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A superlinear type problem for a p-laplacian perturbation

F. O. de Paiva and H. R. Quoirin *

Dedicated to Antonio Gervdsio Colares — on the occasion of his 80th birthday.

Abstract

In this work we investigate existence and multiplicity of positive so-
lutions for the superlinear type problem

—Apu+ V(z)uP~! = f(x)u?™! in Q
u=20 on 012,

where Q C RY is an open bounded domain, ¢ > p > 1 and f changes
sign.

1 Introduction

Let Q be a bounded domain of RV, 2 < ¢ < 2* and f : 2 — R be a bounded
sign-changing function. Unless otherwise stated we assume that 0 is C?. It
is a standard fact that the semilinear equation

—Au= f(x)u?" ! in
0 (au=tw 0.

u=20 on 0,
has a positive solution. Such existence result persists if (I) is linearly per-

turbed, giving rise to:

—Au —du = f(x)ud~t in
(1) { u=20 on O0f).

The perturbation has to be accorded with A, the first eigenvalue of —A,

in the following sense:
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e if A < \; then the positive definiteness of the left-hand side is preserved

and (II) has a positive solution.

e if A > Xy then the functional [,(|Vu|? — AJul?) is no longer coercive,
but (I7) keeps the positive solution originated from the coercive case
provided A < A\*, for some A\* > A;. Furthermore, a second positive

solution arises if [, fo] < 0.
e if A > \* then (/I) has no positive solution.

The result described above was established in several works devoted to
semilinear equations involving indefinite superlinearities, starting from Ouyang
[13] and passing by Alama-Tarantello [1], Del Pino [9], Berestycki-Capuzzo-
Dolcetta-Nirenberg [4], Terhani [14] and Chabrowski-Marcos do O [6].

One may then consider the quasilinear version of (I7), namely,

—Apu — Pt = f(z)ut! in Q,
(P2) { u =20 on 0,

where 1 < p < ¢ < p*. This problem was investigated by Ilyasov [12] and
Birindelli-Demengel [5] (see also Drabek-Huang [10] for a similar problem with
Q = RY). Both works extended partially the above result to (Py). Here we
complete the result, see Theorem 1.7. A formulation for the optimal value of
A* was also given by Ilyasov.

Our purpose here is to treat the ‘no parameter’ version of (P)):
—Apu+ V(z)uP™! = f(x)ud™! in  Q,

(P) u >0 in €,
u=20 on Of)

We assume that 1 < p < ¢ < p*, f € L*°(Q) and V € L"(Q) with r > % if
p< N and r > 1if p > N. We aim at obtaining existence and multiplicity of

solutions for (P) according to the sign of

()= min{ [ (Va4 Vi)l =1},

the first eigenvalue of —A, + V, and fQ fgog/, where y is the first positive
eigenfunction LP-normalized. Notice that when V' = —A\ one has ¢y = ¢y,
but, in general, ¢y depends on V.

We describe now our approach and results.
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Let the functionals Ey and I’ be defined on WO P(Q) by

aww:iéqvmp+v<nmp /f ) u].

It is straightforward that F'is weakly continuous and that Ey is weakly lower
semi-continuous. Moreover, Ey is coercive if and only if A\ (V) > 0.

Our approach is prompted by [7], where the indefinite eigenvalue problem
(Pvm) A+ V@)l = m(@) P2, u e Wo(@)

is studied. When m is sign-changing, a natural way to obtain positive solutions

for this equation is to consider the minimization problems
min{ Ey (u / mlu|P = +1}.
It is shown that these minima are achieved if and only if oy (V,m) > 0, where
a1(V,m) := min{ By (u /m|u|p =0 and ||ul|, = 1}.
This condition comes from the relation
V t

a1 (V,m) = max pu (¢)
where 1(t) = min{ By (u) —t [ m|ulP; ||ul|, = 1}. One can easily see that the
zeros of pp provide all the principal eigenvalues of (Py,,). Properties of p

such as concavity and decaying to —oo when ¢ — 400 yield then the existence

of principal eigenvalues, given by

(Vo) = int { Bt [ mlu =1}
Aa(Vom) = int { Bv(uy: [ mlaP =1},

The lack of homogeneity in (P) prevents us from setting

and

p(t) ;== min{Ey (u) —t [ flu|% ||ull, = 1}. However, several conclusions simi-

lar to those holdlng for (Py.,) can be deduced by dealing with
(V) = a(v. ) s= min { Buw)s [ flult =0 and ful, =1}
Indeed, one is naturally led to consider

:inf{EV(u); /f\u|q:—1} and ¢y 1= inf{EV(u); /f|u|q:1}.

We can prove that these infima are achieved and that at least one of them

provides a solution when [ fy{, <0 and «(V, f) > 0. More generally:
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Theorem 1.1. Problem (P) has a solution if either A\ (V) > 0 or
AM(V) <0 and F(py) <0< oV, f). Moreover, if \i(V) < 0 and F(py) <
0 < a(V, f) then (P) has at least two solutions. If F(py) > 0> A (V) then

(P) has no solution.
This theorem summarizes the following results:
Theorem 1.2. Assume that a(V) > 0.

1. If \i(V)) > 0 then (P) has at least one solution.

2. If \i(V) <0 and F(py) <0 then (P) has at least two solutions.

Theorem 1.2 is the analogue version of the classical statement that holds for
the semilinear case. The assumption «(V') > 0, similar to A < \*, guarantees
that ¢; and ¢y are well-defined.

When dropping the assumption «(V') > 0, the second statement in Theo-
rem 1.2 can be proved provided A (V') is close to zero. To this end, we need
to assume a L a priori bound on V and that F'(py) is negative and away

from zero.

Corollary 1.3. Let 6, R > 0 be fized. Then there exists € = (6, R) > 0
such that (P) has at least two solutions if ||V||, < R, —e < A\ (V) < 0, and
F(QO\/) S —(5.

The ‘borderline case’ a(V') = 0 stands for the case A = \* in (I1):

Proposition 1.4. If f #0 a.e., a(V) =0, and [ fol, <0 then (P) has at

least one solution.
The non-existence for (P) holds as follows:
Theorem 1.5. If [ f¢l, = 0= X\ (V) then (P) has no solution.

Theorem 1.6. Given 6, R > 0 there exists € = €(d, R) > 0 such that (P) has
no solution if |V]e < R, M(V) < =0 and [ flev|? > e.

Finally, going back to the parameter version of (P), it is possible to get a

better description of the solution set:

Theorem 1.7. Assume that p < q < p*, [ fo] < 0 and either that 2 has a
C? boundary or that p > 2. Then there exists \* > A1 such that (Py) has at
least two solutions if A\ < X < X*. If A > \* then (Py) has no solution.
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The paper is organized as follows: in section 2, we prove the existence
statements for (P). Section 3 is devoted to the non-existence results. In

Section 4, we focus on the parameter version of (P).

2 Existence of solutions
We collect now some results in order to prove Theorem 1.2.

Some Lemmata

Lemma 2.1. «(V) is achieved.

Proof. We make use of the following inequality (see [7]):
[ull” < C1Ey (u) + Coffull; (2.1)

for every u € I/VO1 P(Q2) and some C1,Cy > 0 depending only on V. Hence if u,,
is a minimizing sequence for a(V, f), it is bounded and, up to a subsequence, it

converges weakly to some ug. By a standard compacity argument, ug realizes
a(V, f). O

From its definition it is clear that (V) > A1(V') and that a(V) > A\ (V)

if [ flev|? <O,
The next lemma gives a necessary relation between the first eigenpair

(A1 (V), py) and the solutions of (P).
Lemma 2.2. If u solves (P) then [ f¢l, <M (V) [ {uP™1.

Proof. We proceed as in [5, proof of Theorem 1.2]. Let us assume that u is a
solution of (Py f). Hence, by the strong maximum principle in [17], we have

u > 0 on 2. Moreover, by the Hopf lemma, % < 0 and aé%’ < 0 on 0. It

q q—p+1
follows that Y7 and “%—— can be tested in (P) and the eigenvalue problem,
u u

respectively. Thus we get:

[ flevit=a [y vur-2vuvey (22)

~ta-1) [Eyvap + [V
and

W) [ = a—p+1) [T 23)
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V\qg— _ _
_(q—P)/(%)q PHIV oy |P 2Vg0VVu+/Vup Yo7,
On the other hand, from Picone’s identity, one has
PV \q p PV \g—p+1 p—2
(7) Vul —P(Y) Vv [P"VeyVu (2.4)
+(p ~ DED Vi 2 0

and also
(ED) iy [P = p(Z0)0 ! Va2 VuVipy (2.5)

+(p— 1)(%)q—1|vu|p—2wwv > 0.

Adding up (4) multiplied by (% — 1) and (5) multiplied by % and integrating
over {) we get the same result as substracting (2) from (3), which yields the

conclusion. ]

Proof of Theorem 1.2

Consider the following infima:

ci :inf{EV(u); /f|u|q:—1} and s :inf{EV(u); /f|u|q:1}.

We will show that these infima are achieved. Moreover, we will prove that
c1 < 0 and ¢y > 0, so that the associated minimizers correspond to positive
solutions of (P).

Step 1: ¢; < 0.

Let w be defined by

YV
w=——"-"—7;
(= S fel)e
then [ fw? = —1, so that
E A
o < By(w) = —2vev) M)

(SN

b
q

(=S rel)e (= [ o))

Step 2: c; is well defined, i.e., ¢; > —o0.
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Assume by contradiction that there is a sequence of nonnegative function
uy, such that [ fuf = —1 and

Evy(uy) = /|Vun|p—|—/V+u§’L—/V_u§’l — —00.

It follows that [V ~uj, — oco. Define wy, by

(JV~un)

so that [ fwi — 0 and [V~ wh = 1. Moreover, for n large,

/|an\p+/V+wﬁ —1<0,

Wy = )

D=

thus ||wy|| is bounded. We can assume that w, — w in Wol’p(ﬂ), and so
[ fw?=0, [VTwP =1 and Ey(w) < 0. Define wy = %, then

— lwllp

Ey(wy) <0, /fwg =0, and [Jwpll, = 1.

This is in contradiction with «(V') > 0.
Step 3: c; is achieved.

Let u, be a nonnegative minimizing sequence, i.e. [ fuj = —1 and

Evy (un) — c¢1. We claim that ||uy]|| is bounded. If not, from

Ey (uy) :/|Vun|p—|—/V+uﬁ—/V_uﬁ—>cl,

we have that [V~ ul, — oo. Again, define
_Un
(S Vun)

so that ||wy|| is bounded. We can assume that w, — w in Wy, and so
[ fw?l=0, [ V-w? =1 and Ey(w) = 0. As in Step 2, we have a contradiction
with the assumption a(V) > 0.

Wy = 5

D=

Now, we can assume that u, — u in Wy?(Q), so that [ f|u|? = —1 and

c1 < By (u) <liminf By (uy,) = c;.
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Thus v is a minimizer for cy.
Step 4 ¢y is well defined, is achieved and is positive.

The first two assertions can be proved as for ¢;. In order to prove that
co > 0, let v be a minimizer for co. Then, up to a multiplicative constant, u

is a solution of
~Apu+ V(z)uP™! = cof(2)u?, ue Wol’p(Q).
From Lemma 2, there holds

cz/fgo“]/ < Al(V)/go“],up_q < 0.

Thus ¢ > 0. This finishes the proof of Theorem 1.2.
O

Next we prove Corollary 1, as a consequence of the next lemma, which
shows that the condition «(V') > 0 can be obtained if we control the sign of

M (V) and [ fel in an appropriate way:

Lemma 2.3. Given R, > 0 there is 9 > 0 such that for all V with ||V ||, <
R, [ fol, < =0 and A\ (V) > —eg, we have a(V) > 0.

Proof. Let gy be given by the previous lemma. We have that A;(V—X1(V)) =0
and it is achieved by ¢y, so that a(V — A1(V))) > eo. Then, for u € W,7(Q),

we have
Eyanon(w) > ¢ if Jul,=1 and / flul? =0,

and so
Ey(u) > (V) +e€ if |ul,=1 and /f|u]q = 0.
Thus a(V) > A\ (V) +€> 0. O

Now we turn to the proof of Proposition 1.4:

Proof of Proposition 1.4. We set F(u) = [q, flu|? and G(u) = ||ullp for u €
W,P(Q). Let us show that F'(ug) and G’(up) are linearly independent if
ug realizes &(V). Assume that a(F'(ugp),v) + b(G'(up),v) = 0 for every v €
Wol’p(Q). Taking v = ug we get b = 0, so that a(F'(ug),v) = 0 for every v €
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Wol’p(Q). If a # 0 then f|ug|?~! = 0, a contradiction. Therefore one can apply
Lagrange multipliers rule to infer that wg is a solution of —Aju + VuP~1 =
tofug_l + soug_l. Multiplying this equation by ug we get sg = a(V) = 0.

Furthermore, from Lemma 2, we have

t [ 16 <0 [etwr<o,

so that {9 > 0. Therefore, after rescaling, ug provides a solution for Py s.

|
3 Nonexistence of solutions
3.1 Proof of Theorem 1.5
Repeating the proof of Lemma 2 we obtain
0=q [(ZLyVur 2 Vavey - (3.1
v _
@=1 [ELeur+ [varog
and
0=(a-p+1) [(EDrweyp - 32)
(q—p)/(%)q_p“\va\p_QvaVqu/Vup_qw‘?/,
so that
(EDVul — p(EL) P [Vpy [P2VeyVu + (3.3)
(b - DEYPVer]P =0
and
(LD Vv = p(E)" |Vl 2VuVpy + (3.4)

(p— 1)(%)q_1|VU|p_2Vqu0V =0.

Therefore Picone’s identity states that w and ¢y are proportional, so that, up
A (V)

q—p )
v

to a multiplicative constant, one has f = which is impossible.

(]
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3.2 Proof of Theorem 1.6

Assume the existence of Ry > 0 and a sequence V,, € B such that A\;(V},) <
—Ro, [ flenl? > —1 (where ¢, = ¢v,) and that, for V. = V,, (P) has
a solution u,. We may assume that V,, — Vj in L°°(Q2) so that, by weak
continuity, A1 (Vo) < —Rp and [ f|¢o|? > 0. Let us now show that u,, converges
to a solution of (P), for V' =1Vj. Lemma 2 will then provide a contradiction.
From [3, Lemma 3.2] we have that the sequence u,, is bounded in L% (2) and
therefore, by (2.1), it is bounded in Wol’p(ﬂ). Hence u,, — wug in Wol’p(ﬂ),
strongly in L9 (). Multiplying (P), with V = Vj,, by u, — ug one gets
that (EY, (un), un —uo) — 0 so that, by the (ST) property of the p-laplacian,
Un — ug in Wy P(€). Therefore ug is a solution of (P) for V = Vj. O

4 The parameter dependent problem

Let A > 0 a parameter and consider the problem

—Apu = Pt + f(z)u?t in Q,
(Py) u>0 in
u=>0 on 0f,
where we assume that 1 < p < g < p*. Here f is a bounded function which
changes sign in . More precisely, we will assume that
={x € Q: f(x) >0} and Q- = {z € Q : f(zr) < 0} are open and
nonempty sets.

The solutions of (Py) are the critical points of the following C*-functional

|w|P—— KC w2 Lty wewie ).
q.J0
Define

A ={X: (P)) has a nontrivial solution} and A\* = sup A.

It follows from Theorem 1.2 that A # (). In fact (—oo, A1) C A. Here A\

denotes the first eigenvalue of

—Apu = AuP72u in  Q,
u=2~0 on Of).

Moreover, it is a consequence of Corollary 1.3 that if [ f] < 0, where 1 > 0

is the LP-normalized eigenfunction associated to Ay, then A\* > X\;. Also,
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we know that \* < A;(Q\ Q7), see the begin of the proof of Lemma 4.2 in
Appendix.

4.1 Proof of Theorem 1.7

The proof will be divided in several steps.
Step 1. There is a nontrivial solution for all A < \*.

Pick A < A* and A > X\ with XA € A. Let @ be a nontrivial solution of (F).
Then

— AT = NP 4 fe)att > awP T + f(r)ud !

so that @ is a supersolution of (Py). Now consider
M = {u e Wy?(Q);0 < u < a}.

Let u1 € M such that I(uy) = infys I, then u; is a solution of (Py), see
for instance [16, Theorem 1.2.4]. In order to prove that u; is nontrivial, let
0 < ¢ € C3(Q) with support compact and such that

Ja Vol
I <A (4.1)

The existence of ¢ holds since \; < . There is sy > 0 such that s¢ < wu for
0 < s < sg. Moreover, by (4.1) we have

f(sqs)s%(/QWW—A/Qw)—%/qu)cbuo

if s > 0 is small enough (recall that p < ¢). Then I(u;) < 0, and so u; is a

nontrivial solution.

Step 2. Let u; be the solution of (Py) constructed in Step 1. We claim

that u; can be assumed to be a local minimizer of I in Wol’p(ﬂ).

Case 1. Assume 0 is C?. By classical regularity results, u € C}(Q).

Then, by the strong maximum principle, we have

w1 >0in Q and J,up <0 on 01,
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where 0, denotes the normal exterior derivative. Moreover, we have that
u1 < W, where @ is a nontrivial solution of (FPy) with A < A < M\*. Applying

the comparison principle, see [8, Proposition 3.4], we can conclude that
u>u >0inQ and 9,u< d,u; <0 on IS

That means that M contains a C}(Q) neighborhood of u; and so u; is a
local minimum in C§. By classical results, we can conclude that u; is a local

minimum in VVO1 P(Q).

Case 2. Assume that p > 2. Set @ and A as before. We have that u; < @
a.e. in . Set X = (A + \)/2 and let § > 1 such that

(697 — 1) b(a)ui ™ < X — N\
Hence, multiplying the above inequality by 6~ 'uP~!, we obtain
—A,(0u) = P INaP Tt P () ut Tt > P I NPT 4 5 f ()t

Thus du is a supersolution for (Py) and moreover u; < éu a.e. in 2. Without

loss of generality, we can assume that
I(up) = min{F(u) : 0 < u(x) < du(z) a.e x€Q}.

It follows by Lemma 4.1 (see Appendix) that u; can be assumed to be a local

. . 1
minimizer of I in W,"7.

Step 3. We will apply the mountain pass theorem to obtain the second

nontrivial solution to (Py).

Consider now the functional

s = [ 19+ wp - [ e - [ 6,

where

and
(; xr,S) = —1 xr ulr + S 7 _ —1 xr uq
( ) ) qf( )(( 1 ) ) qf( ) 1°

It is clear that if u is a nontrivial critical point of J, then u; + u > 0, so that

u1 + u is a solution of (Py) different from wu;.
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Since wu; is a local minimizer of I and J(u) = I(uy +u) — I(uy) + ||u1]|?,
it follows that there is » > 0 such that
J(u) > J(0) for all u € WyP(Q) with ||u|| < r.

Now, fix 0 < v € W, ?(Q) such that
/ f(z)v? > 0.
Q

sP A

J(sv) = /|vU+“1 g o+ Ly

+ /m ul——/f v—l— +5/Qf(a:)u‘f

— as s — OQ.

Then

Finally, if u, is a (PS). sequence for J, then it follows that u; + u, is a
(PS)ct1(ur)—|jur|? for I. Thus J satisfies the (PS) condition since I satisfies
the (PS) condition if A < A\*, see Lemma 4.2 in Appendix.

U

4.2 Appendix
Here we will denote by w := du.

Lemma 4.1. Assume that p > 2. Suppose that uy is the unique minimizer of
I restricted to M = {u € Wol’p(Q) 10 <wu(x) <w(z) ae. x € Q}. Then uy is

a local minimizer of I in Wy''(S).

Proof. Consider the set
1
M, = {u e WyP(Q) : dist(u, M) < —} :
n

It is easy to verify that M, is weakly closed, and I is coercive and weakly
lower semi-continuous on M, with respect to the norm of Wo1 P Then, by [16,
Theorem 1.1.2], there is u,, € M, such that

I(uy) =min[.

n

It follows that
I'(up) - (u, —w)™ <0,
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le.,
/|Vun|p_2VunV(un—@)+d$ < /\/ P (u,, — W) Tdx
Q Q

/Qf(ac)ugl_l(un —w) " dw.

Moreover, we have that

/|V@|P—2VEV(un—w)+d:c > A’/wp‘l(un—w)+dx
Q Q

/ f(z)@w Y (u, — ) d.
9)

N> (14 e+ ef(x)w!™P.

Now, fix € > 0 such that

Multiplying this inequality by wP—!

we get
NP~ > (14 ) Nt + ef (x)(w)? L.
It follows that
/Q Vo 2VoV(u, —w)Tde > A /Q(l + )T (uy, — W) Fda
/Qf(fv)(l + )t N u, — w) T dx.

Remark that for p > 2 the p-Laplacian has the strongly monotone property,

so we can conclude that
/Q IV (u, —w)" Pdzx < /Q (IVu, [P*Vu, — |[VwlP~*Vw) V(u, — w) " dx.
Using the above inequalities, we get that
/ V(u, —w)" Pdz < )\/( 1+ e Y (u, — W) T dx
/f (1+ ) (un, — )" da
There is a constant C' = C'(¢) > 0 such that, for a > b > 0,
ot <P+ Cla—b)P!

and
al™t byt <t Ca—b)??
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Therefore

[ — D) P < M%y%—mwm

z)[(u,, —w) "%z
+CLﬂ)Kn )*]%d

< Clz : un(z) > w(2)} ¥ ||(un — @) H||P
+ Cll(un — @) |77 (up — @) TP

Note that u, converges to a minimizer of I in M, so from the uniqueness of ug
it follows that ||u, — ug|| — 0 as n — co. Moreover, since ug < w, it follows

that [{z : u,(x) > wW(z)}| = 0 as n — oo. Thus
[|(un — @) T|IP < 0(1)]] (un — @) |7,

so that there is ng such that (u, —w)" = 0 for n > ng, and so u, < w. As
a consequence, we have that u,;t € M and so I(u)}) > I(u1). Now, if n > ny,
then

1 1
I(uy) ZI(un):—/ ]Vu;\pdx—kl(u:{) > —/ |Vu, [Pdx + I(uy).
pPJo b Jo

We infer that v, = 0, and so u, € M for n > ng. Therefore u; is a local
minimizer of I in VVO1 P

(]

Lemma 4.2. The functional Iy satisfies the (PS) condition if X < \*.

Proof. First, note that \* < A\ (Q*), where Q* = Q\ Q~. Actually, let u be
a solution of (Py) and 1 be the first eigenfunction associated to A;(2*). By
Picone’s identity (c.f. [2]),

/ IVu|P2VuV (¢P JuP ) dx < / IV o|Pda,
Q Q

It follows that, using the equation (Py),

/w+/ﬁ*www<kaj/w

*

and consequently A < A;(Q2*). Thus A;(£2*) is an upper bound for A, and so

AF < AL ().

: 1
Now, consider a sequence u,, € W, such that

I(up) <c and I'(uy) — 0.
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We need to show that u,, has a convergent subsequence. But since ¢ < p* — 1,
it is enough to show that w, is bounded in W, (). Note that

1 1 1
Twn) = 11y = (2—9 - 5) Qlunll? = At 2) < e+ clunll,  (42)

so that the lemma follows from the next claim:
Claim:. The sequence u,, is bounded in LP((2).

Suppose by contradiction that ||uy||, — 00 as n — co. Set v, = up/||un||p-
From (4.2), we have that v, is bounded. So we can assume that v, — vg in
W, P with |Jvo||, = 1. For any w € Wy* we know that I’ (u,)w — 0 as n — co.

In particular

| Jun |3~ / f(x = lpdr = /[]an|p_2anVw —MNoD)P lwlde  (4.3)
Q
+o(1).
Consequently
/ fl@) () twdz = 0 for all w e W, P(). (4.4)
)

If Qp:=Q\ (QTUQ) is empty, then (4.4) implies that vy = 0, but it is a
contractions since ||vg|| = 1.

On the other hand, if Qy # (), then (4.4) implies that vy € Wol’p(Qo). Now,

passing a subsequence, we can assume that
/ Vo, [P~ 2 Vo, Vw — / |V P2V Vw,
9) Q
see for instance [11, 18]. From (4.3) we have that
/[|V'Uo|p_2V"UOVw — Aod )P w]dz = 0 for all w e WP (Qy).
Q
It follows that —Ayvg = A(vg)P~!, and so vg > 0 and X = A;(€Qp) since

|lvol|[p, = 1. It is a contradiction with the assumption A < A*, since A\* <
AL(27) < A1(Qo).
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