First encoding

Our basic building block is shown in Fig. 1(a). It contains dominated

vertices, which is undesirable for our purposes, since dominated vertices

tend to disappear when we apply the clique operator; hence we add some

extra vertices as in Fig. 1(b) whenever necessary to avoid that.

Using several basic building blocks, we can construct channels as in

Fig. 1(c). Within channels, some local perturbations, which we call pho-

tons, move when we apply the clique operator: Indeed, the top graph in

Fig. 1(d) is the original channel with such a local perturbation (a photon),

and the two graphs below are obtained by applying K2 and K4 respec-

tively. Here we use even powers of K because our basic constructions are

(almost) always K2-invariant but not K-invariant and hence it is easier

to see what happens on even powers of K since then the only things that

change are the local perturbations.

This kind of “traveling” behavior was first observed by Escalante in [3]

and further studied in [6–8] among others. In the light of the theory

already developed, it should be clear that the behavior under the clique

operator of the example shown in Fig. 1(d) is exactly the one just described

in the previous paragraph. Alternatively, a computer can be used to verify

the claim (we use GAP+YAGS [1,5]).

Now we can propose the first encoding : The presence of a photon in

a channel encodes a ’one’ and the absence of a photon encodes a ’zero’.

With this first encoding, Fig. 1(g) shows a simulation of an OR gate, where

each successive graph is obtained from the previous one by applying the

operator K2. Many of the required gadgets can also be simulated:

Theorem 2.1 Using clique graphs and the first encoding, we can simulate

channels, signal carriers (photons), OR-gates, splitters and splices.

The claim in Theorem 2.1 is a computational fact and we think that it

is best verified by computer; to that end, we have prepared supplementary

media
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Figure 1. (a) and (b) Basic building blocks. (c) Channel. (d) Traveling photon.

(e) Second-encoding NOT gate. (f) Hypothetical second-encoding AND gate.

(g) First-encoding OR gate. (h) Inexistence of the first-encoding NOT gate.

for this paper that can be found in a web page here: [2]. The supple-
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mentary media contains code and data and an interactive web page to

let the reader explore the gadgets mentioned in this paper. A theoreti-

cal explanation is also possible: The main consideration is that, save for

the photons (and the dirty-AND gate mentioned below), our gadgets are

all clique-Helly graphs without dominated vertices, and Escalante proved

that such graphs are all K2-invariant [3]. Then, the problem is reduced

to analyzing what happen near the introduced local perturbations.

We also have a gadget that we call a dirty-AND gate (see [2]). It does

perform the AND function but also generates a lot of undesirable side effects

(hence the name). It cannot be used in simulations of digital circuits as

it is, but it gives a hint on what to study next to obtain a clean AND gate:

Namely, further study is necessary to understand the exact phenomenon

by which the dirty-AND gate is producing the photon required by the AND

function, and then to try to isolate this behavior to produce the photon

without the side effects.

However, the much needed NOT gate is not achievable as a modular gate.

By modular we mean a gate that is a finite graph, which is not clique-

divergent (i.e. that |Kn(G)| stays bounded by a constant for all n), and

whose internal structure does not depend on the surrounding circuit. The

modularity condition is needed for Theorem 2.2:

Theorem 2.2 A modular NOT gate cannot be simulated with clique graphs

using the first encoding.

Proof: Assume we have a modular NOT gate, we shall treat it as a black

box, but it surely must have an input channel and an output channel as

in Fig. 1(h).

Now, let H1, H2, H3 and H4 the graphs depicted in Fig. 1(h) (from

top-to-bottom and left-to-right). Then H1 and H3 represent the NOT gate

receiving a 1 and a 0 (respectively), which after a finite number of iter-

ations of the clique operator, must then be transformed into graphs H2

and H4 (i.e. Kn(H1) = H2 and Kn(H3) = H4). But the photon in H1
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is a dominated vertex of H1 and hence (since the gate is modular) H1 is

dismantleable to H3 in one step, in symbols H1
#−→ H3.

By Theorem 1.1, we have that H2 = Kn(H1)
#−→ Kn(H3) = H4 which,

by definition, implies that H2 contains a subgraph H ′4 isomorphic to H4.

Suppose first that the isomorphism from H ′4 to H4 sends the output

channel of H ′4 onto the output channel of H4. Then we get a contradiction

since no vertex of H ′4 could possibly be mapped onto the outgoing photon

in H4.

Now, suppose the contrary: that the isomorphism between H ′4 and H4

does not preserve the output channel. This could happen, in principle, if

some photon within the internal structure of the NOT gate in H ′4 is the one

who is mapped onto the outgoing photon in H4. However, our NOT gate

is modular by hypothesis, and hence its internal structure cannot depend

on the surrounding circuit. Since we can attach any desired circuit to the

output channel of the NOT gate (for instance, an output channel of any de-

sired length) and the NOT gate must deliver the isomorphism between H ′4
and H4 in each and every case, it follows that the NOT gate must either (1)

contain a preexisting internal copy of every possible circuit attached to the

output channel (which contradicts the finiteness assumption of modular-

ity) or (2) construct an internal copy of every possible circuit attached to

the output channel (which contradicts the non clique-divergence assump-

tion of modularity). It follows that the isomorphism between H ′4 and H4

must preserve the output channel as in the previous paragraph and hence

that the modular NOT gate does not exist. �

3 Second encoding

In view of Theorem 2.2 a second encoding is necessary, but we shall reuse

the results of the previous encoding. Now we shall use dual channels (each

having a top channel and a bottom channel) to transport information and

we shall encode a ’one’ with a dual channel having a photon in the top

channel but not in the bottom channel and a ’zero’ with a dual channel



Simulating digital circuits with clique graphs 191

having a photon in the bottom channel but not in the top channel (the

other two combinations are considered invalid). This way, a NOT gate can

be simulated by a simple exchange in its channels (see Fig. 1(e)). Many

of the previous gadgets can be readily reimplemented with this second

encoding by simply making copies (the top copy and the bottom copy) of

the gadgets already found for the first

Theorem 3.1 Using clique graphs and the second encoding, we can sim-

ulate channels, signal carriers, splitters, splices and NOT gates.

From now on, we really need a first-encoding AND gate (but we only

have a dirty-AND gate), hence our next results depend on the existence of

that gate. For Theorem 3.2, Fig. 1(f) fully explains how to construct a

second-encoding AND gate using first-encoding AND and OR gates.

Theorem 3.2 If an AND gate can be simulated with clique graphs in the

first encoding then an AND gate can also be simulated in the second encod-

ing.

With a functionally complete set of gates (in this case {AND, NOT}), if

we can use infinite graphs, any Turing machine can be simulated. We do

not need a huge class of infinite graphs for the simulation (the class of

numerable graphs has the cardinality of the continuum), it is sufficient to

use quasi periodic graphs i.e. a finite graph that is repeated a countable

number of times where some vertices in the i-th copy may be identified

with some vertices in the (i + 1)-th copy in a periodic manner, with just

a finite number of additional vertices and edges (quasi periodic graphs

can be finitely represented and hence the class of quasi-periodic graphs is

numerable).

Theorem 3.3 If an AND gate can be simulated in the first encoding, then

the clique graph operator is Turing-complete for (infinite but) quasi peri-

odic graphs.
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If we restrict ourselves to finite graphs and assume that the first-encoding

AND gate exists, it should be clear that the same techniques can be used

to simulate a finite memory computer (e.g. a real computer) using only

finite graphs. In particular, Linearly Bounded Automata (LBA) could be

simulated using finite clique graphs if the first-encoding AND gate exists.

Acknowledgment We thank the anonymous referees who helped us
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